Advertisement

Arsenic Metabolism and Toxicity in Humans and Animals: Racial and Species Differences

  • Yayoi KobayashiEmail author
  • Tetsuro Agusa
Chapter
Part of the Current Topics in Environmental Health and Preventive Medicine book series (CTEHPM)

Abstract

Susceptibility to the toxic effects of arsenic is influenced by an organism’s capacity for arsenic metabolism. To fully understand this potential, the pathways and properties of arsenic species (trivalent, pentavalent, methylated, or thiolated) as well as glutathione conjugates in the animal or human body must be assessed. Notably, the metabolism of arsenic may comprise detoxification as well as bioactivation processes. Because of the large difference in arsenic methylation capacity and binding affinity toward red blood cell in different animals, an animal model for studies involving human arsenic metabolism and toxicity has not yet been fully established. Individual and ethnic variations in the arsenic methylation capacity of humans are likely explained by genetic polymorphisms of arsenic metabolic enzymes. In particular, the genotype of arsenite methyltransferase (AS3MT) can highly influence the susceptibility to arsenic methylation and thus may be useful to assess the risk of arsenic exposure in humans.

Keywords

Detoxification Bioactivation Glutathione Reduction Oxidation Arsenic methylation AS3MT Thiolated arsenicals Animal species and racial differences Single nucleotide polymorphisms (SNPs) 

References

  1. 1.
    Dang HS, Jaiswal DD, Somasundaram S. Distribution of arsenic in human tissues and milk. Sci Total Environ. 1983;29:171–5.PubMedCrossRefGoogle Scholar
  2. 2.
    Crecelius EA. Changes in the chemical speciation of arsenic following ingestion by man. Environ Health Perspect. 1977;19:147–50.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Yamauchi H, Yamamura Y. Urinary inorganic arsenic and methylarsenic excretion following arsenate-rich seaweed ingestion (translation). Sangyo Igaku. 1979;21:47–54.PubMedCrossRefGoogle Scholar
  4. 4.
    Brima EI, Haris PI, Jenkins RO, Polya DA, Gault AG, Harrington CF. Understanding arsenic metabolism through a comparative study of arsenic levels in the urine, hair and fingernails of healthy volunteers from three unexposed ethnic groups in the United Kingdom. Toxicol Appl Pharmacol. 2006;216:122–30.  https://doi.org/10.1016/j.taap.2006.04.004.PubMedCrossRefGoogle Scholar
  5. 5.
    Challenger F. Biological methylation. Chem Rev. 1945;36:315–61.  https://doi.org/10.1021/cr60115a003.CrossRefGoogle Scholar
  6. 6.
    Aposhian HV, Aposhian MM. Arsenic toxicology: five questions. Chem Res Toxicol. 2006;19:1–15.  https://doi.org/10.1021/tx050106d.PubMedCrossRefGoogle Scholar
  7. 7.
    Lin S, Shi Q, Nix FB, Styblo M, Beck MA, Herbin-Davist KM, et al. A novel S-adenosyl-L-methionine: arsenic(III) methyltransferase from rat liver cytosol. J Biol Chem. 2002;277:10795–803.PubMedCrossRefGoogle Scholar
  8. 8.
    Kenyon EM, Hughes MF, Adair BM, Highfill JH, Crecelius EA, Clewell HJ, et al. Tissue distribution and urinary excretion of inorganic arsenic and its methylated metabolites in C57BL6 mice following subchronic exposure to arsenate in drinking water. Toxicol Appl Pharmacol. 2008;232:448–55.  https://doi.org/10.1016/j.taap.2008.07.018.PubMedCrossRefGoogle Scholar
  9. 9.
    Yoshida K, Chen H, Inoue Y, Wanibuchi H, Fukushima S, Kuroda K, et al. The urinary excretion of arsenic metabolites after a single oral administration of dimethylarsinic acid to rats. Arch Environ Contam Toxicol. 1997;32:416–21.PubMedCrossRefGoogle Scholar
  10. 10.
    Kobayashi Y, Hirano S. Distribution and excretion of arsenic metabolites after oral administration of seafood-related organoarsenicals in rats. Metals. 2016;6:231.  https://doi.org/10.3390/met6100231.CrossRefGoogle Scholar
  11. 11.
    Pinyayev TS, Kohan MJ, Herbin-Davis K, Creed JT, Thomas DJ. Preabsorptive metabolism of sodium arsenate by anaerobic microbiota of mouse cecum forms a variety of methylated and thiolated arsenicals. Chem Res Toxicol. 2011;24:475–7.  https://doi.org/10.1021/tx200040w.PubMedCrossRefGoogle Scholar
  12. 12.
    Hayakawa T, Kobayashi Y, Cui X, Hirano S. A new metabolic pathway of arsenite: arsenic-glutathione complexes are substrates for human arsenic methyltransferase Cyt19. Arch Toxicol. 2005;79:183–91.  https://doi.org/10.1007/s00204-004-0620-x.PubMedCrossRefGoogle Scholar
  13. 13.
    Naranmandura H, Suzuki N, Suzuki KT. Trivalent arsenicals are bound to proteins during reductive methylation. Chem Res Toxicol. 2006;19:1010–8.  https://doi.org/10.1021/tx060053f.PubMedCrossRefGoogle Scholar
  14. 14.
    Aposhian HV, Zakharyan RA, Avram MD, Kopplin MJ, Wollenberg ML. Oxidation and detoxification of trivalent arsenic species. Toxicol Appl Pharmacol. 2003;193:1–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Aposhian HV, Zakharyan RA, Avram MD, Sampayo-Reyes A, Wollenberg ML. A review of the enzymology of arsenic metabolism and a new potential role of hydrogen peroxide in the detoxication of the trivalent arsenic species. Toxicol Appl Pharmacol. 2004;198:327–35.  https://doi.org/10.1016/j.taap.2003.10.027.PubMedCrossRefGoogle Scholar
  16. 16.
    Kala SV, Neely MW, Kala G, Prater CI, Atwood DW, Rice JS, et al. The MRP2/cMOAT transporter and arsenic-glutathione complex formation are required for biliary excretion of arsenic. J Biol Chem. 2000;275:33404–8.  https://doi.org/10.1074/jbc.M007030200.PubMedCrossRefGoogle Scholar
  17. 17.
    Suzuki KT, Tomita T, Ogra Y, Ohmichi M. Glutathione-conjugated arsenics in the potential hepato-enteric circulation in rats. Chem Res Toxicol. 2001;14:1604–11.PubMedCrossRefGoogle Scholar
  18. 18.
    Cui X, Kobayashi Y, Hayakawa T, Hirano S. Arsenic speciation in bile and urine following oral and intravenous exposure to inorganic and organic arsenics in rats. Toxicol Sci. 2004;82:478–87.  https://doi.org/10.1093/toxsci/kfh265.PubMedCrossRefGoogle Scholar
  19. 19.
    Kobayashi Y, Cui X, Hirano S. Stability of arsenic metabolites, arsenic triglutathione [As(GS)3] and methylarsenic diglutathione [CH3As(GS)2], in rat bile. Toxicology. 2005;211:115–23.  https://doi.org/10.1016/j.tox.2005.03.001.PubMedCrossRefGoogle Scholar
  20. 20.
    Kobayashi Y, Hirano S. Effects of endogenous hydrogen peroxide and glutathione on the stability of arsenic metabolites in rat bile. Toxicol Appl Pharmacol. 2008;232:33–40.  https://doi.org/10.1016/j.taap.2008.06.003.PubMedCrossRefGoogle Scholar
  21. 21.
    Kala SV, Kala G, Prater CI, Sartorelli AC, Lieberman MW. Formation and urinary excretion of arsenic triglutathione and methylarsenic diglutathione. Chem Res Toxicol. 2004;17:243–9.  https://doi.org/10.1021/tx0342060.PubMedCrossRefGoogle Scholar
  22. 22.
    Kobayashi Y, Hayakawa T, Cui X, Hirano S. The role of glutathione in the metabolism and detoxification of trivalent arsenicals. Biomed Res Trace Elements. 2006;17:365–72.  https://doi.org/10.11299/brte.17.365.CrossRefGoogle Scholar
  23. 23.
    Rowland IR, Davies MJ. In vitro metabolism of inorganic arsenic by the gastro-intestinal microflora of the rat. J Appl Toxicol. 1981;1:278–83.PubMedCrossRefGoogle Scholar
  24. 24.
    Hall LL, George SE, Kohan MJ, Styblo M, Thomas DJ. In vitro methylation of inorganic arsenic in mouse intestinal cecum. Toxicol Appl Pharmacol. 1997;147:101–9.  https://doi.org/10.1006/taap.1997.8269.PubMedCrossRefGoogle Scholar
  25. 25.
    Chen H, Yoshida K, Wanibuchi H, Fukushima S, Inoue Y, Endo G. Methylation and demethylation of dimethylarsinic acid in rats following chronic oral exposure. Appl Organomet Chem. 1996;10:741–5.  https://doi.org/10.1002/(SICI)1099-0739(199611)10:9<741::AID-AOC551>3.0.CO;2-9.CrossRefGoogle Scholar
  26. 26.
    Yoshida K, Inoue Y, Kuroda K, Chen H, Wanibuchi H, Fukushima S, et al. Urinary excretion of arsenic metabolites after long-term oral administration of various arsenic compounds to rats. J Toxicol Environ Health A. 1998;54:179–92.PubMedCrossRefGoogle Scholar
  27. 27.
    Yoshida K, Kuroda K, Inoue Y, Chen H, Date Y, Wanibuchi H, et al. Metabolism of dimethylarsinic acid in rats: production of unidentified metabolites in vivo. Appl Organomet Chem. 2001;15:539–47.  https://doi.org/10.1002/aoc.192.CrossRefGoogle Scholar
  28. 28.
    Kuroda K, Yoshida K, Yasukawa A, Wanibuchi H, Fukushima S, Endo G. Enteric bacteria may play a role in mammalian arsenic metabolism. Appl Organomet Chem. 2001;15:548–52.  https://doi.org/10.1002/aoc.193.CrossRefGoogle Scholar
  29. 29.
    Suzuki S, Arnold LL, Pennington KL, Chen BW, Naranmandura H, Le XC, et al. Dietary administration of sodium arsenite to rats: relations between dose and urinary concentrations of methylated and thio-metabolites and effects on the rat urinary bladder epithelium. Toxicol Appl Pharmacol. 2010;244:99–105.  https://doi.org/10.1016/j.taap.2009.12.026.PubMedCrossRefGoogle Scholar
  30. 30.
    Chen B, Lu X, Shen S, Arnold LL, Cohen SM, Le XC. Arsenic speciation in the blood of arsenite-treated F344 rats. Chem Res Toxicol. 2013;26:952–62.  https://doi.org/10.1021/tx400123q.PubMedCrossRefGoogle Scholar
  31. 31.
    Raml R, Goessler W, Traar P, Ochi T, Francesconi KA. Novel thioarsenic metabolites in human urine after ingestion of an arsenosugar, 2′,3′-dihydroxypropyl 5-deoxy-5-dimethylarsinoyl-beta-D-riboside. Chem Res Toxicol. 2005;18:1444–50.  https://doi.org/10.1021/tx050111h.PubMedCrossRefGoogle Scholar
  32. 32.
    Raml R, Goessler W, Francesconi KA. Improved chromatographic separation of thio-arsenic compounds by reversed-phase high performance liquid chromatography-inductively coupled plasma mass spectrometry. J Chromatogr A. 2006;1128:164–70.  https://doi.org/10.1016/j.chroma.2006.06.061.PubMedCrossRefGoogle Scholar
  33. 33.
    Raml R, Rumpler A, Goessler W, Vahter M, Li L, Ochi T, et al. Thio-dimethylarsinate is a common metabolite in urine samples from arsenic-exposed women in Bangladesh. Toxicol Appl Pharmacol. 2007;222:374–80.  https://doi.org/10.1016/j.taap.2006.12.014.PubMedCrossRefGoogle Scholar
  34. 34.
    Naranmandura H, Suzuki N, Iwata K, Hirano S, Suzuki KT. Arsenic metabolism and thioarsenicals in hamsters and rats. Chem Res Toxicol. 2007;20:616–24.  https://doi.org/10.1021/tx700038x.PubMedCrossRefGoogle Scholar
  35. 35.
    Bu N, Wang HY, Hao WH, Liu X, Xu S, Wu B, et al. Generation of thioarsenicals is dependent on the enterohepatic circulation in rats. Metallomics. 2011;3:1064–73.  https://doi.org/10.1039/c1mt00036e.PubMedCrossRefGoogle Scholar
  36. 36.
    Suzuki KT, Mandal BK, Katagiri A, Sakuma Y, Kawakami A, Ogra Y, et al. Dimethylthioarsenicals as arsenic metabolites and their chemical preparations. Chem Res Toxicol. 2004;17:914–21.  https://doi.org/10.1021/tx049963s.PubMedCrossRefGoogle Scholar
  37. 37.
    Naranmandura H, Suzuki KT. Formation of dimethylthioarsenicals in red blood cells. Toxicol Appl Pharmacol. 2008;227:390–9.  https://doi.org/10.1016/j.taap.2007.11.008.PubMedCrossRefGoogle Scholar
  38. 38.
    Shimoda Y, Kurosawa H, Kato K, Endo Y, Yamanaka K, Endo G. Proposal for novel metabolic pathway of highly toxic dimethylated arsenics accompanied by enzymatic sulfuration, desulfuration and oxidation. J Trace Elem Med Biol. 2015;30:129–36.  https://doi.org/10.1016/j.jtemb.2014.12.006.PubMedCrossRefGoogle Scholar
  39. 39.
    Lerman S, Clarkson TW. The metabolism of arsenite and arsenate by the rat. Fundam Appl Toxicol. 1983;3:309–14.PubMedCrossRefGoogle Scholar
  40. 40.
    Vahter M, Marafante E, Dencker L. Tissue distribution and retention of 74As-dimethylarsinic acid in mice and rats. Arch Environ Contam Toxicol. 1984;13:259–64.PubMedCrossRefGoogle Scholar
  41. 41.
    Lu ML, Wang HL, Li XF, Arnold LL, Cohen SM, Le XC. Binding of dimethylarsinous acid to Cys-13 alpha of rat hemoglobin is responsible for the retention of arsenic in rat blood. Chem Res Toxicol. 2007;20:27–37.  https://doi.org/10.1021/tx060195+.PubMedCrossRefGoogle Scholar
  42. 42.
    Lu M, Wang H, Li XF, Lu X, Cullen WR, Arnold LL, et al. Evidence of hemoglobin binding to arsenic as a basis for the accumulation of arsenic in rat blood. Chem Res Toxicol. 2004;17:1733–42.  https://doi.org/10.1021/tx049756s.PubMedCrossRefGoogle Scholar
  43. 43.
    Vahter M. Biotransformation of trivalent and pentavalent inorganic arsenic in mice and rats. Environ Res. 1981;25:286–93.PubMedCrossRefGoogle Scholar
  44. 44.
    Klaassen CD. Biliary-excretion of arsenic in rats, rabbits, and dogs. Toxicol Appl Pharmacol. 1974;29:447–57.  https://doi.org/10.1016/0041-008x(74)90116-1.PubMedCrossRefGoogle Scholar
  45. 45.
    Buchet JP, Lauwerys R. Study of inorganic arsenic methylation by rat-liver in vitro - relevance for the interpretation of observations in man. Arch Toxicol. 1985;57:125–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Healy SM, Casarez EA, Ayala-Fierro F, Aposhian HV. Enzymatic methylation of arsenic compounds V. Arsenite methyltransferase activity in tissues of mice. Toxicol Appl Pharmacol. 1998;148:65–70.PubMedCrossRefGoogle Scholar
  47. 47.
    Wildfang E, Zakharyan RA, Aposhian HV. Enzymatic methylation of arsenic compounds - VI. Characterization of hamster liver arsenite and methylarsonic acid methyltransferase activities in vitro. Toxicol Appl Pharmacol. 1998;152:366–75.PubMedCrossRefGoogle Scholar
  48. 48.
    Zakharyan R, Wu Y, Bogdan GM, Aposhian HV. Enzymatic methylation of arsenic compounds - assay, partial-purification, and properties of arsenite methyltransferase and monomethylarsonic acid methyltransferase of rabbit liver. Chem Res Toxicol. 1995;8:1029–38.PubMedCrossRefGoogle Scholar
  49. 49.
    Tam GK, Charbonneau SM, Lacroix G, Bryce F. Confirmation of inorganic arsenic and dimethylarsinic acid in urine and plasma of dog by ion-exchange and TLC. Bull Environ Contam Toxicol. 1979;21:371–4.PubMedCrossRefGoogle Scholar
  50. 50.
    Healy SM, Zakharyan RA, Aposhian HV. Enzymatic methylation of arsenic compounds: IV. In vitro and in vivo deficiency of the methylation of arsenite and monomethylarsonic acid in the guinea pig. Mutat Res. 1997;386:229–39.PubMedCrossRefGoogle Scholar
  51. 51.
    Wildfang E, Radabaugh TR, Vasken Aposhian H. Enzymatic methylation of arsenic compounds. IX. Liver arsenite methyltransferase and arsenate reductase activities in primates. Toxicology. 2001;168:213–21.PubMedCrossRefGoogle Scholar
  52. 52.
    Marafante E, Vahter M, Envall J. The role of the methylation in the detoxication of arsenate in the rabbit. Chem Biol Interact. 1985;56:225–38.PubMedCrossRefGoogle Scholar
  53. 53.
    Kobayashi Y, Hayakawa T, Hirano S. Expression and activity of arsenic methyltransferase Cyt19 in rat tissues. Environ Toxicol Pharmacol. 2007;23:115–20.  https://doi.org/10.1016/j.etap.2006.07.010.PubMedCrossRefGoogle Scholar
  54. 54.
    Yamauchi H, Fowler BA. Toxicity and metabolism of inorganic and methylated arsenicals. In: Nriagu JO, editor. Arsenic in the environment, Part II: Human health and ecosystem effects. New York, NY: John Wiley and Sons; 1994. p. 35–53.Google Scholar
  55. 55.
    Petrick JS, Ayala-Fierro F, Cullen WR, Carter DE, Aposhian HV. Monomethylarsonous acid (MMA(III)) is more toxic than arsenite in Chang human hepatocytes. Toxicol Appl Pharmacol. 2000;163:203–7.  https://doi.org/10.1006/taap.1999.8872.PubMedCrossRefGoogle Scholar
  56. 56.
    Styblo M, Del Razo LM, Vega L, Germolec DR, LeCluyse EL, Hamilton GA, et al. Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells. Arch Toxicol. 2000;74:289–99.PubMedCrossRefGoogle Scholar
  57. 57.
    Hirano S, Kobayashi Y, Cui X, Kanno S, Hayakawa T, Shraim A. The accumulation and toxicity of methylated arsenicals in endothelial cells: important roles of thiol compounds. Toxicol Appl Pharmacol. 2004;198:458–67.  https://doi.org/10.1016/j.taap.2003.10.023.PubMedCrossRefGoogle Scholar
  58. 58.
    Hirano S, Kobayashi Y. Cytotoxic effects of S-(dimethylarsino)-glutathione: a putative intermediate metabolite of inorganic arsenicals. Toxicology. 2006;227:45–52.  https://doi.org/10.1016/j.tox.2006.07.009.PubMedCrossRefGoogle Scholar
  59. 59.
    Mass MJ, Tennant A, Roop BC, Cullen WR, Styblo M, Thomas DJ, et al. Methylated trivalent arsenic species are genotoxic. Chem Res Toxicol. 2001;14:355–61.PubMedCrossRefGoogle Scholar
  60. 60.
    Nesnow S, Roop BC, Lambert G, Kadiiska M, Mason RP, Cullen WR, et al. DNA damage induced by methylated trivalent arsenicals is mediated by reactive oxygen species. Chem Res Toxicol. 2002;15:1627–34.PubMedCrossRefGoogle Scholar
  61. 61.
    Dopp E, Hartmann LM, von Recklinghausen U, Florea AM, Rabieh S, Zimmermann U, et al. Forced uptake of trivalent and pentavalent methylated and inorganic arsenic and its cyto-/genotoxicity in fibroblasts and hepatoma cells. Toxicol Sci. 2005;87:46–56.  https://doi.org/10.1093/toxsci/kfi218.PubMedCrossRefGoogle Scholar
  62. 62.
    Styblo M, Serves SV, Cullen WR, Thomas DJ. Comparative inhibition of yeast glutathione reductase by arsenicals and arsenothiols. Chem Res Toxicol. 1997;10:27–33.PubMedCrossRefGoogle Scholar
  63. 63.
    Lin S, Del Razo LM, Styblo M, Wang C, Cullen WR, Thomas DJ. Arsenicals inhibit thioredoxin reductase in cultured rat hepatocytes. Chem Res Toxicol. 2001;14:305–11.PubMedCrossRefGoogle Scholar
  64. 64.
    Drobna Z, Naranmandura H, Kubachka KM, Edwards BC, Herbin-Davis K, Styblo M, et al. Disruption of the arsenic (+3 oxidation state) methyltransferase gene in the mouse alters the phenotype for methylation of arsenic and affects distribution and retention of orally administered arsenate. Chem Res Toxicol. 2009;22:1713–20.  https://doi.org/10.1021/tx900179r.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Suzuki KT, Iwata K, Naranmandura H, Suzuki N. Metabolic differences between two dimethylthioarsenicals in rats. Toxicol Appl Pharmacol. 2007;218:166–73.  https://doi.org/10.1016/j.taap.2006.10.027.PubMedCrossRefGoogle Scholar
  66. 66.
    Ochi T, Kita K, Suzuki T, Rumpler A, Goessler W, Francesconi KA. Cytotoxic, genotoxic and cell-cycle disruptive effects of thio-dimethylarsinate in cultured human cells and the role of glutathione. Toxicol Appl Pharmacol. 2008;228:59–67.  https://doi.org/10.1016/j.taap.2007.11.023.PubMedCrossRefGoogle Scholar
  67. 67.
    Naranmandura H, Ibata K, Suzuki KT. Toxicity of dimethylmonothioarsinic acid toward human epidermoid carcinoma A431 cells. Chem Res Toxicol. 2007;20:1120–5.  https://doi.org/10.1021/tx700103y.PubMedCrossRefGoogle Scholar
  68. 68.
    Naranmandura H, Ogra Y, Iwata K, Lee J, Suzuki KT, Weinfeld M, et al. Evidence for toxicity differences between inorganic arsenite and thioarsenicals in human bladder cancer cells. Toxicol Appl Pharmacol. 2009;238:133–40.  https://doi.org/10.1016/j.taap.2009.05.006.PubMedCrossRefGoogle Scholar
  69. 69.
    Chilakapati J, Wallace K, Ren H, Fricke M, Bailey K, Ward W, et al. Genome-wide analysis of BEAS-2B cells exposed to trivalent arsenicals and dimethylthioarsinic acid. Toxicology. 2010;268:31–9.  https://doi.org/10.1016/j.tox.2009.11.018.PubMedCrossRefGoogle Scholar
  70. 70.
    Naranmandura H, Carew MW, Xu S, Lee J, Leslie EM, Weinfeld M, et al. Comparative toxicity of arsenic metabolites in human bladder cancer EJ-1 cells. Chem Res Toxicol. 2011;24:1586–96.  https://doi.org/10.1021/tx200291p.PubMedCrossRefGoogle Scholar
  71. 71.
    Raab A, Wright SH, Jaspars M, Meharg AA, Feldmann J. Pentavalent arsenic can bind to biomolecules. Angew Chem Int Ed Engl. 2007;46:2594–7.  https://doi.org/10.1002/anie.200604805.PubMedCrossRefGoogle Scholar
  72. 72.
    Suzuki N, Naranmandura H, Hirano S, Suzuki KT. Theoretical calculations and reaction analysis on the interaction of pentavalent thioarsenicals with biorelevant thiol compounds. Chem Res Toxicol. 2008;21:550–3.  https://doi.org/10.1021/tx700346z.PubMedCrossRefGoogle Scholar
  73. 73.
    Kurosawa H, Shimoda Y, Miura M, Kato K, Yamanaka K, Hata A, et al. A novel metabolic activation associated with glutathione in dimethylmonothioarsinic acid (DMMTA(V))-induced toxicity obtained from in vitro reaction of DMMTA(V) with glutathione. J Trace Elem Med Biol. 2016;33:87–94.  https://doi.org/10.1016/j.jtemb.2015.10.002.PubMedCrossRefGoogle Scholar
  74. 74.
    Yamanaka K, Kato K, Mizoi M, An Y, Takabayashi F, Nakano M, et al. The role of active arsenic species produced by metabolic reduction of dimethylarsinic acid in genotoxicity and tumorigenesis. Toxicol Appl Pharmacol. 2004;198:385–93.  https://doi.org/10.1016/j.taap.2003.10.025.PubMedCrossRefGoogle Scholar
  75. 75.
    Vahter M. Methylation of inorganic arsenic in different mammalian species and population groups. Sci Prog. 1999;82:69–88.PubMedGoogle Scholar
  76. 76.
    Concha G, Nermell B, Vahter MV. Metabolism of inorganic arsenic in children with chronic high arsenic exposure in northern Argentina. Environ Health Perspect. 1998;106:355–9.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Del Razo LM, Garcia-Vargas GG, Vargas H, Albores A, Gonsebatt ME, Montero R, et al. Altered profile of urinary arsenic metabolites in adults with chronic arsenicism. A pilot study. Arch Toxicol. 1997;71:211–7.PubMedCrossRefGoogle Scholar
  78. 78.
    Valenzuela OL, Borja-Aburto VH, Garcia-Vargas GG, Cruz-Gonzalez MB, Garcia-Montalvo EA, Calderon-Aranda ES, et al. Urinary trivalent methylated arsenic species in a population chronically exposed to inorganic arsenic. Environ Health Perspect. 2005;113:250–4.PubMedCrossRefGoogle Scholar
  79. 79.
    Tseng CH. Arsenic methylation, urinary arsenic metabolites and human diseases: current perspective. J Environ Sci Health C-Environ Carcinog Ecotoxicol Rev. 2007;25:1–22.  https://doi.org/10.1080/10590500701201695.PubMedCrossRefGoogle Scholar
  80. 80.
    Vahter M, Concha G, Nermell B, Nilsson R, Dulout F, Natarajan AT. A unique metabolism of inorganic arsenic in native Andean women. Eur J Pharmacol. 1995;293:455–62.PubMedCrossRefGoogle Scholar
  81. 81.
    Chiou HY, Hsueh YM, Hsieh LL, Hsu LI, Hsu YH, Hsieh FI, et al. Arsenic methylation capacity, body retention, and null genotypes of glutathione S-transferase M1 and T1 among current arsenic-exposed residents in Taiwan. Mutat Res. 1997;386:197–207.PubMedCrossRefGoogle Scholar
  82. 82.
    Chung JS, Kalman DA, Moore LE, Kosnett MJ, Arroyo AP, Beeris M, et al. Family correlations of arsenic methylation patterns in children and parents exposed to high concentrations of arsenic in drinking water. Environ Health Perspect. 2002;110:729–33.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Vahter M. Variation in human metabolism of arsenic. In: Chappell WR, Abernathy CO, Calderon RL, editors. Arsenic exposure and health effects III. Oxford: Elsevier Science Ltd; 1999. p. 267–79.CrossRefGoogle Scholar
  84. 84.
    Zakharyan RA, Tsaprailis G, Chowdhury UK, Hernandez A, Aposhian HV. Interactions of sodium selenite, glutathione, arsenic species, and omega class human glutathione transferase. Chem Res Toxicol. 2005;18:1287–95.  https://doi.org/10.1021/tx0500530.PubMedCrossRefGoogle Scholar
  85. 85.
    Wood TC, Salavagionne OE, Mukherjee B, Wang L, Klumpp AF, Thomae BA, et al. Human arsenic methyltransferase (AS3MT) pharmacogenetics: gene resequencing and functional genomics studies. J Biol Chem. 2006;281:7364–73.  https://doi.org/10.1074/jbc.M512227200.PubMedCrossRefGoogle Scholar
  86. 86.
    National Center for Biotechnology Information. The single nucleotide polymorphism database (dbSNP). Available online: http://www.ncbi.nlm.nih.gov/projects/SNP/. Accessed 24 Sep 2018.
  87. 87.
    Drobna Z, Waters SB, Walton FS, LeCluyse EL, Thomas DJ, Styblo M. Interindividual variation in the metabolism of arsenic in cultured primary human hepatocytes. Toxicol Appl Pharmacol. 2004;201:166–77.  https://doi.org/10.1016/j.taap.2004.05.004.PubMedCrossRefGoogle Scholar
  88. 88.
    Li J, Packianathan C, Rossman TG, Rosen BP. Nonsynonymous polymorphisms in the human AS3MT arsenic methylation gene: implications for arsenic toxicity. Chem Res Toxicol. 2017;30:1481–91.  https://doi.org/10.1021/acs.chemrestox.7b00113.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Meza MM, Yu LZ, Rodriguez YY, Guild M, Thompson D, Gandolfi AJ, et al. Developmentally restricted genetic determinants of human arsenic metabolism: association between urinary methylated arsenic and CYT19 polymorphisms in children. Environ Health Perspect. 2005;113:775–81.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Agusa T, Iwata H, Fujihara J, Kunito T, Takeshita H, Minh TB, et al. Genetic polymorphisms in AS3MT and arsenic metabolism in residents of the Red River Delta, Vietnam. Toxicol Appl Pharmacol. 2009;236:131–41.  https://doi.org/10.1016/j.taap.2009.01.015.PubMedCrossRefGoogle Scholar
  91. 91.
    Agusa T, Iwata H, Fujihara J, Kunito T, Takeshita H, Minh TB, et al. Interindividual variation in arsenic metabolism in a Vietnamese population: association with 17 single nucleotide polymorphisms in AS3MT. In: Hamamura N, Suzuki S, Mendo S, Barroso CM, Iwata H, Tanabe S, editors. Interdisciplinary studies on environmental chemistry. Vol 3-Biological responses to chemical contaminants: from molecular to community level. Tokyo: TERRAPUB; 2010. p. 113–9.Google Scholar
  92. 92.
    Gomez-Rubio P, Meza-Montenegro MM, Cantu-Soto E, Klimecki WT. Genetic association between intronic variants in AS3MT and arsenic methylation efficiency is focused on a large linkage disequilibrium cluster in chromosome 10. J Appl Toxicol. 2010;30:260–70.  https://doi.org/10.1002/jat.1492.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Hernández A, Xamena N, Sekaran C, Tokunaga H, Sampayo-Reyes A, Quinteros D, et al. High arsenic metabolic efficiency in AS3MT(287)Thr allele carriers. Pharmacogenet Genomics. 2008;18:349–55.  https://doi.org/10.1097/FPC.0b013e3282f7f46b.PubMedCrossRefGoogle Scholar
  94. 94.
    Hernández A, Xamena N, Surrallés J, Sekaran C, Tokunaga H, Quinteros D, et al. Role of the Met(287)Thr polymorphism in the AS3MT gene on the metabolic arsenic profile. Mutat Res-Fundam Mol Mech Mutag. 2008;637:80–92.  https://doi.org/10.1016/j.mrfmm.2007.07.004.CrossRefGoogle Scholar
  95. 95.
    Lindberg AL, Kumar R, Goessler W, Thirumaran R, Gurzau E, Koppova K, et al. Metabolism of low-dose inorganic arsenic in a central European population: influence of sex and genetic polymorphisms. Environ Health Perspect. 2007;115:1081–6.  https://doi.org/10.1289/ehp.10026.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Schläwicke Engström K, Broberg K, Concha G, Nermell B, Warholm M, Vahter M. Genetic polymorphisms influencing arsenic metabolism: evidence from Argentina. Environ Health Perspect. 2007;115:599–605.  https://doi.org/10.1289/ehp.9734.PubMedCrossRefGoogle Scholar
  97. 97.
    Valenzuela OL, Drobná Z, Hernández-Castellanos E, Sánchez-Peña LC, García-Vargas GG, Borja-Aburto VH, et al. Association of AS3MT polymorphisms and the risk of premalignant arsenic skin lesions. Toxicol Appl Pharmacol. 2009;239:200–7.  https://doi.org/10.1016/j.taap.2009.06.007.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Fujihara J, Soejima M, Koda Y, Kunito T, Takeshita H. Asian specific low mutation frequencies of the M287T polymorphism in the human arsenic (+3 oxidation state) methyltransferase (AS3MT) gene. Mutat Res. 2008;654:158–61.  https://doi.org/10.1016/j.mrgentox.2008.06.001.PubMedCrossRefGoogle Scholar
  99. 99.
    Chung CJ, Hsueh YM, Bai CH, Huang YK, Huang YL, Yang MH, et al. Polymorphisms in arsenic metabolism genes, urinary arsenic methylation profile and cancer. Cancer Causes Control. 2009;20:1653–61.  https://doi.org/10.1007/s10552-009-9413-0.PubMedCrossRefGoogle Scholar
  100. 100.
    Fujihara J, Soejima M, Yasuda T, Koda Y, Agusa T, Kunito T, et al. Global analysis of genetic variation in human arsenic (+3 oxidation state) methyltransferase (AS3MT). Toxicol Appl Pharmacol. 2010;243:292–9.  https://doi.org/10.1016/j.taap.2009.11.020.PubMedCrossRefGoogle Scholar
  101. 101.
    Schlebusch CM, Lewis CM Jr, Vahter M, Engstrom K, Tito RY, Obregón-Tito AJ, et al. Possible positive selection for an arsenic-protective haplotype in humans. Environ Health Perspect. 2013;121:53–8.  https://doi.org/10.1289/ehp.1205504.PubMedCrossRefGoogle Scholar
  102. 102.
    Sumi D, Fukushima K, Miyataka H, Himeno S. Alternative splicing variants of human arsenic (+3 oxidation state) methyltransferase. Biochem Biophys Res Commun. 2011;415:48–53.  https://doi.org/10.1016/j.bbrc.2011.10.008.PubMedCrossRefGoogle Scholar
  103. 103.
    Agusa T, Iwata H, Fujihara J, Kunito T, Takeshita H, Minh TB, et al. Genetic polymorphisms in glutathione S-transferase (GST) superfamily and arsenic metabolism in residents of the Red River Delta, Vietnam. Toxicol Appl Pharmacol. 2010;242:352–62.  https://doi.org/10.1016/j.taap.2009.11.007.PubMedCrossRefGoogle Scholar
  104. 104.
    Agusa T, Kunito T, Tue NM, Lan VT, Fujihara J, Takeshita H, et al. Individual variations in arsenic metabolism in Vietnamese: the association with arsenic exposure and GSTP1 genetic polymorphism. Metallomics. 2012;4:91–100.  https://doi.org/10.1039/c1mt00133g.PubMedCrossRefGoogle Scholar
  105. 105.
    Steinmaus C, Moore LE, Shipp M, Kalman D, Rey OA, Biggs ML, et al. Genetic polymorphisms in MTHFR 677 and 1298, GSTM1 and T1, and metabolism of arsenic. J Toxicol Environ Health A. 2007;70:159–70.  https://doi.org/10.1080/15287390600755240.PubMedCrossRefGoogle Scholar
  106. 106.
    Balakrishnan P, Vaidya D, Franceschini N, Voruganti VS, Gribble MO, Haack K, et al. Association of cardiometabolic genes with arsenic metabolism biomarkers in American Indian communities: The Strong Heart Family Study (SHFS). Environ Health Perspect. 2017;125:15–22.  https://doi.org/10.1289/EHP251.PubMedCrossRefGoogle Scholar
  107. 107.
    Jansen RJ, Argos M, Tong L, Li J, Rakibuz-Zaman M, Islam MT, et al. Determinants and consequences of arsenic metabolism efficiency among 4,794 individuals: demographics, lifestyle, genetics, and toxicity. Cancer Epidemiol Biomarkers Prev. 2016;25:381–90.  https://doi.org/10.1158/1055-9965.EPI-15-0718.PubMedCrossRefGoogle Scholar
  108. 108.
    Pierce BL, Kibriya MG, Tong L, Jasmine F, Argos M, Roy S, et al. Genome-wide association study identifies Chromosome 10q24.32 variants associated with arsenic metabolism and toxicity phenotypes in Bangladesh. PLoS Genet. 2012;8:e1002522.  https://doi.org/10.1371/journal.pgen.1002522.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Pierce BL, Tong L, Argos M, Gao J, Jasmine F, Roy S, et al. Arsenic metabolism efficiency has a causal role in arsenic toxicity: Mendelian randomization and gene-environment interaction. Int J Epidemiol. 2013;42:1862–71.  https://doi.org/10.1093/ije/dyt182.PubMedCrossRefGoogle Scholar
  110. 110.
    Zhu J, Chen Z, Lallemand-Breitenbach V, de Thé H. How acute promyclocytic leukaemia revived arsenic. Nat Rev Cancer. 2002;2:705–13.  https://doi.org/10.1038/mrc887.PubMedCrossRefGoogle Scholar
  111. 111.
    Agusa T, Fujihara J, Takeshita H, Iwata H. Individual variations in inorganic arsenic metabolism associated with AS3MT genetic polymorphisms. Int J Mol Sci. 2011;12:2351–82.  https://doi.org/10.3390/ijms12042351.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Center for Health and Environmental Risk ResearchNational Institute for Environmental StudiesIbarakiJapan
  2. 2.Faculty of Environmental and Symbiotic SciencesPrefectural University of KumamotoKumamotoJapan

Personalised recommendations