Advertisement

Hairy Roots pp 45-70 | Cite as

pRi-Transformed Plants as a Source of Secondary Metabolites

  • Ewelina PiątczakEmail author
  • Renata Grąbkowska
  • Ewa Skała
Chapter

Abstract

pRi-transformed plants are obtained from hairy roots by Agrobacterium rhizogenes-mediated transformation. The hairy roots may be an attractive alternative for obtaining material from field-cultivated plants because of their rapid growth and often higher secondary metabolite production. Another value of the hairy roots may be their ability to regenerate whole transgenic plants. These transgenic plants are characterized by morphological changes known as hairy root syndrome. Additionally, the transformed plants also accumulated valuable secondary metabolites at higher levels than nontransformed plants. These alterations are associated mainly with the co-expression of rolA, rolB, and/or rolC genes derived from A. rhizogenes plasmids. Recent interest has grown in the application of pRi-transformed plants as a potentially rich source of pharmaceutically valuable metabolites, especially those which cannot be chemically synthesized. The chapter presents the recent progress made in the production of valuable secondary metabolites by pRi-transformed plants and the limitations associated with it.

Keywords

Agrobacterium rhizogenes Transformed plants Secondary metabolites 

References

  1. Akinboye ES, Bakare O (2011) Biological activities of emetine. Open Nat Prod J 4:8–15CrossRefGoogle Scholar
  2. Aldred EM (2009) Chapter 21 – phenols. In: Aldred EM (ed) Pharmacology: a handbook for complementary healthcare professionals. Churchill Livingstone Elsevier, Edinburgh, pp 149–166CrossRefGoogle Scholar
  3. Andarwulan N, Shetty K (1999) Phenolic content in differentiated tissue cultures of untransformed and Agrobacterium-transformed roots of Anise (Pimpinella anisum L.). J Agric Food Chem 47:1776–1780PubMedCrossRefGoogle Scholar
  4. Aoki T, Matsumoto H, Asako Y, Matsunaga Y, Shimomura K (1997) Variation of alkaloid productivity among several clones of hairy roots and regenerated plants of Atropa belladonna transformed with Agrobacterium rhizogenes 15834. Plant Cell Rep 16:282–286Google Scholar
  5. Bakkali F, Averbeck S, Averbeck D, Idaomar M (2008) Biological effects of essential oils-a review. Food Chem Toxicol 46:446–475PubMedCrossRefGoogle Scholar
  6. Bassolé IHN, Juliani HR (2012) Essential oils in combination and their antimicrobial properties. Molecules 17:3989–4006PubMedCrossRefGoogle Scholar
  7. Beerhues L (2006) Hyperforin. Phytochemistry 67:2201–2207PubMedCrossRefGoogle Scholar
  8. Boros CA, Stermitz FR (1991) Iridoids, an updated review. Part II. J Nat Prod 54:1173–1246CrossRefGoogle Scholar
  9. Borovsky D, Thomas BR, Carlson DA, Whisenton LR, Fuchs MS (1985) Juvenile hormone and 20-hydroxyecdysone as primary and secondary stimuli of vitellogenesis in Aedes aegypti. Arch Insec Biochem Physiol 2:75–90CrossRefGoogle Scholar
  10. Butterweck V, Petereit F, Winterhoff H, Nahrstedt A (1998) Solubilized hypericin and pseudohypericin from Hypericum perforatum exert antidepressant activity in the forced swimming test. Planta Med 64:291–294PubMedCrossRefGoogle Scholar
  11. Celma CR, Palazón J, Cusidó RM, Piñol MT, Keil M (2001) Decreased scopolamine yield infield-grown Duboisia plants regenerated from hairy roots. Planta Med 67:249–253CrossRefGoogle Scholar
  12. Chae SC, Chung S-O, Park SU (2013) Influence of cytokinins and auxins on plant regeneration from hairy roots of Rehmannia elata. Life Sci J 10:1171–1174Google Scholar
  13. Chaudhuri KN, Ghosh B, Tepfer D, Jha S (2006) Spontaneous plant regeneration in transformed roots and calli from Tylophora indica: changes in morphological phenotype and tylophorine accumulation associated with transformation by Agrobacterium rhizogenes. Plant Cell Rep 25:1059–1066PubMedCrossRefGoogle Scholar
  14. Chaudhuri K, Das S, Bandyopadhyay M, Zalar A, Kollmann A, Jha S, Tepfer D (2009) Transgenic mimicry of pathogen attack stimulates growth and secondary metabolite accumulation. Transgenic Res 18:121–134PubMedCrossRefGoogle Scholar
  15. Choi PS, Kim YD, Choi KM, Chung HJ, Choi DW, Liu JR (2004) Plant regeneration from hairy-root cultures transformed by infection with Agrobacterium rhizogenes in Catharanthus roseus. Plant Cell Rep 22:828–831PubMedCrossRefGoogle Scholar
  16. Christensen B, Sriskandarajah S, Serek M, Müller R (2008) Transformation of Kalanchoe blossfeldiana with rol-genes is useful in molecular breeding towards compact growth. Plant Cell Rep 27:1485–1495PubMedCrossRefGoogle Scholar
  17. Christey MC (2001) Use of Ri-mediated transformation for production of transgenic plants. In Vitro Cell Dev Biol-Plant 37:687–700CrossRefGoogle Scholar
  18. Christmann J, Kreis W, Reinhard E (1993) Uptake, transport and storage of cardenolides in foxglove. Cardenolide sinks and occurrence of cardenolides in the sieve tubes of Digitalis lanata. Bot Acta 106:419–427CrossRefGoogle Scholar
  19. Clifford MN (1999) Appendix I. A nomenclature for phenols with special reference to tea. CRC Press LLC: Boca Raton, Florida 41, S5, Washington, DC 11/1999, pp 393–397Google Scholar
  20. Cornforth JW (1970) The chiral methyl group-its biochemical significance. Chem Britain 6:431–435Google Scholar
  21. Croteau R, Kutchan TM, Lewis NG (2000) Natural products (secondary metabolites). In: Buchanan B, Gruissem W, Jones R (eds) Biochemistry and molecular biology of plants, 2nd edn. American Society of Plant Biologists/Wiley Blackwell, Chichester, pp 1250–1318Google Scholar
  22. Didry N, Dubrevil L, Pinkas M (1994) Activity of anthraquinonic and naphthoquinonic compounds on oral bacteria. Pharmazie 49:681–683PubMedPubMedCentralGoogle Scholar
  23. Dinan L (2001) Phytoecdysteroids: biological aspects. Phytochemistry 57:325–339PubMedCrossRefPubMedCentralGoogle Scholar
  24. Dinda B, Debnath S, Harigaya Y (2007) Naturally occurring iridoids. A review, part 1. Chem Pharm Bull 55:159–222PubMedCrossRefPubMedCentralGoogle Scholar
  25. Fischhof PK, Möslinger-Gehmayr R, Herrmann WM, Friedmann A, Ruβmann DL (1996) Therapeutic efficacy of vincamine in dementia. Neuropsychobiology 34:29–35PubMedCrossRefPubMedCentralGoogle Scholar
  26. Foderaro TA, Stermitz FR, Hope H (1992) (5αH)-6-epidihydrocornin, the first known iridoid glycosides with a trans-fused ring system. Tetrahedron Lett 33:2953–2954CrossRefGoogle Scholar
  27. Fossati E, Narcross L, Ekins A, Falgueyret JP, Martin VJJ (2015) Synthesis of morphinan alkaloids in Saccharomyces cerevisiae. PLoS One 10:e0124459.  https://doi.org/10.1371/journal.pone.0124459 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Gallo MBC, Beltrame FL, Vieira PC, Cass QB, Fernandes JB, da Silva MFGF (2006) Quantitative determination of 20-hydroxyecdysone in methanolic extract of twigs from Vitex polygama. Cham J Chromatogr B 832:36–40CrossRefGoogle Scholar
  29. Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158PubMedCrossRefGoogle Scholar
  30. Gangopadhyay M, Chakraborty D, Bhattacharyya S, Bhattacharya S (2010) Regeneration of transformed plants from hairy roots of Plumbago indica. Plant Cell Tissue Organ Cult 102:109–114CrossRefGoogle Scholar
  31. Garcia RMA, de Oliveira LO, Moreira MA, Silva Barros W (2005) Variation in emetine and cephaeline contents in roots of wild ipecac (Psychotria ipecacuanha). Biochem Syst Ecol 33:233–243CrossRefGoogle Scholar
  32. Ghisalberti EL (1998) Biological and pharmacological activity of naturally occurring iridoids and secoiridoids. Phytomedicine 5:147–163PubMedCrossRefGoogle Scholar
  33. Guirimand G, Courdavault V, St-Pierre B, Burlat V (2010) Biosynthesis and regulation of alkaloids. In: Pua EC, Davey MR (eds) Plant developmental biology-biotechnological perspectives, vol 2. Springer-Verlag, Berlin HeidelbergGoogle Scholar
  34. Gunjan SK, Lutz J, Bushong A, Rogers DT, Littleton J (2013) Hairy root cultures and plant regeneration in Solidago nemoralis transformed with Agrobacterium rhizogenes. Am J Plant Sci 4:1675–1678CrossRefGoogle Scholar
  35. Habibi P, Grossi de Sa MF, Lopes da Silva AL, Makhzoum A, da Luz CJ, Borghetti IA, Soccol CR (2016) Efficient genetic transformation and regeneration system from hairy root of Origanum vulgare. Physiol Mol Biol Plants 22:271–277PubMedPubMedCentralCrossRefGoogle Scholar
  36. Han XL, Bu HY, Hao JG, Zhao YW, Jia JF (2006) Hairy root induction and plant regeneration of crownvetch (Coronilla varia L.) transformed by Agrobacterium rhizogenes. Sheng Wu Gong Cheng Xue Bao 22:107–113PubMedGoogle Scholar
  37. Hao DC, Gu X-J, Xiao PG (2015) 9 – chemical and biological research of Clematis medicinal resources. In: Medicinal plants chemistry, biology and omics. Elsevier, Amsterdam, pp 341–371Google Scholar
  38. Hayashi T (1996) XXII Scoparia dulcis L. (Sweet Broomweed): In vitro culture and the production of diterpenoids and other secondary metabolites. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 37. Medicinal and aromatic plants IX, Springer-Verlag, Berlin Heidelberg GmbH, pp 370–383Google Scholar
  39. Hazra B, Sarkar R, Bhattacharya S, Ghosh PK, Chel G, Dinda B (2008) Synthesis of plumbagin derivatives and their inhibitory activities against Ehrlich ascites carcinoma and Leishmania donovani promastigotes in vitro. Phytother Res 16:133–137CrossRefGoogle Scholar
  40. Herrmann K (1989) Occurrence and content of hydroxycinnamic and hydroxybenzoic acid compounds in foods. Crit Rev Food Sci Nutr 28:315–347PubMedCrossRefGoogle Scholar
  41. Hollman PCH, Arts ICW (2000) Flavonols, flavones and flavanols-nature. Occurrence and dietary burden. J Sci Food Agric 80:1081–1093CrossRefGoogle Scholar
  42. Hwang SJ (2006) Plant regeneration from hairy root of Rehmannia glutinosa Liboschitz transformed by Agrobacterium rhizogenes. Korean J Med Crop Sci 14:31–35Google Scholar
  43. Jacob A, Malpathak N (2005) Plantlet regeneration enhances solasodine productivity in hairy root cultures of Solanum khasianum Clarke. In Vitro Cell Dev Biol Plant 41:291–295CrossRefGoogle Scholar
  44. Janković T, Krstić D, Savikin-Fodulović K, Menković N, Grubisić D (2002) Xanthones and secoiridoids from hairy root cultures of Centaurium erythraea and C. pulchellum. Planta Med 68:944–946PubMedCrossRefGoogle Scholar
  45. Jensen KIN, Gaul SO, Specht EG, Doohan DJ (1995) Hypericin content of Nova Scotia biotypes of Hypericum perforatum L. Can J Plant Sci 75:923–926CrossRefGoogle Scholar
  46. Kakhia TI (2012) Alkaloids and alkaloids plants. Industry Joint Research Center. Adana University, Turkey. http://www.pdfdrive.net/alkaloids-alkaloids-plants-tarek-ismail-kakhia-e8072664.html. Accessed 20 May 2018
  47. Kamble S, Gopalakrishnan R, Eapen S (2011) Production of camptothecin by hairy roots and regenerated transformed shoots of Ophiorrhiza rugosa var. decumbens. Nat Prod Res 25:1762–1765PubMedCrossRefGoogle Scholar
  48. Kang HJ, Anbazhagan VR, You XL, Moon HK, Yil JS, Choi YE (2006) Production of transgenic Aralia elata regenerated from Agrobacterium rhizogenes-mediated transformed roots. Plant Cell Tissue Organ Cult 85:187–196CrossRefGoogle Scholar
  49. Kim J-A, Kim Y-S, Choi Y-E (2011) Triterpenoid production and phenotypic changes in hairy roots of Codonopsis lanceolata and the plants regenerated from them. Plant Biotechnol Rep 5:255–263CrossRefGoogle Scholar
  50. Kim YS, Kim YK, Xu H, Uddin MR, Park NI, Kim HH, Chae SC, Park SU (2012) Improvement of ornamental characteristics in Rehmannia elata through Agrobacterium rhizogenes-mediated transformation. POJ 5:376–380Google Scholar
  51. Koga M, Hirashima K, Nakahara T (2000) The transformation system in foxglove (Digitalis purpurea L.) using Agrobacterium rhizogenes and traits of the regenerants. Plant Biotechnol 17:99–104CrossRefGoogle Scholar
  52. Kubo I, Klocke JA, Asano S (1983) Effects of ingested phytoecdysteroids on the growth and development of two lepidopterous larvae. J Insect Physiol 29:307–316CrossRefGoogle Scholar
  53. Kuo PL, Hsu YL, Cho CY (2006) Plumbagin induces G2-M arrest and autophagy by inhibiting the AKT/mammalian target of rapamycin pathway in breast cancer cells. Mol Cancer Ther 5:3209–3221PubMedCrossRefGoogle Scholar
  54. Lee KT, Choi J, Jung WT, Nam JH, Jung HJ, Park HJ (2002) Structure of a new echinocystic acid bisdesmoside isolated from Codonopsis lanceolata roots and the cytotoxic activity of prosapogenins. J Agric Food Chem 50:4190–4193PubMedCrossRefGoogle Scholar
  55. Lioshina LG, Bulko OV (2014) Plant regeneration from hairy roots and calluses of periwinkle Vinca minor L. and foxglove purple Digitalis purpurea L. Cytol Genet 48:302–307CrossRefGoogle Scholar
  56. Lloyd G, McCown B (1980) Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia by use of shoot-tip culture. Int Plant Prop Soc 30:421–427Google Scholar
  57. Majumdar S, Garai S, Jha S (2011) Genetic transformation of Bacopa monnieri by wild type strains of Agrobacterium rhizogenes stimulates production of bacopa saponins in transformed calli and plants. Plant Cell Rep 30:941–954PubMedCrossRefGoogle Scholar
  58. Mathew AJ, Jayachandran K (2009) Production of scopadulcic acid B from Scoparia dulcis Linn. Using a Luffa sponge bioreactor. Plant Cell Tissue Organ Cult 98:197–203CrossRefGoogle Scholar
  59. Mehrotra S, Goel MK, Rahman LU, Kukreja AK (2013) Molecular and chemical characterization of plants regenerated from Ri-mediated hairy root cultures of Rauwolfia serpentina. Plant Cell Tissue Organ Cult 114:31–38CrossRefGoogle Scholar
  60. Mei WY, Wang JB, Luo D, Jia JF (2001) Regeneration of plants from callus cultures of roots induced by Agrobacterium rhizogenes on Alhagi pseudalhagi. Cell Res 11:279–284CrossRefGoogle Scholar
  61. Meruelo D, Lavie G, Lavie D (1988) Therapeutic agents with dramatic antiretroviral activity and little toxicity and effective doses, aromatic polycyclic diones hypericin and pseudohypericin. Proc Natl Acad Sci U S A 85:5230–5234PubMedPubMedCentralCrossRefGoogle Scholar
  62. Molyneux RJ, Pan YT, Goldmann A, Tepfer DA, Elbein AD (1993) Calystegins, a novel class of alkaloid glycosidase inhibitors. Arch Biochem Biophys 304:81–88PubMedCrossRefGoogle Scholar
  63. Murashige T, Skoog FA (1962) Revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  64. Ohara A, Akasaka Y, Daimon H, Mii M (2000) Plant regeneration from hairy roots induced by infection with Agrobacterium rhizogenes in Crotalaria juncea L. Plant Cell Rep 19:563–568CrossRefGoogle Scholar
  65. Ohara A, Daimon H, Momota Y, Chin DP, Mii M (2012) Plant regeneration from Crotalaria spectabilis hairy roots which showed inhibited growth of root-knot nematodes (Meloidogyne hapla and M. incognita) in vitro. Plant Biotechnol 29:425–430CrossRefGoogle Scholar
  66. Oksman-Caldentey K-M, Kivelä O, Hiltunen R (1991) Spontaneous shoot organogenesis and plant regeneration from hairy root cultures of Hyoscyamus muticus. Plant Sci 78:129–136CrossRefGoogle Scholar
  67. Palazón J, Navarro-Ocaña A, Hernandez-Vazquez L, Mirjalili MH (2008) Application of metabolic engineering to the production of scopolamine. Molecules 13:1722–1742PubMedPubMedCentralCrossRefGoogle Scholar
  68. Pawlicki-Jullian N, Sedira M, Welander M (2002) The use of Agrobacterium rhizogenes transformed roots to obtain transgenic shoots of the apple rootstock Jork 9. Plant Cell Tissue Organ Cult 70:163–171CrossRefGoogle Scholar
  69. Pellegrineschi A, Damon JP, Valtorta N, Paillard N, Tepfer D (1994) Improvement of ornamental characters and fragrance production in lemon scented geranium through genetic transformation by Agrobacterium rhizogenes. Nat Biotechnol 12:64–68CrossRefGoogle Scholar
  70. Peres LEP, Morgante PG, Vecchi C, Kraus JE, van Sluys M-A (2001) Shoot regeneration capacity from roots and transgenic hairy roots of tomato cultivars and wild related species. Plant Cell Tissue Organ Cult 65:37–44CrossRefGoogle Scholar
  71. Piątczak E, Wysokińska H (2013) Encapsulation of Centaurium erythraea Rafn-en efficient method for regeneration of transgenic plants. Acta Biol Cracov Ser Bot 55(2):37–44Google Scholar
  72. Piątczak E, Królicka A, Wysokinska H (2006) Genetic transformation of Centaurium erythraea Rafn by Agrobacterium rhizogenes and the production of secoiridoids. Plant Cell Rep 25:1308–1315PubMedCrossRefGoogle Scholar
  73. Piątczak E, Kuźma Ł, Skała E, Żebrowska M, Balcerczak E, Wysokińska H (2015) Iridoid and phenylethanoid glycoside production and phenotypical changes in plants regenerated from hairy roots of Rehmannia glutinosa Libosch. Plant Cell Tissue Organ Cult 122:259–266CrossRefGoogle Scholar
  74. Piispanen R, Aronen T, Chen X, Saranpää P, Häggman H (2003) Silver birch (Betula pendula) plants with aux and rol genes show consistent changes in morphology, xylem structure and chemistry. Tree Physiol 23:721–733PubMedCrossRefGoogle Scholar
  75. Pradel H, Dumke-Lehmann U, Diettrich B, Luckner M (1997) Hairy root cultures of Digitalis lanata. Secondary metabolism and plant regeneration. J Plant Physiol 151:209–215CrossRefGoogle Scholar
  76. Ramesha BT, Zuehlke S, Vijaya RC, Priti V, Ravikanth G, Ganeshaiah KN, Spiteller M, Shaanker RU (2011) Sequestration of camptothecin, an anticancer alkaloid, by chrysomelid beetles. J Chem Ecol 37:533–536PubMedCrossRefGoogle Scholar
  77. Robbins RJ (2003) Phenolic acids in foods: an overview of analytical methodology. J Agric Food Chem 51:2866–2887PubMedCrossRefGoogle Scholar
  78. Roychowdhury D, Ghosh B, Chaubey B, Jha S (2013) Genetic and morphological stability of six-year-old transgenic Tylophora indica plants. Nucleus 56:81–89CrossRefGoogle Scholar
  79. Roychowdhury D, Chaubey B, Jha S (2015) The fate of integrated Ri T-DNA rol genes during regeneration via somatic embryogenesis in Tylophora indica. J Bot 707831:1–16Google Scholar
  80. Saxena G, Banerjee S, Rahman L, Verma PC, Mallavarapu GR, Kumar S (2007) Rose-scented geranium (Pelargonium sp.) generated by Agrobacterium rhizogenes mediated Ri-insertion for improved essential oil quality. Plant Cell Tissue Organ Cult 90:215–223CrossRefGoogle Scholar
  81. Saxena M, Saxena J, Nema R, Singh D, Gupta A (2013) Phytochemistry of medicinal plants. J Pharmacogn Phytochem 1:168–182Google Scholar
  82. Seigler DS (1998) 8-Phenylpropanoids. Plant secondary metabolism. Springer, New York, pp 106–129CrossRefGoogle Scholar
  83. Sevón N, Dräger B, Hiltunen R, Oksman-Caldentey KM (1997) Characterization of transgenic plants derived from hairy roots of Hyoscyamus muticus. Plant Cell Rep 16:605–611CrossRefGoogle Scholar
  84. Sharafi A, Sohi HH, Azadi P, Sharafi AA (2014) Hairy root induction and plant regeneration of medicinal plant Dracocephalum kotschyi. Physiol Mol Biol Plants 20:257–262PubMedPubMedCentralCrossRefGoogle Scholar
  85. Shi H-P, Long Y-Y, Sun T-S, Tsang PKE (2011) Induction of hairy roots and plant regeneration from the medicinal plant Pogostemon cablin. Plant Cell Tissue Organ Cult 107:251–260CrossRefGoogle Scholar
  86. Šiler B, Mišić D (2016) Biologically active compounds from the genus Centaurium S.I. (Gentianaceae): current knowledge and future prospects in medicine. In: Rahman A (ed) Studies in natural products chemistry, vol 49, chapter 11. Elsevier Science Publishers, Amsterdam.  https://doi.org/10.1016/B978-0-444-63601-0.00011-9 CrossRefGoogle Scholar
  87. Steinhäuser B (1986) Vincamine in cerebrovascular insufficiency. Occupational medicine approaches in cerebral diseases. Fortschr Med 104:23–26PubMedGoogle Scholar
  88. Tanaka N, Matsumoto T (1993) Regenerants from Ajuga hairy roots with high productivity of 20-hydroxyecdysone. Plant Cell Rep 13:87–90PubMedCrossRefGoogle Scholar
  89. Tanaka N, Takao M, Matsumoto T (1995) Vincamine production in multiple shoot culture derived from hairy roots of Vinca minor. Plant Cell Tissue Organ Cult 41:61–64CrossRefGoogle Scholar
  90. Taskova R, Ljubka Evstatieva L, Handjieva N, Popov S (2002) Iridoid patterns of genus Plantago L. and their systematic significance. Z Naturforsch 57c:42–50CrossRefGoogle Scholar
  91. Thakkar A, Ray S (2014) Certain medicinal plants of Solanaceae and their alkaloids screening. Int Res J Med Sci 2:4–6CrossRefGoogle Scholar
  92. Thiem B, Kikowska M, Malinowski MP, Kruszka D, Napierała M, Florek E (2017) Ecdysteroids: production in plant in vitro cultures. Phytochem Rev 16:603–622PubMedCrossRefGoogle Scholar
  93. Tietze LF (1983) Secologanin, a biogenetic key compound- synthesis and biogenesis of the iridoid and secoiridoid glycosides. Angew Chem 22:828–841CrossRefGoogle Scholar
  94. Tusevski O, Petreska Stanoeva J, Stefova M, Pavokovic D, Gadzovska Simic S (2014) Identification and quantification of phenolic compounds in Hypericum perforatum L. transgenic shoots. Acta Physiol Plant 36:2555–2569CrossRefGoogle Scholar
  95. van der Vijver LM (1974) Distribution of plumbagin in the Plumbaginaceae. Phytochemistry 11:3247–3248CrossRefGoogle Scholar
  96. Wang JW, Wu JY (2010) Tanshinone biosynthesis in Salvia miltiorrhiza and production in plant tissue cultures. Appl Microbiol Biotechnol 88:437–449PubMedCrossRefGoogle Scholar
  97. Wang QJ, Zheng LP, Yuan HY, Wang JW (2013) Propagation of Salvia miltiorrhiza from hairy root explants via somatic embryogenesis and tanshinone content in obtained plants. Ind Crop Prod 50:648–653CrossRefGoogle Scholar
  98. Watase I, Sudo H, Yamazaki M, Saito K (2004) Regeneration of transformed Ophiorrhiza pumila plants producing campthothecin. Plant Biotechnol 21:337–342CrossRefGoogle Scholar
  99. Wu WL, Chang WL, Chen CF (1991) Cytotoxic activities of tanshinones against human carcinoma cell lines. Am J Chin Med 19:207–216PubMedCrossRefGoogle Scholar
  100. Wu HJ, Wang XX, Li Y, Zhang DG, Zhang B, Wang XY (2011) Propagation of Gentiana macrophylla (Pall) from hairy root explants via indirect somatic embryogenesis and gentiopicroside content in obtained plants. Acta Physiol Plant 33:2229–2237CrossRefGoogle Scholar
  101. Xing L, Tan Z-R, Cheng J-L, Huang W-H, Zhang W, Deng W, Yuan C-S, Zhou H-H (2017) Bioavailability and pharmacokinetic comparison of tanshinones between two formulations of Salvia miltiorrhiza in healthy volunteers. Sci Rep 7:4709.  https://doi.org/10.1038/s41598-017-02747-4 CrossRefPubMedPubMedCentralGoogle Scholar
  102. Xu H, Zhou X, Lu J, Wang J, Wang X (2006) Hairy roots induced by Agrobacterium rhizogenes and production of regenerative plants in hairy root cultures in maize. Sci China Ser C49:305–310CrossRefGoogle Scholar
  103. Xu LP, Wang H, Yuan Z (2008) Triterpenoid saponins with antiinflammatory activity from Codonopsis lanceolata. Planta Med 74:1412–1415PubMedCrossRefPubMedCentralGoogle Scholar
  104. Yamane H, Konno K, Sabelis M, Takabayashi J, Sassa T, Oikawa H (2010) 4.08-Chemical defence and toxins of plants. In: Reedijk J, Kakeya H, Lammertsma K, Marquardt R, Morbidelli M, Nakai H, Natile G, Poole C, Quack M, Rissanen K, Wandelt K (eds) Reference module in chemistry, molecular sciences and chemical engineering, Comprehensive natural products II, Chemistry and biology, vol 4 Chemical ecology, pp 339–385.  https://doi.org/10.1016/B978-008045382-8.00099-X CrossRefGoogle Scholar
  105. Yamazaki M, Son L, Hayashi T, Morita N, Asamizu T, Mourakshi T, Saito K (1996) Transgenic fertile Scoparia dulcis L., a folk medicinal plant, conferred with a herbicide-resistant trait using an Ri binary vector. Plant Cell Rep 15:317–321PubMedCrossRefPubMedCentralGoogle Scholar
  106. Yang D-C, Choi Y-E (2000) Production of transgenic plants via Agrobacterium rhizogenes-mediated transformation of Panax ginseng. Plant Cell Rep 19:491–496CrossRefGoogle Scholar
  107. Yang YJ, Kim YJ, Yang YK, Kim JY, Kwon O (2012) Dietary flavan-3-ols intake and metabolic syndrome risk in Korean adults. Nutr Res Pract 6:68–77PubMedPubMedCentralCrossRefGoogle Scholar
  108. Yarnell E (2007) Triterpenoid and steroidal saponins. Chapter 11-Plant chemistry in veterinary medicine: medicinal constituents and their mechanisms of action. In: Wynn SG, Fougére BJ (eds) Veterinary herbal medicine. Mosby Inc./Missouri, Elsevier Inc, St. Louis, pp 159–182CrossRefGoogle Scholar
  109. Yoshimatsu K, Shimomura K (1992) Transformation of opium poppy (Papaver somniferum L.) with Agrobacterium rhizogenes MAFF 03-01724. Plant Cell Rep 11:132–136PubMedCrossRefPubMedCentralGoogle Scholar
  110. Yoshimatsu K, Shimomura K, Yamazaki M, Saito K, Kiuchi F (2003) Transformation of ipecac (Cephaelis ipecacuanha) with Agrobacterium rhizogenes. Planta Med 69:1018–1023PubMedCrossRefGoogle Scholar
  111. Yoshimatsu K, Sudo H, Kamada H, Kiuchi F, Kikuchi Y, Sawada J-I, Koichiro Shimomura K (2004) Tropane alkaloid production and shoot regeneration in hairy and adventitious root cultures of Duboisia myoporoides-D. leichhardtii hybryd. Biol Pharm Bull 27:1261–1265PubMedCrossRefGoogle Scholar
  112. Zhang RX, Li MX, Jia ZP (2008) Rehmannia glutinosa: review of botany, chemistry and pharmacology. J Ethnopharmacol 117:363–367Google Scholar
  113. Zhou YQ, Niu JY, Hao RW, Lin X, Jia JF, Hao JG, Lu LD (2007) Hairy root induction and plant regeneration of Rehmannia glutinosa Libosch. f. hueichingensis (Chao et Schih) Hsiao transformed by Agrobacterium rhizogenes. Fen Zi Xi Bao Sheng Wu Xue Bao 40:223–231PubMedGoogle Scholar
  114. Zhou YQ, Duan HY, Zhou CE, Li JJ, Gu FP, Wang F, Zhang ZY, Gao ZM (2009) Hairy root induction and plant regeneration of Rehmannia glutinosa Libosch. f. hueichingensis Hsiao via Agrobacterium rhizogenes-mediated transformation. Russ J Plant Physiol 56:224–231CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Ewelina Piątczak
    • 1
    Email author
  • Renata Grąbkowska
    • 1
  • Ewa Skała
    • 1
  1. 1.Department of Biology and Pharmaceutical BotanyMedical University of ŁódźŁódźPoland

Personalised recommendations