Advertisement

Hairy Roots pp 185-211 | Cite as

Hairy Root-Mediated Biotransformation: Recent Advances and Exciting Prospects

  • Peyman Habibi
  • Carlos Ricardo Soccol
  • Maria Fatima Grossi-de-Sa
Chapter

Abstract

For 35 years, hairy roots have been explored as a promising platform for the production of a variety of compounds in different plant systems. Genetic/biochemical stability, the large-scale production of desired metabolites, low-cost cultural requirements and hormone-independent growth made hairy root as an efficient system for synthesis of new molecules required in pharmaceuticals industry. Moreover, these characteristics make hairy root as an ideal biotransformation system to convert administered organic compounds into useful analogs. Since, the synthesis of many natural products is significantly limited by regioselective and stereospecific properties, which subsequently complicates their chemical synthesis, biotransformation via hairy root systems is an alternative for creation of new therapeutic products because of its ability to perform regioselective and stereospecific reactions. Additionally, the hairy root system contained inherent enzymes, which tackle the occurring of biotransformation reactions, including methylation, oxidation, hydroxylation, glycosylation, reduction, isomerization, and esterification. Hence, the hairy root platform can be considered as an efficient and convenient biotransformation system for the production of new agents with desired physico-chemical properties, sufficient solubility, and low toxicity. The present review recapitulates overall reported progress in hairy root-mediated biotransformation, biotransformation strategies, reaction types involved in hairy root biotransformation, the application of hairy root biotransformation, and strategies involved in end product recovery.

Keywords

Hairy root Biotransformation Metabolites Therapeutic products 

Notes

Acknowledgments

The authors would like to acknowledge EMBRAPA, CNPq, CAPES, and FAP-DF for funding and support, and they report no conflicts of interest.

References

  1. Agostini E, Coniglio MS, Milrad SR, Tigier HA, Giulietti AM (2003) Phytoremediation of 2, 4 dichlorophenol by Brassica napus hairy root cultures. Biotechnol Appl Biochem 37(2):139–144PubMedCrossRefGoogle Scholar
  2. Alfermann AW, Petersen M (1995) Natural product formation by plant cell biotechnology. Plant Cell Tissue Organ Cult 43(2):199–205.  https://doi.org/10.1007/BF00052176
  3. Ambati RR, Phang SM, Ravi S, Aswathanarayana RG (2014) Astaxanthin: sources, extraction, stability, biological activities and its commercial applications-a review. Mar Drugs 12(1):128–152.  https://doi.org/10.3390/md12010128 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Andrade LH, Utsunomiya RS, Omori AT, Porto AL, Comasseto JV (2006) Edible catalysts for clean chemical reactions: bioreduction of aromatic ketones and biooxidation of secondary alcohols using plants. J Mol Catal B Enzym 38(2):84–90CrossRefGoogle Scholar
  5. Asada M, Shuler ML (1989) Stimulation of ajmalicine production and excretion from Catharanthus roseus: effects of adsorption in situ, elicitors and alginate immobilization. Appl Microbiol Biotechnol 30(5):475–481.  https://doi.org/10.1007/BF00263851 CrossRefGoogle Scholar
  6. Asada Y, Saito H, Yoshikawa T, Sakamoto K, Furuya T (1993) Biotransformation of 18β-glycyrrhetinic acid by ginseng hairy root culture. Phytochemistry 34(4):1049–1052PubMedCrossRefGoogle Scholar
  7. Bais HP, Vepachedu R, Vivanco JM (2003) Root specific elicitation and exudation of fluorescent β-carbolines in transformed root cultures of Oxalis tuberosa. Plant Physiol Biochem 41(4):345–353CrossRefGoogle Scholar
  8. Banerjee S, Shang TQ, Wilson AM, Moore AL, Strand SE, Gordon MP, Lafferty Doty S (2002) Expression of functional mammalian P450 2E1 in hairy root cultures. Biotechnol Bioeng 77(4):462–466PubMedCrossRefGoogle Scholar
  9. Banerjee S, Singh S, Ur Rahman L (2012) Biotransformation studies using hairy root cultures – a review. Biotechnol Adv 30(3):461–468.  https://doi.org/10.1016/j.biotechadv.2011.08.010 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Basaran P, Rodriguez-Cerezo E (2008) Plant molecular farming: opportunities and challenges. Crit Rev Biotechnol 28(3):153–172PubMedCrossRefPubMedCentralGoogle Scholar
  11. Bhadra R, Wayment D, Hughes J, Shanks JV (1999) Confirmation of conjugation processes during TNT metabolism by axenic plant roots. Environ Sci Technol 33(3):446–452CrossRefGoogle Scholar
  12. Borzelleca J, Hayes JR, Condie LW, Egle JL Jr (1985) Acute and subchronic toxicity of 2, 4-dichlorophenol in CD-1 mice. Toxicol Sci 5(3):478–486CrossRefGoogle Scholar
  13. Brodelius P (1985) The potential role of immobilization in plant cell biotechnology. Trends Biotechnol 3(11):280–285CrossRefGoogle Scholar
  14. Brodelius P, Pedersen H (1993) Increasing secondary metabolite production in plant-cell culture by redirecting transport. Trends Biotechnol 11(1):30–36PubMedCrossRefPubMedCentralGoogle Scholar
  15. Buchanan ID, Nicell JA (1997) Model development for horseradish peroxidase catalyzed removal of aqueous phenol. Biotechnol Bioeng 54(3):251–261PubMedCrossRefPubMedCentralGoogle Scholar
  16. Bulgakov VP (2008) Functions of rol genes in plant secondary metabolism. Biotechnol Adv 26(4):318–324.  https://doi.org/10.1016/j.biotechadv.2008.03.001 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Bulgakov VP, Shkryl YN, Veremeichik GN, Gorpenchenko TY, Vereshchagina YV (2013) Recent advances in the understanding of Agrobacterium rhizogenes-derived genes and their effects on stress resistance and plant metabolism. Adv Biochem Eng Biotechnol 134:1–22.  https://doi.org/10.1007/10_2013_179 CrossRefPubMedGoogle Scholar
  18. Cai Z, Kastell A, Knorr D, Smetanska I (2012) Exudation: an expanding technique for continuous production and release of secondary metabolites from plant cell suspension and hairy root cultures. Plant Cell Rep 31(3):461–477.  https://doi.org/10.1007/s00299-011-1165-0 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Capell T, Christou P (2004) Progress in plant metabolic engineering. Curr Opin Biotechnol 15(2):148–154.  https://doi.org/10.1016/j.copbio.2004.01.009 CrossRefPubMedGoogle Scholar
  20. Caron D, Coughlan AP, Simard M, Bernier J, Piché Y, Chênevert R (2005) Stereoselective reduction of ketones by Daucus carota hairy root cultures. Biotechnol Lett 27(10):713–716PubMedCrossRefGoogle Scholar
  21. Chandra S, Chandra R (2011) Engineering secondary metabolite production in hairy roots. Phytochem Rev 10(3):371.  https://doi.org/10.1007/s11101-011-9210-8 CrossRefGoogle Scholar
  22. De Araujo BS, Charlwood BV, Pletsch M (2002) Tolerance and metabolism of phenol and chloroderivatives by hairy root cultures of Daucus carota L. Environ Pollut 117(2):329–335Google Scholar
  23. De Araujo BS, Dec J, Bollag JM, Pletsch M (2006) Uptake and transformation of phenol and chlorophenols by hairy root cultures of Daucus carota, Ipomoea batatas and Solanum aviculare. Chemosphere 63(4):642–651.  https://doi.org/10.1016/j.chemosphere.2005.08.005 PubMedCrossRefPubMedCentralGoogle Scholar
  24. de Carvalho JC, Medeiros ABP, Vandenberghe LPS, Magalhães Jr AI, Soccol CR (2017) 34 – approaches for the isolation and purification of fermentation products. In: Current developments in biotechnology and bioengineering. Elsevier, p 783–805.  https://doi.org/10.1016/B978-0-444-63662-1.00034-8 CrossRefGoogle Scholar
  25. Delgado-Vargas F, Jimenez AR, Paredes-Lopez O (2000) Natural pigments: carotenoids, anthocyanins, and betalains--characteristics, biosynthesis, processing, and stability. Crit Rev Food Sci Nutr 40(3):173–289.  https://doi.org/10.1080/10408690091189257 CrossRefPubMedPubMedCentralGoogle Scholar
  26. DiCosmo F, Misawa M (1995) Plant cell and tissue culture: alternatives for metabolite production. Biotechnol Adv 13(3):425–453PubMedCrossRefPubMedCentralGoogle Scholar
  27. Doran PM (2009) Application of plant tissue cultures in phytoremediation research: incentives and limitations. Biotechnol Bioeng 103(1):60–76PubMedCrossRefGoogle Scholar
  28. Dornenburg H, Knorr D (1997) Challenges and opportunities for metabolite production from plant cell and tissue cultures. Food Technol (USA) 51(11):47–55Google Scholar
  29. Eapen S, Singh S, D’Souza SF (2007) Phytoremediation of metals and radionuclides. In: Singh SN, Tripahti RD (eds) Environmental bioremediation technologies. Springer, Berlín/New York, pp 189–209CrossRefGoogle Scholar
  30. Edwards B, Santillo D (1996) The stranger: the chlorine industry in India. Greenpeace Research Laboratories published by Greenpeace internationalGoogle Scholar
  31. Faria JM, Nunes IS, Figueiredo AC, Pedro LG, Trindade H, Barroso JG (2009) Biotransformation of menthol and geraniol by hairy root cultures of Anethum graveolens: effect on growth and volatile components. Biotechnol Lett 31(6):897–903Google Scholar
  32. Faria JM, Sena I, Maleita CM, da Silva IV, Ascensao L, Abrantes I, Bennett RN, Mota M, Figueiredo AC (2014) In vitro co-culture of Solanum tuberosum hairy roots with Meloidogyne chitwoodi: structure, growth and production of volatiles. Plant Cell Tissue Organ Cult 118(3):519–530Google Scholar
  33. Favier L, Tonn C, Guerreiro E, Rotelli A, Pelzer L (1998) Anti-inflammatory activity of acetophenones from Ophryosporus axilliflorus. Planta Med 64(07):657–659PubMedCrossRefGoogle Scholar
  34. Fecker LF, Rügenhagen C, Berlin J (1993) Increased production of cadaverine and anabasine in hairy root cultures of Nicotiana tabacum expressing a bacterial lysine decarboxylase gene. Plant Mol Biol 23(1):11–21PubMedCrossRefGoogle Scholar
  35. Fura A (2006) Role of pharmacologically active metabolites in drug discovery and development. Drug Discov Today 11(3):133–142.  https://doi.org/10.1016/S1359-6446(05)03681-0 PubMedCrossRefGoogle Scholar
  36. Furuya T, Ushiyama M, Asada Y, Yoshikawa T (1989) Biotransformation of 2-phenylpropionic acid in root culture of Panax ginseng. Phytochemistry 28(2):483–487CrossRefGoogle Scholar
  37. Giri A, Dhingra V, Giri CC, Singh A, Ward OP, Narasu ML (2001) Biotransformations using plant cells, organ cultures and enzyme systems: current trends and future prospects. Biotechnol Adv 19(3):175–199.  https://doi.org/10.1016/S0734-9750(01)00054-4 PubMedCrossRefGoogle Scholar
  38. Goers L, Freemont P, Polizzi KM (2014) Co-culture systems and technologies: taking synthetic biology to the next level. J R Soc Interface 11(96):20140065PubMedPubMedCentralCrossRefGoogle Scholar
  39. Habibi P, de Sa MF, da Silva AL, Makhzoum A, da L, Costa J, Borghetti IA, Soccol CR (2016) Efficient genetic transformation and regeneration system from hairy root of Origanum vulgare. Physiol Mol Biol Plants 22(2):271–277PubMedPubMedCentralCrossRefGoogle Scholar
  40. Habibi P, De Sa MFG, Makhzoum A, Malik S, da Silva ALL, Hefferon K, Soccol CR (2017a) Bioengineering hairy roots: phytoremediation, secondary metabolism, molecular pharming, plant-plant interactions and biofuels. In: Lichtfouse E (ed) Sustainable agriculture reviews. Springer International Publishing, Cham, pp 213–251.  https://doi.org/10.1007/978-3-319-48006-0_7 CrossRefGoogle Scholar
  41. Habibi P, Prado GS, Pelegrini PB, Hefferon KL, Soccol CR, Grossi-de-Sa MF (2017b) Optimization of inside and outside factors to improve recombinant protein yield in plant. Plant Cell Tissue Organ Cult 130(3):449–467CrossRefGoogle Scholar
  42. Häkkinen ST, Moyano E, Cusidó RM, Palazón J, Piñol MT, Oksman-Caldentey K-M (2005) Enhanced secretion of tropane alkaloids in Nicotiana tabacum hairy roots expressing heterologous hyoscyamine-6β-hydroxylase. J Exp Bot 56(420):2611–2618.  https://doi.org/10.1093/jxb/eri253 CrossRefPubMedGoogle Scholar
  43. Häkkinen ST, Seppänen-Laakso T, Oksman-Caldentey K-M, Rischer H (2015) Bioconversion to raspberry ketone is achieved by several non-related plant cell cultures. Front Plant Sci 6:1035PubMedPubMedCentralCrossRefGoogle Scholar
  44. Hamada H, Tomi R, Asada Y, Furuya T (2002) Phytoremediation of bisphenol a by cultured suspension cells of Eucalyptus perriniana-regioselective hydroxylation and glycosylation. Tetrahedron Lett 43(22):4087–4089CrossRefGoogle Scholar
  45. Hashimoto T, Yamada Y (1983) Scopolamine production in suspension cultures and redifferentiated roots of Hyoscyamus niger. Planta Med 47(04):195–199PubMedCrossRefGoogle Scholar
  46. Hidalgo D, Martinez-Marquez A, Moyano E, Bru-Martinez R, Corchete P, Palazon J (2017) Bioconversion of stilbenes in genetically engineered root and cell cultures of tobacco. Sci Rep 7:45331.  https://doi.org/10.1038/srep45331 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Hirata T, Shimoda K, Fujino T, Ohta S (2000) Biotransformation of hydroxycoumarins by the cultured cells of Nicotiana tabacum. J Mol Catal B Enzym 10(5):477–481CrossRefGoogle Scholar
  48. Hirata T, Shimoda K, Fujino T, S-y Y, Ohta S (2001) Diastereoselective formation of disaccharides from (RS)-1-phenylethanol by cultured cells of Catharanthus roseus. Bull Chem Soc Jpn 74(3):539–542CrossRefGoogle Scholar
  49. Ishihara K, Hamada H, Hirata T, Nakajima N (2003) Biotransformation using plant cultured cells. J Mol Catal B Enzym 23(2-6):145–170CrossRefGoogle Scholar
  50. Ishimaru K, Yamanaka M, Terahara N, Shimomura K, Okamoto D, Yoshihira K (1996) Biotransformation of phenolics by hairy root cultures of five herbal plants. Jpn J Food Chem 3:38–42Google Scholar
  51. Kanho H, Yaoya S, Kawahara N, Nakane T, Takase Y, Masuda K, Kuroyanagi M (2005) Biotransformation of benzaldehyde-type and acetophenone-type derivatives by Pharbitis nil hairy roots. Chem Pharm Bull 53(4):361–365CrossRefGoogle Scholar
  52. Karuppusamy S (2009) A review on trends in production of secondary metabolites from higher plants by in vitro tissue, organ and cell cultures. J Med Plant Res 3(13):1222–1239Google Scholar
  53. Kawaguchi K, Hirotani M, Yoshikawa T, Furuya T (1990) Biotransformation of digitoxigenin by ginseng hairy root cultures. Phytochemistry 29(3):837–843PubMedCrossRefPubMedCentralGoogle Scholar
  54. Kawauchi M, Arima T, Shirota O, Sekita S, Nakane T, Takase Y, Kuroyanagi M (2010) Production of sesquiterpene-type phytoalexins by hairy roots of Hyoscyamus albus co-treated with cupper sulfate and methyl jasmonate. Chem Pharm Bull 58(7):934–938PubMedCrossRefGoogle Scholar
  55. Knorr D, Miazga S, Teutonico R (1985) Immobilization and permeabilization of cultured plant cells. Food Technol 39:135–142Google Scholar
  56. Lauritzen JR III (1998) Catharanthus roseus as a model system for the study of the phytoremediation of TNT. Master’s Thesis, Metadata Rice University, Houston, TX. http://hdl.handle.net/1911/17191
  57. Lee CW, Shuler ML (2000) The effect of inoculum density and conditioned medium on the production of ajmalicine and catharanthine from immobilized Catharanthus roseus cells. Biotechnol Bioeng 67(1):61–71PubMedCrossRefGoogle Scholar
  58. Li W, Koike K, Asada Y, Yoshikawa T, Nikaido T (2002) Biotransformation of umbelliferone by Panax ginseng root cultures. Tetrahedron Lett 43(32):5633–5635CrossRefGoogle Scholar
  59. Li W, Koike K, Asada Y, Yoshikawa T, Nikaido T (2003) Biotransformation of low-molecular-weight alcohols by Coleus forskohlii hairy root cultures. Carbohydr Res 338(8):729–731PubMedCrossRefGoogle Scholar
  60. Li W, Koike K, Asada Y, Yoshikawa T, Nikaido T (2005) Biotransformation of paeonol by Panaxginseng root and cell cultures. J Mol Catal B Enzym 35(4):117–121CrossRefGoogle Scholar
  61. Lin HW, Kwok KH, Doran PM (2003) Production of podophyllotoxin using cross-species coculture of Linum flavum hairy roots and Podophyllum hexandrum cell suspensions. Biotechnol Prog 19(5):1417–1426.  https://doi.org/10.1021/bp034036h PubMedCrossRefGoogle Scholar
  62. Liu J-H, Yu B-Y (2010) Biotransformation of bioactive natural products for pharmaceutical lead compounds. Curr Org Chem 14(14):1400–1406.  https://doi.org/10.2174/138527210791616786 CrossRefGoogle Scholar
  63. Liu Y, Cheng KD, Zhu P, Feng WH, Meng C, Zhu HX, He HX, Ma XJ (2004) Biotransformation of dehydroepiandrosterone by hairy root cultures of Anisodus tanguticus. Yao xue xue bao = Acta pharmaceutica Sinica 39(6):445–448PubMedGoogle Scholar
  64. Lixin L, Yanfang S, Xiaofeng L, Dean G (2002) Biotransformation of artemisinin by hairy root cultures of Rheum palmatum L. J Chin Pharm Sci 11(4):122–124Google Scholar
  65. Łuczkiewicz M, Kokotkiewicz A (2005a) Co-cultures of shoots and hairy roots of Genista tinctoria L. for synthesis and biotransformation of large amounts of phytoestrogens. Plant Sci 169(5):862–871CrossRefGoogle Scholar
  66. Łuczkiewicz M, Kokotkiewicz A (2005b) Genista tinctoria hairy root cultures for selective production of isoliquiritigenin. Zeitschrift für Naturforschung C 60(11–12):867–875CrossRefGoogle Scholar
  67. Mehrotra S, Srivastava V, Rahman LU, Kukreja AK (2015) Hairy root biotechnology—indicative timeline to understand missing links and future outlook. Protoplasma 252(5):1189–1201CrossRefGoogle Scholar
  68. Majumder A, Jha S (2012) Hairy roots: a promising tool for phytoremediation. In: Microorganisms in environmental management. Springer, Dordrecht, pp 607–629.  https://doi.org/10.1007/978-94-007-2229-3_27 Google Scholar
  69. Maramoroch K (1997) Book Review. Environ Entomol 26(3):726–726.  https://doi.org/10.1093/ee/26.3.726 CrossRefGoogle Scholar
  70. Miresmailli S, Isman MB (2014) Botanical insecticides inspired by plant-herbivore chemical interactions. Trends Plant Sci 19(1):29–35.  https://doi.org/10.1016/j.tplants.2013.10.002 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Moon SH, Venkatesh J, Yu JW, Park SW (2015) Differential induction of meristematic stem cells of Catharanthus roseus and their characterization. C R Biol 338(11):745–756.  https://doi.org/10.1016/j.crvi.2015.05.005 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Morgan JA, Shanks JV (2000) Determination of metabolic rate-limitations by precursor feeding in Catharanthus roseus hairy root cultures. J Biotechnol 79(2):137–145PubMedCrossRefPubMedCentralGoogle Scholar
  73. Moyano E, Palazón J, Bonfill M, Osuna L, Cusidó RM, Oksman-Caldentey K-M, Piñol MT (2007) Biotransformation of hyoscyamine into scopolamine in transgenic tobacco cell cultures. J Plant Physiol 164(4):521–524PubMedCrossRefGoogle Scholar
  74. Nadia M, Marzia I, FrancoF V, Nicoletta C-P, Anacleto M (2005) Cell cultures of Ajuga reptans L. to bioconvert emodin and aloe–emodin: an HPLC/ESI/MS investigation. Enzym Microb Technol 36(4):399–408CrossRefGoogle Scholar
  75. Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75(3):311–335.  https://doi.org/10.1021/np200906s CrossRefPubMedPubMedCentralGoogle Scholar
  76. Nunes IS, Faria JM, Figueiredo AC, Pedro LG, Trindade H, Barroso JG (2009) Menthol and geraniol biotransformation and glycosylation capacity of Levisticum officinale hairy roots. Planta Med 75(04):387–391.  https://doi.org/10.1055/s-0028-1112217 CrossRefPubMedGoogle Scholar
  77. Oller AL, Agostini E, Talano MA, Capozucca C, Milrad SR, Tigier HA, Medina MI (2005) Overexpression of a basic peroxidase in transgenic tomato (Lycopersicon esculentum Mill. cv. Pera) hairy roots increases phytoremediation of phenol. Plant Sci 69(6):1102–1111Google Scholar
  78. Orden AA, Bisogno FR, Cifuente DA, Giordano OS, Kurina Sanz M (2006) Asymmetric bioreduction of natural xenobiotic diketones by Brassica napus hairy roots. J Mol Catal B Enzym 42(3):71–77.  https://doi.org/10.1016/j.molcatb.2006.06.010 CrossRefGoogle Scholar
  79. Orden AA, Magallanes-Noguera C, Agostini E, Kurina-Sanz M (2009) Anti-Prelog reduction of ketones by hairy root cultures. J Mol Catal B Enzym 61(3):216–220CrossRefGoogle Scholar
  80. Pandey P, Kaur R, Singh S, Chattopadhyay SK, Srivastava SK, Banerjee S (2014) Long-term stability in biomass and production of terpene indole alkaloids by hairy root culture of Rauvolfia serpentina and cost approximation to endorse commercial realism. Biotechnol Lett 36(7):1523–1528PubMedCrossRefGoogle Scholar
  81. Pandey P, Singh S, Tewari N, Srinivas K, Shukla A, Gupta N, Vasudev PG, Khan F, Pal A, Bhakuni RS (2015) Hairy root mediated functional derivatization of artemisinin and their bioactivity analysis. J Mol Catal B Enzym 113:95–103CrossRefGoogle Scholar
  82. Patel S (2016) Plant-derived cardiac glycosides: role in heart ailments and cancer management. Biomed Pharmacother 84:1036–1041.  https://doi.org/10.1016/j.biopha.2016.10.030 CrossRefPubMedGoogle Scholar
  83. Peng C, Gong J, Zhang X, Zhang M, Zheng S (2008) Production of gastrodin through biotransformation of p-hydroxybenzyl alcohol using hairy root cultures of Datura tatula L. Afr J Biotechnol 7(3):211–216Google Scholar
  84. Pitta–Alvarez SI, Spollansky TC, Giulietti AM (2000) The influence of different biotic and abiotic elicitors on the production and profile of tropane alkaloids in hairy root cultures of Brugmansia candida. Enzym Microb Technol 26(2):252–258CrossRefGoogle Scholar
  85. Prakash G, Srivastava AK (2011) Integrated yield and productivity enhancement strategy for biotechnological production of azadirachtin by suspension culture of Azadirachta indica. Asia Pac J Chem Eng 6(1):129–137CrossRefGoogle Scholar
  86. Pras N, Woerdenbag HJ, van Uden W (1995) Bioconversion potential of plant enzymes for the production of pharmaceuticals. Plant Cell Tissue Organ Cult 43(2):117–121.  https://doi.org/10.1007/bf00052165
  87. Qian ZG, Zhao ZJ, Xu Y, Qian X, Zhong JJ (2005) Highly efficient strategy for enhancing taxoid production by repeated elicitation with a newly synthesized jasmonate in fed-bath cultivation of Taxus chinensis cells. Biotechnol Bioeng 90:516–521PubMedCrossRefGoogle Scholar
  88. Santamaria AR, Mulinacci N, Valletta A, Innocenti M, Pasqua G (2011) Effects of elicitors on the production of resveratrol and viniferins in cell cultures of Vitis vinifera L. cv Italia. J Agric Food Chem 59(17):9094–9101PubMedCrossRefGoogle Scholar
  89. Schmitz A, Felder S, Höver T, Kehraus S, Neu E, Lohr F, König GM, Schäberle TF (2013) Antibiotics from gliding bacteria. Phytochem Rev 12(3):507–516.  https://doi.org/10.1007/s11101-012-9224-x CrossRefGoogle Scholar
  90. Shimoda K, S-y Y, Hirakawa H, Ohta S, Hirata T (2002) Biotransformation of phenolic compounds by the cultured cells of Catharanthus roseus. J Mol Catal B Enzym 16(5):275–281CrossRefGoogle Scholar
  91. Shimoda K, Kwon S, Utsuki A, Ohiwa S, Katsuragi H, Yonemoto N, Hamada H, Hamada H (2007) Glycosylation of capsaicin and 8-nordihydrocapsaicin by cultured cells of Catharanthus roseus. Phytochemistry 68(10):1391–1396.  https://doi.org/10.1016/j.phytochem.2007.03.005 PubMedCrossRefGoogle Scholar
  92. Sidwa-Gorycka M, Królicka A, Kozyra M, Głowniak K, Bourgaud F, Łojkowska E (2003) Establishment of a co-culture of Ammi majus L. and Ruta graveolens L. for the synthesis of furanocoumarins. Plant Sci 165(6):1315–1319CrossRefGoogle Scholar
  93. Singh P, Khan S, Pandey SS, Singh M, Banerjee S, Kitamura Y, ur Rahman L (2015) Vanillin production in metabolically engineered Beta vulgaris hairy roots through heterologous expression of Pseudomonas fluorescens HCHL gene. Ind Crop Prod 74:839–848CrossRefGoogle Scholar
  94. Smetanska I (2008) Production of secondary metabolites using plant cell cultures. Adv Biochem Eng Biotechnol 111:187–228.  https://doi.org/10.1007/10_2008_103 CrossRefPubMedGoogle Scholar
  95. Srivastava V, Kaur R, Chattopadhyay SK, Banerjee S (2013) Production of industrially important cosmaceutical and pharmaceutical derivatives of betuligenol by Atropa belladonna hairy root mediated biotransformation. Ind Crop Prod 44:171–175.  https://doi.org/10.1016/j.indcrop.2012.11.016 CrossRefGoogle Scholar
  96. Srivastava V, Mehrotra S, Mishra S (2016) Biotransformation through hairy roots: perspectives, outcomes, and major challenges. In: Jha S (ed) Transgenesis and secondary metabolism. Springer International Publishing, Cham, pp 1–24.  https://doi.org/10.1007/978-3-319-27490-4_10-1 CrossRefGoogle Scholar
  97. Subroto MA, Kwok KH, Hamill JD, Doran PM (1996) Coculture of genetically transformed roots and shoots for synthesis, translocation, and biotransformation of secondary metabolites. Biotechnol Bioeng 49(5):481–494PubMedCrossRefGoogle Scholar
  98. Suga T, Hirata T (1990) Biotransformation of exogenous substrates by plant cell cultures. Phytochemistry 29(8):2393–2406CrossRefGoogle Scholar
  99. Suga T, Aoki T, Hirata T, Lee YS, Nishimura O, Utsumi M (1980) Biotransformation of foreign substrates with callus tissues. Transformation of terpineols with tobacco suspension cells. Chem Lett 9(3):229–230CrossRefGoogle Scholar
  100. Suga T, Hirata T, Hamada H, Murakami S (1988) Biotransformation of 3-oxo-p-menthane derivatives by cultured cells of Nicotiana tabacum. Phytochemistry 27(4):1041–1044.  https://doi.org/10.1016/0031-9422(88)80269-3 CrossRefGoogle Scholar
  101. Talano MA, Frontera S, González P, Medina MI, Agostini E (2010) Removal of 2,4-diclorophenol from aqueous solutions using tobacco hairy root cultures. J Hazard Mater 176(1–3):784–791.  https://doi.org/10.1016/j.jhazmat.2009.11.103 CrossRefPubMedPubMedCentralGoogle Scholar
  102. Ushiyama M, Furuya T (1989) Glycosylation of phenolic compounds by root culture of Panax ginseng. Phytochemistry 28(11):3009–3013CrossRefGoogle Scholar
  103. Ushiyama M, Asada Y, Yoshikawa T, Furuya T (1989) Biotransformation of aromatic carboxylic acids by root culture of Panax ginseng. Phytochemistry 28(7):1859–1869CrossRefGoogle Scholar
  104. Veena V, Taylor CG (2007) Agrobacterium rhizogenes: recent developments and promising applications. In Vitro Cell Dev Biol – Plant 43(5):383–403.  https://doi.org/10.1007/s11627-007-9096-8 CrossRefGoogle Scholar
  105. Wang W, Zhang Z-Y, Zhong J-J (2005) Enhancement of ginsenoside biosynthesis in high-density cultivation of Panax notoginseng cells by various strategies of methyl jasmonate elicitation. Appl Microbiol Biotechnol 67(6):752–758PubMedCrossRefPubMedCentralGoogle Scholar
  106. Wayment D, Bhadra R, Lauritzen J, Hughes J, Shanks J (1999) A transient study of formation of conjugates during TNT metabolism by plant tissues. Int J Phytoremediation 1(3):227–239CrossRefGoogle Scholar
  107. White FF, Nester EW (1980) Hairy root: plasmid encodes virulence traits in Agrobacterium rhizogenes. J Bacteriol 141(3):1134–1141PubMedPubMedCentralGoogle Scholar
  108. Wielanek M, Urbanek H (2006) Enhanced glucotropaeolin production in hairy root cultures of Tropaeolum majus L. by combining elicitation and precursor feeding. Plant Cell Tissue Organ Cult 86(2):177–186.  https://doi.org/10.1007/s11240-006-9106-2 CrossRefGoogle Scholar
  109. Willmitzer L, Sanchez-Serrano J, Buschfeld E, Schell J (1982) DNA from Agrobacterium rhizogenes in transferred to and expressed in axenic hairy root plant tissues. Mol Gen Genet MGG 186(1):16–22.  https://doi.org/10.1007/bf00422906 CrossRefGoogle Scholar
  110. Wilson SA, Roberts SC (2012) Recent advances towards development and commercialization of plant cell culture processes for synthesis of biomolecules. Plant Biotechnol J 10(3):249–268.  https://doi.org/10.1111/j.1467-7652.2011.00664.x CrossRefPubMedPubMedCentralGoogle Scholar
  111. Woodley JM, Bisschops M, Straathof AJ, Ottens M (2008) Future directions for in-situ product removal (ISPR). J Chem Technol Biotechnol 83(2):121–123CrossRefGoogle Scholar
  112. Wu S, Chappell J (2008) Metabolic engineering of natural products in plants; tools of the trade and challenges for the future. Curr Opin Biotechnol 19(2):145–152.  https://doi.org/10.1016/j.copbio.2008.02.007 CrossRefPubMedPubMedCentralGoogle Scholar
  113. Wu J-Y, Ng J, Shi M, Wu S-J (2007) Enhanced secondary metabolite (tanshinone) production of Salvia miltiorrhiza hairy roots in a novel root–bacteria coculture process. Appl Microbiol Biotechnol 77(3):543–550PubMedCrossRefPubMedCentralGoogle Scholar
  114. Xu JF, Su ZG, Feng PS (1998) Activity of tyrosol glucosyltransferase and improved salidroside production through biotransformation of tyrosol in Rhodiola sachalinensis cell cultures. J Biotechnol 61(1):69–73.  https://doi.org/10.1016/S0168-1656(98)00011-X CrossRefGoogle Scholar
  115. Yamanaka M, Shimomura K, Sasaki K, Yoshihira K, Ishimaru K (1995) Glucosylation of phenolics by hairy root cultures of Lobelia sessilifolia. Phytochemistry 40(4):1149–1150.  https://doi.org/10.1016/0031-9422(95)00456-H CrossRefGoogle Scholar
  116. Yan C, Ma W, Yan W, Yu R (2008) Biotransformation of furannoligularenone by hairy root cultures of Polygonum multiflorum. Zhong yao cai= Zhongyaocai= Journal of Chinese Medicinal Materials 31(5):633–635PubMedPubMedCentralGoogle Scholar
  117. Ye M, Dai J, Guo H, Cui Y, Guo D (2002) Glucosylation of cinobufagin by cultured suspension cells of Catharanthus roseus. Tetrahedron Lett 43(47):8535–8538.  https://doi.org/10.1016/S0040-4039(02)02078-6 CrossRefGoogle Scholar
  118. Yoon JM, Aken BV, Schnoor JL (2006) Leaching of contaminated leaves following uptake and phytoremediation of RDX, HMX, and TNT by poplar. Int J Phytoremediation 8(1):81–94PubMedCrossRefGoogle Scholar
  119. Yoshikawa T, Asada Y, Furuya T (1993) Continuous production of glycosides by a bioreactor using ginseng hairy root culture. Appl Microbiol Biotechnol 39(4):460–464CrossRefGoogle Scholar
  120. Zhao L, Sander GW, Shanks JV (2013) Perspectives of the metabolic engineering of terpenoid indole alkaloids in Catharanthus roseus hairy roots. Adv Biochem Eng Biotechnol 134:23–54.  https://doi.org/10.1007/10_2013_182 CrossRefPubMedGoogle Scholar
  121. Zhou J, Yang YB, Yang CR (1979) Chemical study on gastrodin and related compounds, separation and identification of chemical constitutes of Gastrodia elata Bl. Acta Chim Sin 37:183–189Google Scholar
  122. Zhou L, Ruan D, He Z, Zhu H, Yang C, Wang J (1998) Biotransformation of artemisinin by hairy roots of Cyanotis arachnoidea. Acta Bot Yunnanica 20(2):229–232Google Scholar
  123. Zobayed S, Murch S, Rupasinghe H, De Boer J, Glickman B, Saxena P (2004) Optimized system for biomass production, chemical characterization and evaluation of chemo-preventive properties of Scutellaria baicalensis Georgi. Plant Sci 167(3):439–446CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Peyman Habibi
    • 1
    • 2
  • Carlos Ricardo Soccol
    • 1
  • Maria Fatima Grossi-de-Sa
    • 2
    • 3
    • 4
  1. 1.Department of Bioprocess Engineering and BiotechnologyUFPRCuritibaBrazil
  2. 2.Embrapa Genetic Resources and BiotechnologyBrasíliaBrazil
  3. 3.Catholic University of BrasíliaBrasíliaBrazil
  4. 4.Post Graduation Program in BiotechnologyUniversity PotiguarNatalBrazil

Personalised recommendations