Advertisement

Bioclimatic Approach: Thermal Environment

  • Pranab Kumar Nag
Chapter
Part of the Design Science and Innovation book series (DSI)

Abstract

A sustainable building design seeks to accommodate the elements of bioclimatic perspectives, namely to make the building eco-friendly, focusing on human-friendliness, and energy-friendly to achieve energy efficiency and energy conservation. This chapter brings together the facets of bioclimate, about evaluating thermal comfort of building occupants. Review of human thermal indices, and its derivations, such as (a) direct indices referring to primarily climatic parameters, (b) rational indices, based on the analysis of human heat balance, and (c) thermal perception indices may be useful in making warmth assessment for the indoor and outdoor environment. There are two distinct approaches of thermal comfort assessment, such as the steady-state and non-steady-state methods. The former deals with heat transfer avenues based on thermophysiological models and standards, and the later considers adaptive thermal comfort, aiming at real-world dynamic environmental situations. In evaluating the building microclimate, environmental, and analytical modelling tools (such as RayMan, SOLWEIG, BOTworld, ENVI-met) are widely practiced. In hot climates, the urban heat island phenomenon exemplifies the potential risk of inhabitants to heat exposure-related morbidity and mortality. Research studies explore the effectiveness of heat island countermeasures, such as use of evaporative cooling from ground-level ponds, roof ponds, surfaces wetted by wind-driven rain, green roof, controlling solar gains by applying high-albedo materials at horizontal surfaces, strategic trees and vegetation covers, cool pavements around buildings.

References

  1. Abidin, N. Z., & Powmya, A. (2014). Drivers for green construction in Oman and its future prospects. Middle-East Journal of Scientific Research, 21(6), 929–935.Google Scholar
  2. Afanasieva, R., Bobrov, A., & Sokolov, S. (2009). Cold assessment criteria and prediction of cooling risk in humans: the Russian perspective. Industrial Health, 47(3), 235–241.CrossRefGoogle Scholar
  3. Ahmad, K., Khare, M., & Chaudhry, K. K. (2005). Wind tunnel simulation studies on dispersion at urban street canyons and intersections—a review. Journal of Wind Engineering and Industrial Aerodynamics, 93(9), 697–717.CrossRefGoogle Scholar
  4. Aizenshtat, B. A., & Lukina, L. P. (1982). Bioclimat i microclimat Tashkenta. Lvov (transliterated from Russian): Gidrometeoizdat.Google Scholar
  5. Akbari, H. (2005). Energy saving potentials and air quality benefits of urban heat island mitigation. Lawrence Berkeley National Laboratory.Google Scholar
  6. Alexandri, E., & Jones, P. (2008). Temperature decreases in an urban canyon due to green walls and green roofs in diverse climates. Building and Environment, 43(4), 480–493.CrossRefGoogle Scholar
  7. ANSI/ASHRAE 55 (2004, 2007, 2009, 2010, 2013 versions). Thermal environmental conditions for human occupancy, ASHRAE, Atlanta, GA.Google Scholar
  8. Aynsley, R. (1999). Low energy architecture for humid tropical climates. In Proceeding of the World Renewable Energy Congress (pp. 333–339).Google Scholar
  9. Barmpas, F., Bouris, D., & Moussiopoulos, N. (2009). 3D Numerical Simulation of the transient thermal behavior of a simplified building envelope under external flow. Journal of Solar Energy Engineering, 131(3), 031001.CrossRefGoogle Scholar
  10. Beaufort scale, Encyclopedia Britannica. http://www.britannica.com/science/Beaufort-scale.
  11. Becker, S. (2000). Bioclimatological rating of cities and resorts in South Africa according to the climate index. International Journal of Climatology, 20(12), 1403–1414.CrossRefGoogle Scholar
  12. Beer, T. (2013). Beaufort Wind Scale. Encyclopedia of Natural Hazards, 42–45.Google Scholar
  13. Belding, H. S., & Hatch, T. F. (1955). Index for evaluating heat stress in terms of resulting physiological strains. Heating, Piping and Air Conditioning, 27(8), 129–136.Google Scholar
  14. Bethea, D., & Parsons, K. (2002). The Development of a Practical Heat Stress Assessment Methodology for Use in UK Industry. Loughborough University Research Report 008.Google Scholar
  15. Bidlot, R., & Ledent, P. (1947). Travail dans les milieux a haute temperature. Que savons-nous des limites de temperature humainement supportables. Comm. No. 28, Institut d’Hygiene des Mines, Hasselt.Google Scholar
  16. Blagden, C. (1775). Experiments and observations in a heated room by Charles Blagden, MDFRS. Philosophical Transactions65, 111–123.Google Scholar
  17. Blazejczyk, K. (1992). MENEX·mE Man-environment heat exchange model and its applications in bioclimatology. In Proceedings of The Fifth International Conference on Environmental Ergonomics (pp. 142–143), Maastricht, The Netherland.Google Scholar
  18. Blazejczyk, K. (2005). New indices to assess thermal risks outdoors. In I. Holmér, K. Kuklane, & C. Gao (Eds.), Proceedings of 11th International Conferences on Environmental Ergonomics, 22–26 May (pp. 22–26), Ystat, Sweden.Google Scholar
  19. Blażejczyk, K. (2011). Assessment of regional bioclimatic contrasts in Poland. Miscellanea Geographica-Regional Studies on Development, 15, 79–91.Google Scholar
  20. Błażejczyk, K., & Matzarakis, A. (2007). Assessment of bioclimatic differentiation of Poland based on the human heat balance. Geographia Polonica, 80(1), 63–82.Google Scholar
  21. Blazejczyk, K., Epstein, Y., Jendritzky, G., Staiger, H., & Tinz, B. (2012). Comparison of UTCI to selected thermal indices. International Journal of Biometeorology, 56(3), 515–535.CrossRefGoogle Scholar
  22. Blocken, B., & Carmeliet, J. (2010). Overview of three state-of-the-art wind-driven rain assessment models and comparison based on model theory. Building and Environment, 45(3), 691–703.CrossRefGoogle Scholar
  23. Blocken, B., Dezsö, G., van Beeck, J. P. A. J., & Carmeliet, J. (2010). Comparison of calculation models for wind-driven rain deposition on building facades. Atmospheric Environment, 44(14), 1714–1725.CrossRefGoogle Scholar
  24. Blocken, B., Roels, S., & Carmeliet, J. (2007). A combined CFD–HAM approach for wind-driven rain on building facades. Journal of Wind Engineering and Industrial Aerodynamics, 95(7), 585–607.CrossRefGoogle Scholar
  25. Bodman, G. (1908). Das Klima als eine Funktion von Temperatur und Windgeschwindigkeit in ihrer Verbindung, von Gösta Bodman, Lith: Institut des Generalstabs.Google Scholar
  26. Borgeson, S., & Brager, G. (2011). Comfort standards and variations in exceedance for mixed-mode buildings. Building Research & Information, 39(2), 118–133.CrossRefGoogle Scholar
  27. Botsford, J. H. (1971). A wet globe thermometer for environmental heat measurement. American Industrial Hygiene Association Journal, 32(1), 1–10.CrossRefMathSciNetGoogle Scholar
  28. BOTworld homepage. http://www.botworld.info/.
  29. Bougdah, Hocine dan Sharples. (2010). Environment technology and sustainability. New York: Taylor & Francis.Google Scholar
  30. Brake, D. J., & Bates, G. P. (2002). Limiting metabolic rate (thermal work limit) as an index of thermal stress. Applied Occupational and Environmental Hygiene, 17(3), 176–186.CrossRefGoogle Scholar
  31. Bröde, P., Jendritzky, G., Fiala, D., & Havenith, G. (2010). The universal thermal climate index utci in operational use. In Proceedings of Conference: Adapting to Change: New Thinking on Comfort Cumberland Lodge, Windsor, UK, 9–11 Apr 2010.Google Scholar
  32. Bruse, M. (2007). Simulating human thermal comfort and resulting usage patterns of urban open spaces with a multi-agent system. In Proceedings the 24th International Conference on Passive and Low Energy Architecture PLEA (pp. 699–706).Google Scholar
  33. Bruse, M. (2009). Analysing human outdoor thermal comfort and open space usage with the Multi-Agent System BOTworld. In Seventh International Conference on Urban Climate (ICUC-7). ICUC, Yokohama (Vol. 4).Google Scholar
  34. Bruse, M. (2010). ENVI-met manual. http://www.envi-met.com.
  35. Bureau of Indian Standards. (1987). Handbook of Functional Requirements of Buildings (Other than Industrial Buildings), SP:41.Google Scholar
  36. Burton, A. C., & Edholm, O. G. (1955). Man in a cold environment. Physiological and pathological effects of exposure to low temperatures. Arnold, London.Google Scholar
  37. Carlucci, S., & Pagliano, L. (2012). A review of indices for the long-term evaluation of the general thermal comfort conditions in buildings. Energy and Buildings, 53, 194–205.CrossRefGoogle Scholar
  38. Carmeliet, J., Blocken, B., Defraeye, T., & Derome, D. (2011). 10 Moisture phenomena in whole building performance prediction. J.L.M. Hensen, R. Lamberts (Eds.), Building Performance Simulation for Design and Operation (p. 277).Google Scholar
  39. Castleton, H. F., Stovin, V., Beck, S. B., & Davison, J. B. (2010). Green roofs; building energy savings and the potential for retrofit. Energy and Buildings, 42(10), 1582–1591.CrossRefGoogle Scholar
  40. Chen, H., Ooka, R., & Kato, S. (2008). Study on optimum design method for pleasant outdoor thermal environment using genetic algorithms (GA) and coupled simulation of convection, radiation and conduction. Building and Environment, 43(1), 18–30.CrossRefGoogle Scholar
  41. Cheng, V., Ng, E., Chan, C., & Givoni, B. (2012). Outdoor thermal comfort study in a sub-tropical climate: a longitudinal study based in Hong Kong. International Journal of Biometeorology, 56(1), 43–56.CrossRefGoogle Scholar
  42. CIBSE, Guide, A. (2006). Environmental design. In 7th ed. U.K. Chartered Institution of Building Services Engineers, ISBN 978190387668.Google Scholar
  43. D’orazio, M., Di Perna, C., & Di Giuseppe, E. (2012). Green roof yearly performance: a case study in a highly insulated building under temperate climate. Energy and Buildings, 55, 439–451.CrossRefGoogle Scholar
  44. de Dear, R. J., & Brager, G. S. (1997). ASHRAE RP—884 Final Report: developing an adaptive model of thermal comfort and preference. Atlanta.Google Scholar
  45. De Dear, R. J., & Brager, G. S. (2002). Thermal comfort in naturally ventilated buildings: revisions to ASHRAE Standard 55. Energy and Buildings, 34(6), 549–561.CrossRefGoogle Scholar
  46. de Freitas, C. R., & Grigorieva, E. A. (2009). The Acclimatization Thermal Strain Index (ATSI): a preliminary study of the methodology applied to climatic conditions of the Russian Far East. International Journal of Biometeorology, 53(4), 307–315.CrossRefGoogle Scholar
  47. de Freitas, C. R., & Grigorieva, E. A. (2015). A comprehensive catalogue and classification of human thermal climate indices. International Journal of Biometeorology, 59(1), 109–120.CrossRefGoogle Scholar
  48. de Paula Xavier, A. A., & Lamberts, R. (2000). Indices of thermal comfort developed from field survey in Brazil. ASHRAE Transaction, 106(1), 45–58.Google Scholar
  49. Defraeye, T., & Carmeliet, J. (2010). A methodology to assess the influence of local wind conditions and building orientation on the convective heat transfer at building surfaces. Environmental Modelling and Software, 25(12), 1813–1824.CrossRefGoogle Scholar
  50. Defraeye, T., Blocken, B., & Carmeliet, J. (2012). Analysis of convective heat and mass transfer coefficients for convective drying of a porous flat plate by conjugate modelling. International Journal of Heat and Mass Transfer, 55(1), 112–124.zbMATHGoogle Scholar
  51. Djongyang, N., Tchinda, R., & Njomo, D. (2010). Thermal comfort: A review paper. Renewable and Sustainable Energy Reviews, 14(9), 2626–2640.CrossRefGoogle Scholar
  52. Dufton, A. F. (1929). The eupatheostat. Journal of Scientific Instruments, 6(8), 249–251.CrossRefGoogle Scholar
  53. EN 15251 (2007). Indoor Environmental Input Parameters for Design and Assessment of Energy Performance of Buildings—Addressing Indoor Air Quality, Thermal Environment, Lighting and Acoustics, CEN, Brussels.Google Scholar
  54. EN 15265 (2007). Thermal performance of buildings—Calculation of energy use for space heating and cooling—General criteria and validation procedures for detailed calculations. European Committee for Standardization.Google Scholar
  55. Epstein, Y., & Moran, D. S. (2006). Thermal comfort and the heat stress indices. Industrial Health, 44(3), 388–398.CrossRefGoogle Scholar
  56. Erell, E., Pearlmutter, D., & Williamson, T. (2012). Urban microclimate: Designing the spaces between buildings. London, UK: Routledge.CrossRefGoogle Scholar
  57. Fang, C. F. (2012). The suitable plant selection of ecological roof in Taichung region. Journal of Landscape, 18(2), 61–85.Google Scholar
  58. Fanger, P. O. (1970). Thermal comfort. Analysis and applications in environmental engineering. Copenhagen Danish Technical Press.Google Scholar
  59. Fanger, P. O., Melikov, A. K., Hanzawa, H., & Ring, J. (1988). Air turbulence and sensation of draught. Energy and Buildings, 12(1), 21–39.CrossRefGoogle Scholar
  60. Fiala, D., Havenith, G., Bröde, P., Kampmann, B., & Jendritzky, G. (2012). UTCI-Fiala multi-node model of human heat transfer and temperature regulation. International Journal of Biometeorology, 56(3), 429–441.CrossRefGoogle Scholar
  61. Fiala, D., Lomas, K., & Stohrer, M. (1999). A computer model of human thermoregulation for a wide range of environmental conditions: The passive system. Journal of Applied Physiology, 87(5), 1957–1972.CrossRefGoogle Scholar
  62. Fioretti, R., Palla, A., Lanza, L. G., & Principi, P. (2010). Green roof energy and water related performance in the Mediterranean climate. Building and Environment, 45(8), 1890–1904.CrossRefGoogle Scholar
  63. Frank, A., Moran, D., Epstein, Y., Belokopytov, M., & Shapiro, Y. (1996). The estimation of heat tolerance by a new cumulative heat strain index. In Y. Shapiro, D. Moran, & Y. Epstein (Eds.), Environmental ergonomics: Recent progress and new frontiers (pp. 194–197). London: Freund Publishing House.Google Scholar
  64. Frontczak, M., & Wargocki, P. (2011). Literature survey on how different factors influence human comfort in indoor environments. Building and Environment, 46(4), 922–937.CrossRefGoogle Scholar
  65. Fuchs, M., Hegger, M., Stark, T., & Zeumer, M. (2008). Energy manual: Sustainable architecture. Walter de Gruyter.Google Scholar
  66. Gagge, A. P. (1971). An effective temperature scale based on a simple model of human physiological regulatory response. ASHRAE Transactions, 77, 247–262.Google Scholar
  67. Gagge, A. P., Fobelets, A. P., & Berglund, L. (1986). A standard predictive index of human response to the thermal environment. ASHRAE Transactions, 92 (CONF-8606125-), 709–731.Google Scholar
  68. Getter, K. L., & Rowe, D. B. (2009). Substrate depth influences Sedum plant community on a green roof. HortScience, 44(2), 401–407.Google Scholar
  69. Givoni, B. (1969). Man, climate and architecture. Amsterdam: Elsevier.Google Scholar
  70. Gregorczuk, M. (1968). Bioclimates of the world related to air enthalpy. International Journal of Biometeorology, 12(1), 35–39.CrossRefGoogle Scholar
  71. Gregorczuk, M., & Cena, K. (1967). Distribution of effective temperature over the surface of the earth. International Journal of Biometeorology, 11(2), 145–149.CrossRefGoogle Scholar
  72. Guy, S., & Farmer, G. (2001). Reinterpreting sustainable architecture: The place of technology. Journal of Architectural Education, 54(3), 140–148.CrossRefGoogle Scholar
  73. Hamdi, M., Lachiver, G., & Michaud, F. (1999). A new predictive thermal sensation index of human response. Energy and Buildings, 29(2), 167–178.CrossRefGoogle Scholar
  74. Harris, D. J., & Helwig, N. (2007). Solar chimney and building ventilation. Applied Energy, 84(2), 135–146.CrossRefGoogle Scholar
  75. Hevener, O. F. (1959). All about humiture. Weather, 12, 83–85.Google Scholar
  76. Hill, L., Barnard, H., & Sequeira, J. H. (1897). The effect of venous pressure on the pulse. The Journal of Physiology, 21(2–3), 147–159.CrossRefGoogle Scholar
  77. Hill, L., Griffith, O. W., & Flack, M. (1916). The measurement of the rate of heat-loss at body temperature by convection, radiation, and evaporation. Philosophical Transactions of the Royal Society of London Series B, Containing Papers of a Biological Character, 207, 183–220.CrossRefGoogle Scholar
  78. Hirano, Y., & Fujita, T. (2012). Evaluation of the impact of the urban heat island on residential and commercial energy consumption in Tokyo. Energy, 37(1), 371–383.CrossRefGoogle Scholar
  79. Hodder, S. G., & Parsons, K. (2007). The effects of solar radiation on thermal comfort. International Journal of Biometeorology, 51(3), 233–250.CrossRefGoogle Scholar
  80. Holmer, I. (1984). Required clothing insulation (IREQ) as an analytical index of cold stress. ASHRAE Transactions, 90, 1116–1128.Google Scholar
  81. Höppe, P. (1994). The heat balance models MEMI and IMEM for the evaluation of thermal stress in the workplace. Verhandlungen der Deutschen Gesellschaft Arbeitsmedizin Environmental Mededicine, 34, 153–158.Google Scholar
  82. Höppe, P. (1999). The physiological equivalent temperature–a universal index for the biometeorological assessment of the thermal environment. International Journal of Biometeorology, 43(2), 71–75.CrossRefGoogle Scholar
  83. Hori, S. (1978). Index for the assessment of heat tolerance. Journal of Human Ergology, 7(2), 135–144.Google Scholar
  84. Houghton, F. C., & Yaglou, C. P. (1923). Determining equal comfort lines. Journal American Society Heat Ventilation Engineering, 29, 165–176.Google Scholar
  85. Ionides, M., Plummer, J., & Siple, P. A. (1945). The thermal acceptance ratio. Interm report No. 1, Climatology and envelope. Federation Proceedings, 9, 26.Google Scholar
  86. ISO 7243 (2003). Hot Environments—Estimation of the heat stress on working man, based on the WBGT-index (wet bulb globe temperature). Geneva: International Standards Organisation.Google Scholar
  87. ISO 7730 (2005). Ergonomics of the thermal environment—analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria, 3rd version, Geneva.Google Scholar
  88. ISO 7933 (1989). Hot environments—analytical determination and interpretation of thermal stress using calculation of required sweat rate, Geneva: ISO.Google Scholar
  89. ISO 7933 (2004). Ergonomics of the thermal environment—analytical determination and interpretation of heat stress using calculation of the predicted heat strain. Geneva, Switzerland: International Standards Organisation.Google Scholar
  90. Jendritzky, G., Havenith, G., Weihs, P., Batschvarova, E., & DeDear, R. (2008). The universal thermal climate index UTCI–goal and state of COST Action 730. In 18th International Conference on Biometeorology, Tokyo.Google Scholar
  91. Kalkstein, L. S., & Valimont, K. M. (1986). An evaluation of summer discomfort in the United State using a relative climatological index. Bulletin of the American Meteorological Society, 67(7), 842–848.CrossRefGoogle Scholar
  92. Kalkstein, L. S., & Valimont, K. M. (1987). An evaluation of winter weather severity in the United States using the weather stress index. Bulletin of the American Meteorological Society, 68(12), 1535–1540.CrossRefGoogle Scholar
  93. Kalkstein, L. S., Nichols, M. C., Barthel, C. D., & Greene, J. S. (1996). A new spatial synoptic classification: application to air mass analysis. International Journal of Climatology, 16(9), 983–1004.CrossRefGoogle Scholar
  94. Kamon, E., & Ryan, C. (1981). Effective heat strain index using pocket computer. The American Industrial Hygiene Association Journal, 42(8), 611–615.CrossRefGoogle Scholar
  95. Kántor, N., & Unger, J. (2010). Benefits and opportunities of adopting GIS in thermal comfort studies in resting places: An urban park as an example. Landscape and Urban Planning, 98(1), 36–46.CrossRefGoogle Scholar
  96. Karava, P., Stathopoulos, T., & Athienitis, A. K. (2011). Airflow assessment in cross-ventilated buildings with operable façade elements. Building and Environment, 46(1), 266–279.CrossRefGoogle Scholar
  97. Kenny, N. A., Warland, J. S., Brown, R. D., & Gillespie, T. G. (2009). Part A: Assessing the performance of the COMFA outdoor thermal comfort model on subjects performing physical activity. International Journal of Biometeorology, 53(5), 415–428.CrossRefGoogle Scholar
  98. Kolokotroni, M., Davies, M., Croxford, B., Bhuiyan, S., & Mavrogianni, A. (2010). A validated methodology for the prediction of heating and cooling energy demand for buildings within the Urban Heat Island: Case-study of London. Solar Energy, 84(12), 2246–2255.CrossRefGoogle Scholar
  99. Krüger, E. L., & Pearlmutter, D. (2008). The effect of urban evaporation on building energy demand in an arid environment. Energy and Buildings, 40(11), 2090–2098.CrossRefGoogle Scholar
  100. Kubota, T., Miura, M., Tominaga, Y., & Mochida, A. (2008). Wind tunnel tests on the relationship between building density and pedestrian-level wind velocity: Development of guidelines for realizing acceptable wind environment in residential neighborhoods. Building and Environment, 43(10), 1699–1708.CrossRefGoogle Scholar
  101. Lee, D. H. (1958). Proprioclimates of man and domestic animals. Climatology, Arid Zone Research—X UNESCO, pp. 102–125, Paris.Google Scholar
  102. Lin, B. S., Yu, C. C., Su, A. T., & Lin, Y. J. (2013). Impact of climatic conditions on the thermal effectiveness of an extensive green roof. Building and Environment, 67, 26–33.CrossRefGoogle Scholar
  103. Lin, T. P. (2009). Thermal perception, adaptation and attendance in a public square in hot and humid regions. Building and Environment, 44(10), 2017–2026.CrossRefGoogle Scholar
  104. Lind, A. R., & Hellon, R. F. (1957). Assessment of physiological severity of hot climates. Journal of Applied Physiology, 11(1), 35–40.CrossRefGoogle Scholar
  105. Lindberg, F., Holmer, B., & Thorsson, S. (2008). SOLWEIG 1.0–Modelling spatial variations of 3D radiant fluxes and mean radiant temperature in complex urban settings. International Journal of Biometeorology, 52(7), 697–713.CrossRefGoogle Scholar
  106. Lomas, K. J., & Giridharan, R. (2012). Thermal comfort standards, measured internal temperatures and thermal resilience to climate change of free-running buildings: A case-study of hospital wards. Building and Environment, 55, 57–72.CrossRefGoogle Scholar
  107. Lundholm, J., MacIvor, J. S., MacDougall, Z., & Ranalli, M. (2010). Plant species and functional group combinations affect green roof ecosystem functions. PLoS ONE, 5(3), e9677.CrossRefGoogle Scholar
  108. Malchaire, J., Piette, A., Kampmann, B., Mehnert, P., Gebhardt, H. J., Havenith, G., et al. (2001). Development and validation of the predicted heat strain model. Annals of Occupational Hygiene, 45(2), 123–135.CrossRefGoogle Scholar
  109. Masterson J, Richardson F. A. (1979). Humidex, a method of quantifying human discomfort due to excessive heat and humidity. Downsview: Environment Canada. http://ptaff.ca/humidex/?lang=en_CA.
  110. Mateeva, Z., & Filipov, A. (2003). Bioclimatic distance index in the Rila and Rhodopy area of Bulgaria. In K. Błażejczyk, B. Krawczyk (eds), Postępy w badaniach klimatycznych i bioklimatycznych. Prace Geografi czne IGiPZ PAN (Vol. 188, pp. 295–302).Google Scholar
  111. Matzarakis, A., & Nastos, P. T. (2011). Human-biometeorological assessment of heat waves in Athens. Theoretical and Applied Climatology, 105(1–2), 99–106.CrossRefGoogle Scholar
  112. Matzarakis, A., Rutz, F., & Mayer, H. (2007). Modelling radiation fluxes in simple and complex environments—application of the RayMan model. International Journal of Biometeorology, 51(4), 323–334.CrossRefGoogle Scholar
  113. Matzarakis, A., Rutz, F., & Mayer, H. (2010). Modelling radiation fluxes in simple and complex environments: basics of the RayMan model. International Journal of Biometeorology, 54(2), 131–139.CrossRefGoogle Scholar
  114. McArdle, B., Dunham, W., Holling, H. E., Ladell, W. S. S., Scott, J. W., Thomson, M. L., et al. (1947). The prediction of the physiological effects of warm and hot environments. Medical Research Council, London, Rep, 47, 391.Google Scholar
  115. McCartney, K. J., & Nicol, J. F. (2002). Developing an adaptive control algorithm for Europe. Energy and Buildings, 34(6), 623–635.CrossRefGoogle Scholar
  116. McIntyre, D. (1973). A guide to thermal comfort. Applied Ergonomics, 4(2), 66–72.CrossRefGoogle Scholar
  117. McLaughlin, J. T., & Shulman, M. D. (1977). An anthropocentric summer severity index. International Journal of Biometeorology, 21(1), 16–28.CrossRefGoogle Scholar
  118. McLennan, J. F. (2004). The philosophy of sustainable design: The future of architecture. Ecotone publishing.Google Scholar
  119. Missenard, F. (1933). Physiological and technical study of ventilation. Physiological and Technical Study of Ventilation.Google Scholar
  120. Mochida, T. (1979). Comfort chart: An index for evaluating thermal sensation. Memoirs of the Faculty of Engineering, Hokkaido University Collection of Scholarly and Academic Papers: HUSCAP, 15(2), 175–185. http://hdl.handle.net/2115/37977.
  121. Moran, D. S., Castellani, J. W., O’Brien, C., Young, A. J., & Pandolf, K. B. (1999). Evaluating physiological strain during cold exposure using a new cold strain index. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 277(2), R556–R564.CrossRefGoogle Scholar
  122. Moran, D. S., Pandolf, K. B., Shapiro, Y., Heled, Y., Shani, Y., Mathew, W. T., et al. (2001). An environmental stress index (ESI) as a substitute for the wet bulb globe temperature (WBGT). Journal of Thermal Biology, 26(4), 427–431.CrossRefGoogle Scholar
  123. Moran, D. S., Shapiro, Y., Epstein, Y., Matthew, W., & Pandolf, K. B. (1998a). A modified discomfort index (MDI) as an alternative to the wet bulb globe temperature (WBGT). In J. A. Hodgdon, J. H. Heaney, M. J. Buono (Eds.), International Conference on Environmental Ergonomics (Vol. VIII, pp. 77–80), San Diego.Google Scholar
  124. Moran, D. S., Shitzer, A., & Pandolf, K. B. (1998b). A physiological strain index to evaluate heat stress. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 275(1), R129–R134.CrossRefGoogle Scholar
  125. Nag, P. K. (1984). Convective and evaporative heat transfer coefficients of the persons in different activities. Journal of Human Ergology, 13(1), 43–49.MathSciNetGoogle Scholar
  126. Nag, P. K., Nag, A., & Ashtekar, S. P. (2007). Thermal limits of men in moderate to heavy work in tropical farming. Industrial Health, 45(1), 107–117.CrossRefGoogle Scholar
  127. Nardini, A., Andri, S., & Crasso, M. (2012). Influence of substrate depth and vegetation type on temperature and water runoff mitigation by extensive green roofs: shrubs versus herbaceous plants. Urban Ecosystems, 15(3), 697–708.CrossRefGoogle Scholar
  128. National Institute for Occupational Safety and Health (NIOSH) (1986). Criteria for a Recommended Standard: Occupational Exposure to Hot Environments Revised Criteria, no. 86, 113, Cincinnati, OH: NIOSH publication.Google Scholar
  129. Nicol, F., Humphreys, M., & Roaf, S. (2012). Adaptive thermal comfort: Principles and practice. London: Routledge.CrossRefGoogle Scholar
  130. Nicol, J. F., Hacker, J., Spires, B., & Davies, H. (2009). Suggestion for new approach to overheating diagnostics. Building Research & Information, 37(4), 348–357.CrossRefGoogle Scholar
  131. Nikolopoulou, M. (2004). Designing open spaces in the urban environment: a bioclimatic approach. Project Report RUROS—Rediscovering the Urban Realm and open Spaces. http://alpha.cres.gr/ruros/.
  132. Nikolopoulou, M., & Steemers, K. (2003). Thermal comfort and psychological adaptation as a guide for designing urban spaces. Energy and Buildings, 35(1), 95–101.CrossRefGoogle Scholar
  133. Ohashi, Y., Ihara, T., Kikegawa, Y., & Sugiyama, N. (2016). Numerical simulations of influence of heat island countermeasures on outdoor human heat stress in the 23 wards of Tokyo, Japan. Energy and Buildings, 114, 104–111.CrossRefGoogle Scholar
  134. Onmura, S., Matsumoto, M., & Hokoi, S. (2001). Study on evaporative cooling effect of roof lawn gardens. Energy and Buildings, 33(7), 653–666.CrossRefGoogle Scholar
  135. Ono, H. S. P., & Kawamura, T. (1991). Sensible climates in monsoon Asia. International Journal of Biometeorology, 35(1), 39–47.CrossRefGoogle Scholar
  136. Ono, T., Murakami, S., Ooka, R., & Omori, T. (2008). Numerical and experimental study on convective heat transfer of the human body in the outdoor environment. Journal of Wind Engineering and Industrial Aerodynamics, 96(10), 1719–1732.CrossRefGoogle Scholar
  137. Ooka, R., Chen, H., & Kato, S. (2008). Study on optimum arrangement of trees for design of pleasant outdoor environment using multi-objective genetic algorithm and coupled simulation of convection, radiation and conduction. Journal of Wind Engineering and Industrial Aerodynamics, 96(10), 1733–1748.CrossRefGoogle Scholar
  138. Ouldboukhitine, S. E., Belarbi, R., & Djedjig, R. (2012). Characterization of green roof components: Measurements of thermal and hydrological properties. Building and Environment, 56, 78–85.CrossRefGoogle Scholar
  139. Pantavou, K., Theoharatos, G., Mavrakis, A., & Santamouris, M. (2011). Evaluating thermal comfort conditions and health responses during an extremely hot summer in Athens. Building and Environment, 46(2), 339–344.CrossRefGoogle Scholar
  140. Parsons, K. (2014). Human thermal environments: The effects of hot, moderate, and cold environments on human health, comfort, and performance. CRC press.Google Scholar
  141. Pepi, J. W. (1999). The new Summer Simmer Index: a comfort index for the new millennium. http://www.summersimmer.com/home.htm.
  142. Pickup, J., & de Dear, R. (2000). An outdoor thermal comfort index (OUT_SET*)-part I-the model and its assumptions. In Biometeorology and Urban Climatology at the Turn of the Millennium. Selected Papers from the Conference ICB-ICUC (Vol. 99, pp. 279–283).Google Scholar
  143. Robinson, D., & Stone, A. (2005). A simplified radiosity algorithm for general urban radiation exchange. Building Services Engineering Research and Technology, 26(4), 271–284.CrossRefGoogle Scholar
  144. Rodriguez, C., Mateos, J., & Garmendia, J. (1985). Biometeorological comfort index. International Journal of Biometeorology, 29(2), 121–129.CrossRefGoogle Scholar
  145. Roelofsen, P. (2016). A computer model for the assessment of employee performance loss as a function of thermal discomfort or degree of heat stress. Intelligent Buildings International, 8(4), 195–214.CrossRefGoogle Scholar
  146. Rothfusz, L. P., & Headquarters, N. S. R. (1990). The heat index equation (or, more than you ever wanted to know about heat index) (pp. 90–123). Fort Worth, Texas: National Oceanic and Atmospheric Administration, National Weather Service, Office of Meteorology.Google Scholar
  147. Runsheng, T., Etzion, Y., & Erell, E. (2003). Experimental studies on a novel roof pond configuration for the cooling of buildings. Renewable Energy, 28(10), 1513–1522.CrossRefGoogle Scholar
  148. Santamouris M. (2014a). Energy and climate in the urban built environment, London, James & James.Google Scholar
  149. Santamouris, M. (2014b). Cooling the cities–a review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Solar Energy, 103, 682–703.CrossRefGoogle Scholar
  150. Santamouris, M. (Ed.). (2001). Energy and climate in the urban built environment. London: James & James Science Publishers.Google Scholar
  151. Santamouris, M., Papanikolaou, N., Livada, I., Koronakis, I., Georgakis, C., Argiriou, A., et al. (2001). On the impact of urban climate on the energy consumption of buildings. Solar Energy, 70(3), 201–216.CrossRefGoogle Scholar
  152. Sarté, S. B. (2010). Sustainable infrastructure: The guide to green engineering and design. New Jersey, John Wiley: Hoboken.Google Scholar
  153. Sasaki, K., Mochida, A., Yoshino, H., Watanabe, H., & Yoshida, T. (2008). A new method to select appropriate countermeasures against heat-island effects according to the regional characteristics of heat balance mechanism. Journal of Wind Engineering and Industrial Aerodynamics, 96(10), 1629–1639.CrossRefGoogle Scholar
  154. Schatzmann, M., & Leitl, B. (2011). Issues with validation of urban flow and dispersion CFD models. Journal of Wind Engineering and Industrial Aerodynamics, 99(4), 169–186.CrossRefGoogle Scholar
  155. Schoen, C. (2005). A new empirical model of the temperature–humidity index. Journal of Applied Meteorology, 44(9), 1413–1420.CrossRefGoogle Scholar
  156. Sfakianaki, A., Pagalou, E., Pavlou, K., Santamouris, M., & Assimakopoulos, M. N. (2009). Theoretical and experimental analysis of the thermal behaviour of a green roof system installed in two residential buildings in Athens, Greece. International Journal of Energy Research, 33(12), 1059–1069.CrossRefGoogle Scholar
  157. Siple, P. A., & Passel, C. F. (1945). Measurements of dry atmospheric cooling in subfreezing temperatures. Proceedings of the American Philosophical Society, 89(1), 177–199.Google Scholar
  158. Spala, A., Bagiorgas, H. S., Assimakopoulos, M. N., Kalavrouziotis, J., Matthopoulos, D., & Mihalakakou, G. (2008). On the green roof system. Selection, state of the art and energy potential investigation of a system installed in an office building in Athens, Greece. Renewable Energy, 33(1), 173–177.CrossRefGoogle Scholar
  159. Staiger, H., Laschewski, G., & Grätz, A. (2012). The perceived temperature–a versatile index for the assessment of the human thermal environment. Part A: Scientific basics. International Journal of Biometeorology, 56(1), 165–176.CrossRefGoogle Scholar
  160. Steadman, R. G. (1971). Indices of windchill of clothed persons. Journal of Applied Meteorology, 10(4), 674–683.CrossRefGoogle Scholar
  161. Steadman, R. G. (1979). The assessment of sultriness. Part I: A temperature-humidity index based on human physiology and clothing science. Journal of Applied Meteorology, 18(7), 861–873.CrossRefGoogle Scholar
  162. Stone, B., Vargo, J., & Habeeb, D. (2012). Managing climate change in cities: Will climate action plans work? Landscape and Urban Planning, 107(3), 263–271.CrossRefGoogle Scholar
  163. Stribley, R. F., & Nunneley, S. A. (1978). Fighter index of thermal stress: Development of interim guidance for hot-weather USAF operations (No. SAM-TR-78–6). SCHOOL OF AEROSPACE MEDICINE BROOKS AFB TX.Google Scholar
  164. Taleghani, M., Tenpierik, M., Kurvers, S., & Van Den Dobbelsteen, A. (2013). A review into thermal comfort in buildings. Renewable and Sustainable Energy Reviews, 26, 201–215.CrossRefGoogle Scholar
  165. Tan, P. Y., & Sia, A. (2009). Understanding the performance of plants on non-irrigated green roofs in Singapore using a biomass yield approach. Nature in Singapore, 2, 149–153.Google Scholar
  166. Teemusk, A., & Mander, Ü. (2010). Temperature regime of planted roofs compared with conventional roofing systems. Ecological Engineering, 36(1), 91–95.CrossRefGoogle Scholar
  167. Thom, E. C. (1959). The discomfort index. Weatherwise, 12(2), 57–61.CrossRefGoogle Scholar
  168. Thorsson, S., Honjo, T., Lindberg, F., Eliasson, I., & Lim, E. M. (2007). Thermal comfort and outdoor activity in Japanese urban public places. Environment and Behavior, 39(5), 660–684.CrossRefGoogle Scholar
  169. Thorsson, S., Lindqvist, M., & Lindqvist, S. (2004). Thermal bioclimatic conditions and patterns of behaviour in an urban park in Göteborg, Sweden. International Journal of Biometeorology, 48(3), 149–156.CrossRefGoogle Scholar
  170. Tokunaga, K., & Shukuya, M. (2011). Human-body exergy balance calculation under un-steady state conditions. Building and Environment, 46(11), 2220–2229.CrossRefGoogle Scholar
  171. Tominaga, Y., & Stathopoulos, T. (2011). CFD modeling of pollution dispersion in a street canyon: Comparison between LES and RANS. Journal of Wind Engineering and Industrial Aerodynamics, 99(4), 340–348.CrossRefGoogle Scholar
  172. Tominaga, Y., Mochida, A., Yoshie, R., Kataoka, H., Nozu, T., Yoshikawa, M., et al. (2008). AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings. Journal of Wind Engineering and Industrial Aerodynamics, 96(10), 1749–1761.CrossRefGoogle Scholar
  173. Tsang, S. W., & Jim, C. Y. (2011). Theoretical evaluation of thermal and energy performance of tropical green roofs. Energy, 36(5), 3590–3598.CrossRefGoogle Scholar
  174. Uematsu, Y., & Isyumov, N. (1999). Wind pressures acting on low-rise buildings. Journal of Wind Engineering and Industrial Aerodynamics, 82(1), 1–25.CrossRefGoogle Scholar
  175. van Hooff, T., Blocken, B., Aanen, L., & Bronsema, B. (2011). A venturi-shaped roof for wind-induced natural ventilation of buildings: wind tunnel and CFD evaluation of different design configurations. Building and Environment, 46(9), 1797–1807.CrossRefzbMATHGoogle Scholar
  176. VDI (1998). Methods for the human-biometerological assessment of climate and air quality for the urban and regional planning. Part I: Climate. VDI guideline 3787. Part 2. Beuth, Berlin.Google Scholar
  177. Vernon, H. M., & Warner, C. G. (1932). The influence of the humidity of the air on capacity for work at high temperatures. Epidemiology and Infection, 32(3), 431–462.Google Scholar
  178. Wasilowski, H.A., & Reinhart, C. F. (2009). Modelling an existing building in DesignBuilder/EnergyPlus: Custom versus default inputs. In Eleventh International IBPSA Conference, pp. 1252–1259.Google Scholar
  179. Watts, J. D., & Kalkstein, L. S. (2004). The development of a warm-weather relative stress index for environmental applications. Journal of Applied Meteorology, 43(3), 503–513.CrossRefGoogle Scholar
  180. Webb, C. G. (1960). Thermal discomfort in an equatorial climate. A nomogram for the equatorial comfort index. Journal of the Institution of Heating and Ventilating Engineers, 28, 297–304.Google Scholar
  181. Weiss, M. (1982). The humisery and other measures of summer discomfort. National Weather Digest, 7(2), 10–18.Google Scholar
  182. Williams, D. E. (2007). Sustainable design: Ecology, architecture, and planning. Hoboken, New Jersey: John Wiley & Sons.Google Scholar
  183. Winslow, C. E., Herrington, L. P., & Gagge, A. P. (1937). Physiological reactions of the human body to varying environmental temperatures. American Journal of Physiology-Legacy Content, 120(1), 1–22.CrossRefGoogle Scholar
  184. Wong, N. H., Cheong, D. W., Yan, H., Soh, J., Ong, C. L., & Sia, A. (2003). The effects of rooftop garden on energy consumption of a commercial building in Singapore. Energy and Buildings, 35(4), 353–364.CrossRefGoogle Scholar
  185. World Meteorological Organization (WMO) (2012). Manual on marine meteorological services, Geneva.Google Scholar
  186. Yaglou, C. P., & Minaed, D. (1957). Control of heat casualties at military training centers. Archieve Industrial Health, 16(4), 302–316.Google Scholar
  187. Yau, Y. H., Chew, B. T., & Saifullah, A. Z. A. (2012). Studies on the indoor air quality of Pharmaceutical Laboratories in Malaysia. International Journal of Sustainable Built Environment, 1(1), 110–124.CrossRefGoogle Scholar
  188. Yoshida, S. (2011). CFD analysis to investigate the effect of changing wind direction with switching route direction on thermal comfort for pedestrian. In Proceedings 13th Int. Conference on Wind Engineering (ICWE13), Amsterdam.Google Scholar
  189. Zain, Z. M., Taib, M. N., & Baki, S. M. S. (2007). Hot and humid climate: prospect for thermal comfort in residential building. Desalination, 209(1–3), 261–268.CrossRefGoogle Scholar
  190. Zaninović, K. (1992). Limits of warm and cold bioclimatic stress in different climatic regions. Theoretical and Applied Climatology, 45(1), 65–70.CrossRefGoogle Scholar
  191. Zr, D. L., & Mochtar, S. (2013). Application of bioclimatic parameter as sustainability approach on multi-story building design in tropical area. Procedia Environmental Sciences, 17, 822–830.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Pranab Kumar Nag
    • 1
  1. 1.School of Environment and Disaster ManagementRamakrishna Mission Vivekananda UniversityKolkataIndia

Personalised recommendations