Fundamentals of Office Ergonomics

  • Pranab Kumar Nag
Part of the Design Science and Innovation book series (DSI)


Office managers, safety, and health personnel recognize the imminent necessity of making workplaces comfortable and safer. The federative science and technology of ergonomics (deriving from the Greek word, ergon, epyov—work, and nomos, voµoς—principle or law) has emerged as an interdisciplinary area of study of the man–machine–environment system. The chapter includes a historical trend of emergence of the discipline, with noticeable opening up towards systems orientation, drawing the role of humans in complex systems, the design of equipment and facilities for human use, and environments for comfort and safety. Since the conventional office environment and traditional office organization are fast replaced by the newer office environment, such as VDT workstations, operator–equipment–environment–customer interaction, Office Ergonomics is shaped as a newer domain, both in abstract and in examples. The chapter identifies multiple stressors in computer and office work, such as task-related (cognitive), work-schedule, environmental, psychosocial, role, career-related, traumatic, and organizational stressors. These stressors lead to a multitude of organizational issues, such as absenteeism, decreased employee performance, errors and accidents, healthcare costs, workplace dissension.


  1. Alexander, D. C. (1986). The practice and management of industrial ergonomics. Englewood Cliffs, NJ: Prentice Hall.Google Scholar
  2. Behan, R. A., & Wendhausen, H. W. (1973). Some NASA contributions to human factors engineering: A survey. NASA SP-5117. NASA Special Publication, 5117.Google Scholar
  3. Brewer, S., Van Eerd, D., Amick Iii, B. C., Irvin, E., Daum, K. M., Gerr, F., et al. (2006). Workplace interventions to prevent musculoskeletal and visual symptoms and disorders among computer users: A systematic review. Journal of Occupational Rehabilitation, 16(3), 317.CrossRefGoogle Scholar
  4. Carayon, P. (2006). Human factors of complex sociotechnical systems. Applied Ergonomics, 37(4), 525–535.CrossRefGoogle Scholar
  5. Chapanis, A. (1959). Research techniques in human engineering. Baltimore: Johns Hopkins Press.Google Scholar
  6. Chapanis, A. (1996). Human factors in systems engineering. Wiley.Google Scholar
  7. Chapanis, A.R. (1986). Human-Factors Engineering. In The new Encyclopaedia Britannica (15th ed., Vol. 21, pp. 227–229). Chicago: Encyclopaedia Britannica.Google Scholar
  8. Christensen, J. M. (1988). Human factors definitions. Human Factors Society Bulletin, 31, 8–9.Google Scholar
  9. Dul, J., Bruder, R., Buckle, P., Carayon, P., Falzon, P., Marras, W. S., et al. (2012). A strategy for human factors/ergonomics: Developing the discipline and profession. Ergonomics, 55(4), 377–395.CrossRefGoogle Scholar
  10. Edholm, O. G., & Murrell, K. F. H. (1974). The ergonomics research society: A history, 1949–1970. London: Taylor and Francis.Google Scholar
  11. Fitts, P. (1963). Human factors engineering: Concepts and theory. The University of Michigan Engineering Summer Conferences, University of Michigan, Ann Arbor, MI.Google Scholar
  12. Grandjean, E. (1980). Fitting the task to the man. London: Taylor & Francis Ltd.Google Scholar
  13. Haines, H., Wilson, J. R., Vink, P., & Koningsveld, E. (2002). Validating a framework for participatory ergonomics (the PEF). Ergonomics, 45(4), 309–327.CrossRefGoogle Scholar
  14. Hendrick, H. W. (2002). An overview of Macroergonomics. In H. W. Hendrick, & B. M. Kleiner (Eds.), Macroergonomics: Theory, methods, and applications (pp. 1–23). London: Lawrence Erlbaum.Google Scholar
  15. Hertzberg, H. T. E. (1955). Some contributions of applied physical anthropology to human engineering. Annals of the New York Academy of Sciences, 63, 616–629.CrossRefGoogle Scholar
  16. Hignett, S., & McAtamney, L. (2000). Rapid entire body assessment (REBA). Applied Ergonomics, 31, 201–205.CrossRefGoogle Scholar
  17. Hollnagel, E. (2001). The future of ergonomics (guest editorial). Theoretical Issues in Ergonomics Science, 41, 219–221.CrossRefGoogle Scholar
  18. Huchingson, R. D. (1981). New horizons for human factors in design. New York: McGraw-Hill.Google Scholar
  19. IEA (2000). The discipline of ergonomics. International Ergonomics Association.
  20. Internet World Stats.
  21. Jastrzebowski, W. B. (1857). Rys ergonomji czyli nauki o pracy (An outline of ergonomics, or the science of work). Przyroda i Przemysl, Poznari, Poland.Google Scholar
  22. Johnson, C. W. (2006). What are emergent properties and how do they affect the engineering of complex systems? Reliability Engineering and System Safety, 91, 1475–1481.CrossRefGoogle Scholar
  23. Johnstone, M., & Feeney, J. A. (2015). Individual differences in responses to workplace stress: The contribution of attachment theory. Journal of Applied Social Psychology, 45(7), 412–424.CrossRefGoogle Scholar
  24. Kennedy, C. A., Amick, B. C., III, Dennerlein, J. T., Brewer, S., Catli, S., Williams, R., et al. (2010). Systematic review of the role of occupational health and safety interventions in the prevention of upper extremity musculoskeletal symptoms, signs, disorders, injuries, claims and lost time. Journal of Occupational Rehabilitation, 20(2), 127–162.CrossRefGoogle Scholar
  25. Kleiner, B. M. (2006). Macroergonomics: Analysis and design of work systems. Applied Ergonomics, 37, 81–89.CrossRefGoogle Scholar
  26. Kuorinka, I., Jonsson, B., Kilbom, A., Vinterberg, H., Biering-Sørensen, F., Andersson, G., et al. (1987). Standardised Nordic questionnaires for the analysis of musculoskeletal symptoms. Applied Ergonomics, 18(3), 233–237.CrossRefGoogle Scholar
  27. Louhevaara, V., & Suurnakki, T. (1992). OWAS: a method for the evaluation of postural load during work. Finish Institute for Occupational Health, Helsinki: Training Publication II.Google Scholar
  28. Luzeaux, D., & Ruault, J. R. (2008). Systems of systems. London: John Wiley.Google Scholar
  29. McAtamney, L., & Corlett, E. N. (1993). RULA: A survey method for the investigation of work-related upper limb disorders. Applied Ergonomics, 24(2), 91–99.CrossRefGoogle Scholar
  30. McCormick, E. J., & Sanders, M. S. (1982). Human factors in engineering and design. New York: McGraw-Hill.Google Scholar
  31. Meister, D. (1985). Behavioral analysis and measurement methods. New York: Wiley.Google Scholar
  32. Meister, D., & Rabideau, G. F. (1965). Human factors evaluation in system development. New York: Wiley.Google Scholar
  33. Miller, H. (2001). Musculoskeletal disorders in the U.S. office workforce.
  34. Murrell, K. H. F. (1965). Ergonomics—man in his working environment. London: Chapman & Hall.Google Scholar
  35. Murrell, K. H. F. (2012). Ergonomics: Man in his working environment. Springer Science & Business Media.Google Scholar
  36. Nag, P. K. (1996). Ergonomics and work design (emerging issues in organizational sciences) (p. p396). New Delhi: New Age International Publication, formerly Wiley Eastern.Google Scholar
  37. Nag, P. K. (1998). Work systemschecklists. In: ILO encyclopaedia of occupational health and safety (4th Ed.), Chap. 29, Ergonomics (pp. 29.14–29.24). Geneva: ILO.Google Scholar
  38. Nag, A., & Nag, P. K. (2004). Do the work stress factors of women telephone operators change with the shift schedules? International Journal of Industrial Ergonomics, 33(5), 449–461.CrossRefGoogle Scholar
  39. Nag, A., Vyas, H., & Nag, P. K. (2010). Gender differences, work stressors and musculoskeletal disorders in weaving industries. Industrial Health, 48(3), 339–348.CrossRefGoogle Scholar
  40. Nag, A., Vyas, H., Shah, P., & Nag, P. K. (2012). Risk factors and musculoskeletal disorders among women workers performing fish processing. American Journal of Industrial Medicine, 55(9), 833–843.CrossRefGoogle Scholar
  41. Nag, P. K., Poddar, E., & Nag, A. (2005). Principal components analysis on aspects of work in telecom services. In A. Thatcher, J. James, & A. Todd (Eds.), Cyber ergonomics—CybErg 2005, pp. 586–594. Johannesburg: IEA Press, ISBN: 09577485-2-3.Google Scholar
  42. Nag, P. K., Pal, S., Poddar, E., & Nag A. (2006). Approach to work analysis in the telecom services. In: Diversity in ergonomics, IEA 2006, Maashtricht, The Netherlands.Google Scholar
  43. Neumann, W. P., & Dul, J. (2010). Human factors: Spanning the gap between OM and HRM. International Journal of Operations & Production Management, 30(9), 923–950.CrossRefGoogle Scholar
  44. Nordander, C., Ohlsson, K., Åkesson, I., Arvidsson, I., Balogh, I., Hansson, G. Å., et al. (2009). Risk of musculoskeletal disorders among females and males in repetitive/constrained work. Ergonomics, 52(10), 1226–1239.CrossRefGoogle Scholar
  45. Park, K. S. (1987). Human reliability: Analysis, prediction, and prevention of human errors. Amsterdam, Netherlands: Elsevier Science Publishers.Google Scholar
  46. Rasmussen, J. (1997). Risk management in a dynamic society: A modelling problem. Safety Science, 27(2), 183–213.CrossRefGoogle Scholar
  47. Rouse, W. B. (2007). Complex engineered, organizational and natural systems. Systems Engineering, 10(3), 260–271.CrossRefGoogle Scholar
  48. Salvendy, G. (Ed.). (1997). Handbook of human factors. New York: Wiley. ISBN 0471116904.Google Scholar
  49. Shaver, E. (2010). Stress and stressors.
  50. Sheridan, T. B. (1987). Human-factors engineering. In McGraw-Hill encyclopedia of science and technology (6th ed., Vol. 8, pp. 525–528). New York: McGraw-Hill.Google Scholar
  51. Sheridan, T. B., & Ferrell, W. R. (1974). Man-machine systems; Information, control, and decision models of human performance. The MIT Press.Google Scholar
  52. Siemieniuch, C. E., & Sinclair, M. A. (2006). Systems integration. Applied Ergonomics, 37(1), 91–110.CrossRefGoogle Scholar
  53. Singleton W.T. (1974). Man-machine systems. Penguin Education.Google Scholar
  54. Singleton, W. T., Easterby, R. S., & Whitfield, D. C. (Eds.). (1967). The human operator in complex systems. London: Taylor & Francis.Google Scholar
  55. Sonne, M., Villalta, D. L., & Andrews, D. M. (2012). Development and evaluation of an office ergonomic risk checklist: ROSArapid office strain assessment. Applied Ergonomics, 43(1), 98–108.CrossRefGoogle Scholar
  56. Stanton, N. A., & Stammers, R. B. (2008). Bartlett and the future of ergonomics. Ergonomics, 51, 1–13.CrossRefGoogle Scholar
  57. Stasinopoulos, P., Smith, M. H., Hargroves, K. C., & Desha, C. (2009). Whole system design: An integrated approach to sustainable engineering. London: Earthscan.Google Scholar
  58. Tichauer, E. R. (1978). The biomechanical basis of ergonomics. New York: Wiley.Google Scholar
  59. Waterson, P. (2009). A critical review of the systems approach within patient safety research. Ergonomics, 52(10), 1185–1195.CrossRefGoogle Scholar
  60. Wilson, J. R., Ryan, B., Schock, A., Ferreira, P., Smith, S., & Pitsopoulos, J. (2009). Understanding safety and production risks in rail engineering planning and protection. Ergonomics, 52(7), 774–790.CrossRefGoogle Scholar
  61. Wilson, J. R. (2014). Fundamentals of systems ergonomics/human factors. Applied Ergonomics, 45(1), 5–13.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Pranab Kumar Nag
    • 1
  1. 1.School of Environment and Disaster ManagementRamakrishna Mission Vivekananda UniversityKolkataIndia

Personalised recommendations