Advertisement

Fabrication of SiC MEMS Sensors

  • Toan Dinh
  • Nam-Trung Nguyen
  • Dzung Viet Dao
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

This chapter describes the approaches for the growth of high-quality silicon carbide. The doping methods for n-type and p-type SiC with the inclusion of selective doping are presented. Various fabrication strategies are introduced, including wet etching and oxidation. Fundamental properties of Ohmic and Schottky contacts to SiC are included. This chapter also gives brief examples of fabrication processes to achieve standard MEMS structures such as cantilevers and membranes.

Keywords

Deep reactive-ion etching (DRIE) Chemical vapour deposition (CVD) Ohmic contact Schottky contact 

References

  1. 1.
    R. Yakimova, M. Syväjärvi, M. Tuominen, T. Iakimov, P. Råback, A. Vehanen et al., Seeded sublimation growth of 6H and 4H–SiC crystals. Mater. Sci. Eng., B 61, 54–57 (1999)CrossRefGoogle Scholar
  2. 2.
    J. Jenny, S.G. Müller, A. Powell, V. Tsvetkov, H. Hobgood, R. Glass et al., High-purity semi-insulating 4H-SiC grown by the seeded-sublimation method. J. Electron. Mater. 31, 366–369 (2002)CrossRefGoogle Scholar
  3. 3.
    D. Barrett, R. Seidensticker, W. Gaida, R. Hopkins, W. Choyke, SiC boule growth by sublimation vapor transport. J. Cryst. Growth 109, 17–23 (1991)CrossRefGoogle Scholar
  4. 4.
    H. Li, X. Chen, D. Ni, X. Wu, Factors affecting the graphitization behavior of the powder source during seeded sublimation growth of SiC bulk crystal. J. Cryst. Growth 258, 100–105 (2003)CrossRefGoogle Scholar
  5. 5.
    R. Yakimova, E. Janzén, Current status and advances in the growth of SiC. Diam. Relat. Mater. 9, 432–438 (2000)CrossRefGoogle Scholar
  6. 6.
    R. Puybaret, J. Hankinson, J. Palmer, C. Bouvier, A. Ougazzaden, P.L. Voss et al., Scalable control of graphene growth on 4H-SiC C-face using decomposing silicon nitride masks. J. Phys. D Appl. Phys. 48, 152001 (2015)CrossRefGoogle Scholar
  7. 7.
    T.-K. Nguyen, H.-P. Phan, T. Dinh, T. Toriyama, K. Nakamura, A.R.M. Foisal et al., Isotropic piezoresistance of p-type 4H-SiC in (0001) plane. Appl. Phys. Lett. 113, 012104 (2018)CrossRefGoogle Scholar
  8. 8.
    T.-K. Nguyen, H.-P. Phan, T. Dinh, A. R. M. Foisal, N.-T. Nguyen, D. Dao, High-temperature tolerance of piezoresistive effect in p-4H-SiC for harsh environment sensing. J. Mater. Chem. C (2018)Google Scholar
  9. 9.
    T.-K. Nguyen, H.-P. Phan, T. Dinh, K. M. Dowling, A. R. M. Foisal, D. G. Senesky et al., Highly sensitive 4H-SiC pressure sensor at cryogenic and elevated temperatures. Mater. Des. (2018)Google Scholar
  10. 10.
    A.R. Md Foisal, A. Qamar, H.-P. Phan, T. Dinh, K.-N. Tuan, P. Tanner et al., Pushing the limits of piezoresistive effect by optomechanical coupling in 3C-SiC/Si heterostructure. ACS Appl. Mater. Interfaces. 9, 39921–39925 (2017)CrossRefGoogle Scholar
  11. 11.
    A.R.M. Foisal, T. Dinh, P. Tanner, H.-P. Phan, T.-K. Nguyen, E.W. Streed et al., Photoresponse of a highly-rectifying 3C-SiC/Si heterostructure under UV and visible illuminations. IEEE Electron Device Lett. (2018)Google Scholar
  12. 12.
    A. Qamar, P. Tanner, D.V. Dao, H.-P. Phan, T. Dinh, Electrical properties of p-type 3C-SiC/Si heterojunction diode under mechanical stress. IEEE Electron Device Lett. 35, 1293–1295 (2014)CrossRefGoogle Scholar
  13. 13.
    A. Qamar, H.-P. Phan, J. Han, P. Tanner, T. Dinh, L. Wang et al., The effect of device geometry and crystal orientation on the stress-dependent offset voltage of 3C–SiC (100) four terminal devices. J. Mater. Chem. C 3, 8804–8809 (2015)CrossRefGoogle Scholar
  14. 14.
    A. Qamar, D.V. Dao, J. Han, H.-P. Phan, A. Younis, P. Tanner et al., Pseudo-Hall effect in single crystal 3C-SiC (111) four-terminal devices. J. Mater. Chem. C 3, 12394–12398 (2015)CrossRefGoogle Scholar
  15. 15.
    A. Qamar, H.-P. Phan, T. Dinh, L. Wang, S. Dimitrijev, D.V. Dao, Piezo-Hall effect in single crystal p-type 3C–SiC (100) thin film grown by low pressure chemical vapor deposition. RSC Adv. 6, 31191–31195 (2016)CrossRefGoogle Scholar
  16. 16.
    A. Qamar, D.V. Dao, H.-P. Phan, T. Dinh, S. Dimitrijev, Fundamental piezo-Hall coefficients of single crystal p-type 3C-SiC for arbitrary crystallographic orientation. Appl. Phys. Lett. 109, 092903 (2016)CrossRefGoogle Scholar
  17. 17.
    A. Qamar, D.V. Dao, J.S. Han, A. Iacopi, T. Dinh, H.P. Phan et al., Pseudo-hall effect in single crystal n-type 3C-SiC (100) thin film, in Key Engineering Materials (2017), pp. 3–7CrossRefGoogle Scholar
  18. 18.
    L. Wang, S. Dimitrijev, J. Han, A. Iacopi, L. Hold, P. Tanner et al., Growth of 3C–SiC on 150-mm Si (100) substrates by alternating supply epitaxy at 1000 C. Thin Solid Films 519, 6443–6446 (2011)CrossRefGoogle Scholar
  19. 19.
    L. Wang, S. Dimitrijev, J. Han, P. Tanner, A. Iacopi, L. Hold, Demonstration of p-type 3C–SiC grown on 150 mm Si (1 0 0) substrates by atomic-layer epitaxy at 1000 °C. J. Cryst. Growth 329, 67–70 (2011)CrossRefGoogle Scholar
  20. 20.
    L. Wang, S. Dimitrijev, A. Fissel, G. Walker, J. Chai, L. Hold et al., Growth mechanism for alternating supply epitaxy: the unique pathway to achieve uniform silicon carbide films on multiple large-diameter silicon substrates. RSC Adv. 6, 16662–16667 (2016)CrossRefGoogle Scholar
  21. 21.
    A. Taylor, J. Drahokoupil, L. Fekete, L. Klimša, J. Kopeček, A. Purkrt et al., Structural, optical and mechanical properties of thin diamond and silicon carbide layers grown by low pressure microwave linear antenna plasma enhanced chemical vapour deposition. Diam. Relat. Mater. 69, 13–18 (2016)CrossRefGoogle Scholar
  22. 22.
    T. Frischmuth, M. Schneider, D. Maurer, T. Grille, U. Schmid, Inductively-coupled plasma-enhanced chemical vapour deposition of hydrogenated amorphous silicon carbide thin films for MEMS. Sens. Actuators, A 247, 647–655 (2016)CrossRefGoogle Scholar
  23. 23.
    M. Lazar, D. Carole, C. Raynaud, G. Ferro, S. Sejil, F. Laariedh et al., Classic and alternative methods of p-type doping 4H-SiC for integrated lateral devices, in Semiconductor Conference (CAS), 2015 International, 2015, pp. 145–148Google Scholar
  24. 24.
    Z. Li, X. Ding, F. Li, X. Liu, S. Zhang, H. Long, Enhanced dielectric loss induced by the doping of SiC in thick defective graphitic shells of Ni@ C nanocapsules with ash-free coal as carbon source for broadband microwave absorption. J. Phys. D Appl. Phys. 50, 445305 (2017)CrossRefGoogle Scholar
  25. 25.
    D. Zhuang, J. Edgar, Wet etching of GaN, AlN, and SiC: a review. Mater. Sci. Eng. R: Rep. 48, 1–46 (2005)CrossRefGoogle Scholar
  26. 26.
    S. Pearton, W. Lim, F. Ren, D. Norton, Wet chemical etching of wide bandgap semiconductors-GaN, ZnO and SiC. ECS Trans. 6, 501–512 (2007)CrossRefGoogle Scholar
  27. 27.
    H. Ekinci, V.V. Kuryatkov, D.L. Mauch, J.C. Dickens, S.A. Nikishin, Effect of BCl3 in chlorine-based plasma on etching 4H-SiC for photoconductive semiconductor switch applications. J. Vac. Sci. Technol. B, Nanotechnol. Microelectron.: Mater. Process. Meas. Phenom. 32, 051205 (2014)CrossRefGoogle Scholar
  28. 28.
    P. Yih, V. Saxena, A. Steckl, A review of SiC reactive ion etching in fluorinated plasmas. Phys. Status Solidi B, 202, 605–642 (1997)CrossRefGoogle Scholar
  29. 29.
    L. Jiang, R. Cheung, R. Brown, A. Mount, Inductively coupled plasma etching of SiC in SF 6/O 2 and etch-induced surface chemical bonding modifications. J. Appl. Phys. 93, 1376–1383 (2003)CrossRefGoogle Scholar
  30. 30.
    S. Rysy, H. Sadowski, R. Helbig, Electrochemical etching of silicon carbide. J. Solid State Electrochem. 3, 437–445 (1999)Google Scholar
  31. 31.
    J. Shor, Electrochemical etching of SiC. EMIS Datarev. Ser 13, 141–149 (1995)Google Scholar
  32. 32.
    M. Kato, M. Ichimura, E. Arai, P. Ramasamy, Electrochemical etching of 6H-SiC using aqueous KOH solutions with low surface roughness. Jpn. J. Appl. Phys. 42, 4233 (2003)CrossRefGoogle Scholar
  33. 33.
    H. Morisaki, H. Ono, K. Yazawa, Photoelectrochemical properties of single-crystalline n-SiC in aqueous electrolytes. J. Electrochem. Soc. 131, 2081–2086 (1984)CrossRefGoogle Scholar
  34. 34.
    M. Gleria, R. Memming, Charge transfer processes at large band gap semiconductor electrodes: reactions at SiC-electrodes. J. Electroanal. Chem. Interfacial Electrochem. 65, 163–175 (1975)CrossRefGoogle Scholar
  35. 35.
    C. Duval, Inorganic Thermogravimetric Analysis (1963)Google Scholar
  36. 36.
    M. Katsuno, N. Ohtani, J. Takahashi, H. Yashiro, M. Kanaya, Mechanism of molten KOH etching of SiC single crystals: comparative study with thermal oxidation. Jpn. J. Appl. Phys. 38, 4661 (1999)CrossRefGoogle Scholar
  37. 37.
    M. Katsuno, N. Ohtani, J. Takahashi, H. Yashiro, M. Kanaya, S. Shinoyama, Etching kinetics of α-SiC single crystals by molten KOH, in Materials Science Forum (1998), pp. 837–840CrossRefGoogle Scholar
  38. 38.
    L.J. Evans, G.M. Beheim, Deep reactive ion etching (DRIE) of high aspect ratio SiC microstructures using a time-multiplexed etch-passivate process, in Materials Science Forum (2006), pp. 1115–1118Google Scholar
  39. 39.
    S. Tanaka, K. Rajanna, T. Abe, M. Esashi, Deep reactive ion etching of silicon carbide. J. Vac. Sci. Technol. B, Nanotechnol. Microelectron.: Mater. Process. Meas. Phenom. 19, 2173–2176 (2001)CrossRefGoogle Scholar
  40. 40.
    P.M. Sarro, Silicon carbide as a new MEMS technology. Sens. Actuators, A 82, 210–218 (2000)CrossRefGoogle Scholar
  41. 41.
    F. Roccaforte, F. La Via, V. Raineri, Ohmic contacts to SiC. Int. J. High Speed Electron. Syst. 15, 781–820 (2005)CrossRefGoogle Scholar
  42. 42.
    Z. Wang, W. Liu, C. Wang, Recent progress in Ohmic contacts to silicon carbide for high-temperature applications. J. Electron. Mater. 45, 267–284 (2016)CrossRefGoogle Scholar
  43. 43.
    J. Riviere, Solid State Surface Science, ed. by Green (Marcel Dekker, NY, 1969), p. 179Google Scholar
  44. 44.
    T. Kimoto, J.A. Cooper, Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices and Applications (Wiley, London, 2014)Google Scholar
  45. 45.
    L.M. Porter, R.F. Davis, A critical review of ohmic and rectifying contacts for silicon carbide. Mater. Sci. Eng., B 34, 83–105 (1995)CrossRefGoogle Scholar
  46. 46.
    B. Pécz, G. Radnóczi, S. Cassette, C. Brylinski, C. Arnodo, O. Noblanc, TEM study of Ni and Ni2Si ohmic contacts to SiC. Diam. Relat. Mater. 6, 1428–1431 (1997)CrossRefGoogle Scholar
  47. 47.
    A. Kakanakova-Georgieva, T. Marinova, O. Noblanc, C. Arnodo, S. Cassette, C. Brylinski, Characterization of ohmic and Schottky contacts on SiC. Thin Solid Films 343, 637–641 (1999)CrossRefGoogle Scholar
  48. 48.
    J. Wan, M.A. Capano, M.R. Melloch, Formation of low resistivity ohmic contacts to n-type 3C-SiC. Solid-State Electron. 46, 1227–1230 (2002)CrossRefGoogle Scholar
  49. 49.
    L. Huang, B. Liu, Q. Zhu, S. Chen, M. Gao, F. Qin et al., Low resistance Ti Ohmic contacts to 4H-SiC by reducing barrier heights without high temperature annealing. Appl. Phys. Lett. 100, 263503 (2012)CrossRefGoogle Scholar
  50. 50.
    H. Shimizu, A. Shima, Y. Shimamoto, and N. Iwamuro, Ohmic contact on n-and p-type ion-implanted 4H-SiC with low-temperature metallization process for SiC MOSFETs, Jpn. J. Appl. Phys. 56, p. 04CR15 (2017)CrossRefGoogle Scholar
  51. 51.
    S. Kim, H.-K. Kim, S. Jeong, M.-J. Kang, M.-S. Kang, N.-S. Lee et al, Carrier transport mechanism of Al contacts on n-type 4H-SiC. Mater. Lett. (2018)Google Scholar
  52. 52.
    S. Rao, G. Pangallo, F. Pezzimenti, F.G. Della Corte, High-performance temperature sensor based on 4H-SiC Schottky diodes. IEEE Electron Device Lett. 36, 720–722 (2015)CrossRefGoogle Scholar
  53. 53.
    S. Rao, G. Pangallo, F.G. Della Corte, Highly linear temperature sensor based on 4H-silicon carbide pin diodes. IEEE Electron Device Lett. 36, 1205–1208 (2015)CrossRefGoogle Scholar
  54. 54.
    S. Rao, G. Pangallo, F.G. Della Corte, 4H-SiC pin diode as highly linear temperature sensor. IEEE Trans. Electron Devices 63, 414–418 (2016)CrossRefGoogle Scholar
  55. 55.
    H.P. Phan, T.K. Nguyen, T. Dinh, H. H. Cheng, F. Mu, A. Iacopi et al., Strain effect in highly‐doped n‐type 3C‐SiC‐on‐glass substrate for mechanical sensors and mobility enhancement. Phys. status solidi A, p. 1800288 (2018)Google Scholar
  56. 56.
    A. Qamar, T. Dinh, M. Jafari, A. Iacopi, S. Dimitrijev, D.V. Dao, A large pseudo-Hall effect in n-type 3C-SiC (1 0 0) and its dependence on crystallographic orientation for stress sensing applications. Mater. Lett. 213, 11–14 (2018)CrossRefGoogle Scholar
  57. 57.
    H.P. Phan, T.K. Nguyen, T. Dinh, A. Iacopi, L. Hold, M.J. Shiddiky et al., Robust free-standing nano-thin SiC membranes enable direct photolithography for MEMS sensing applications. Adv. Eng. Mater. 20, 1700858 (2018)CrossRefGoogle Scholar
  58. 58.
    T. Dinh, H.-P. Phan, T. Kozeki, A. Qamar, T. Namazu, N.-T. Nguyen et al., Thermoresistive properties of p-type 3C–SiC nanoscale thin films for high-temperature MEMS thermal-based sensors. RSC Adv. 5, 106083–106086 (2015)CrossRefGoogle Scholar
  59. 59.
    S.M. Sze, K.K. Ng, Physics of Semiconductor Devices (Wiley, London, 2006)CrossRefGoogle Scholar
  60. 60.
    S.O. Kasap, Principles of Electronic Materials and Devices (McGraw-Hill, New York, 2006)Google Scholar
  61. 61.
    S. Rao, G. Pangallo, F.G. Della Corte, 4H-SiC pin diode as highly linear temperature sensor. IEEE Trans. Electron Devices 63, 414–418 (2016)CrossRefGoogle Scholar
  62. 62.
    G. Brezeanu, F. Draghici, F. Craciunioiu, C. Boianceanu, F. Bernea, F. Udrea et al., 4H-SiC Schottky diodes for temperature sensing applications in harsh environments, in Materials Science Forum (2011), pp. 575–578CrossRefGoogle Scholar
  63. 63.
    R.S. Okojie, Fabricating Ultra-thin Silicon Carbide Diaphragms, Google Patents (2018)Google Scholar
  64. 64.
    T. Dinh, H.-P. Phan, N. Kashaninejad, T.-K. Nguyen, D.V. Dao, N.-T. Nguyen, An on-chip SiC MEMS device with integrated heating, sensing and microfluidic cooling systems. Adv. Mater. Interfaces 1, 1 (2018)Google Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Queensland Micro- and Nanotechnology Centre (QMNC)Griffth UniversityBrisbaneAustralia
  2. 2.Queensland Micro- and Nanotechnology Centre (QMNC)Griffith UniversityBrisbaneAustralia
  3. 3.School of Engineering and Built EnvironmentGriffith UniversitySouthportAustralia

Personalised recommendations