Advertisement

Application of Biogeography-Based Optimization in Transportation

  • Yujun Zheng
  • Xueqin Lu
  • Minxia Zhang
  • Shengyong Chen
Chapter

Abstract

There are a lot of optimization problems in the field of transportation, some of which can be modeled as continuous optimization problems, while others can be modeled as combinatorial optimization problems. Nowadays, with the development of transportation systems, most of such problems are high-dimensional and/or NP-hard. In recent years, we have adapted BBO algorithm to a variety of transportation problems and achieved good results.

References

  1. 1.
    Akay B, Karaboga D (2009) Solving integer programming problems by using artificial bee colony algorithm. In: AI*IA, pp 355–364.  https://doi.org/10.1007/978-3-642-10291-2-36
  2. 2.
    Carter AE, Ragsdale CT (2006) A new approach to solving the multiple traveling salesperson problem using genetic algorithms. Eur J Oper Res 175:246–257.  https://doi.org/10.1016/j.ejor.2005.04.027MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Chakraborty P, Roy GG, Das S, Jain D, Abraham A (2009) An improved harmony search algorithm with differential mutation operator. Fundam Inform 95:401–426.  https://doi.org/10.3233/FI-2009-157MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Charnes A, Cooper WW (1954) The stepping stone method of explaining linear programming calculations in transportation problems. Manag Sci 1:49–69.  https://doi.org/10.1287/mnsc.1.1.49MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cormen TH, Leiserson CE, Rivest RL, Stein C (2009) Introduction to algorithms, 3rd edn. MIT Press, CambridgezbMATHGoogle Scholar
  6. 6.
    Fogel DB (1994) An introduction to simulated evolutionary optimization. IEEE Trans Neural Netw 5:3–14.  https://doi.org/10.1109/72.265956CrossRefGoogle Scholar
  7. 7.
    Geem ZW, Kim JH, Loganathan G (2001) A new heuristic optimization algorithm: harmony search. Simulation 76:60–68.  https://doi.org/10.1177/003754970107600201CrossRefGoogle Scholar
  8. 8.
    Gong W, Cai Z, Ling CX (2010) DE/BBO: a hybrid differential evolution with biogeography-based optimization for global numerical optimization. Soft Comput 15:645–665.  https://doi.org/10.1007/s00500-010-0591-1CrossRefGoogle Scholar
  9. 9.
    Ilhem B, Amitava C, Patrick S, Mohamed AN (2012) Biogeography-based optimization for constrained optimization problems. Comput Oper Res 39:3293–3304.  https://doi.org/10.1016/j.cor.2012.04.012MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Jarboui B, Damak N, Siarry P, Rebai A (2008) A combinatorial particle swarm optimization for solving multi-mode resource-constrained project scheduling problems. Appl Math Comput 195:299–308.  https://doi.org/10.1016/j.amc.2007.04.096MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Ma H, Simon D (2011) Blended biogeography-based optimization for constrained optimization. Eng Appl Artif Intel 24, 517–525.  https://doi.org/10.1016/j.engappai.2010.08.005CrossRefGoogle Scholar
  12. 12.
    Mahdavi M, Fesanghary M, Damangir E (2007) An improved harmony search algorithm for solving optimization problems. Appl Math Comput 188:1567–1579.  https://doi.org/10.1016/j.amc.2006.11.033MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Rardin R (1998) Optimization in operations research. Pearson EducationGoogle Scholar
  14. 14.
    Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12:702–713.  https://doi.org/10.1109/TEVC.2008.919004CrossRefGoogle Scholar
  15. 15.
    Storn R, Price K (1997) Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11:341–359.  https://doi.org/10.1023/A:1008202821328MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Vignaux G, Michalewicz Z (1991) A genetic algorithm for the linear transportation problem. IEEE Trans Syst Man Cybern 21:445–452.  https://doi.org/10.1109/21.87092MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Wang G, Guo L, Duan H, Wang H, Liu L, Shao M (2013) Hybridizing harmony search with biogeography based optimization for global numerical optimization. J Comput Theor Nanosci 10:2312–2322.  https://doi.org/10.1166/jctn.2013.3207CrossRefGoogle Scholar
  18. 18.
    Yu B, Yang ZZ, Xie JX (2011) A parallel improved ant colony optimization for multi-depot vehicle routing problem. J Oper Res Soc 62:183–188.  https://doi.org/10.1057/jors.2009.161CrossRefGoogle Scholar
  19. 19.
    Zhang MX, Zhang B, Zheng YJ (2014) Bio-inspired meta-heuristics for emergency transportation problems. Algorithms 7:15–31.  https://doi.org/10.3390/a7010015MathSciNetCrossRefGoogle Scholar
  20. 20.
    Zheng Y, Shi H, Chen S (2012) Algorithm design. Science PressGoogle Scholar
  21. 21.
    Zheng YJ, Ling HF, Shi HH, Chen HS, Chen SY (2014) Emergency railway wagon scheduling by hybrid biogeography-based optimization. Comput Oper Res 43:1–8.  https://doi.org/10.1016/j.cor.2013.09.002MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Zheng YJ, Ling HF, Wu XB, Xue JY (2014) Localized biogeography-based optimization. Soft Comput 18:2323–2334.  https://doi.org/10.1007/s00500-013-1209-1CrossRefGoogle Scholar
  23. 23.
    Zheng YJ, Ling HF, Xue JY (2014) Ecogeography-based optimization: enhancing biogeography-based optimization with ecogeographic barriers and differentiations. Comput Oper Res 50:115–127.  https://doi.org/10.1016/j.cor.2014.04.013CrossRefzbMATHGoogle Scholar
  24. 24.
    Zheng YJ, Zhang MX, Zhang B (2014) Biogeographic harmony search for emergency air transportation. Soft Comput 20:967–977.  https://doi.org/10.1007/s00500-014-1556-6CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. and Science Press, Beijing 2019

Authors and Affiliations

  • Yujun Zheng
    • 1
  • Xueqin Lu
    • 2
  • Minxia Zhang
    • 2
  • Shengyong Chen
    • 2
  1. 1.Hangzhou Institute of Service EngineeringHangzhou Normal UniversityHangzhouChina
  2. 2.College of Computer Science and TechnologyZhejiang University of TechnologyHangzhouChina

Personalised recommendations