Hairy Roots pp 329-342 | Cite as

Engineering in Hairy Roots Using CRISPR/Cas9-Mediated Editing

  • Anshu Alok
  • Jitesh Kumar
  • Santosh Kumar UpadhyayEmail author


Agrobacterium rhizogenes is a well characterized bacterium for “hairy root induction” due to presence of Ri plasmid. Ri plasmid has been modified and engineered with required foreign genes and used as a binary vector for plant genetic transformation. A. rhizogenes-mediated hairy root induction and cultures of recalcitrant plant species are useful in genetic and metabolic engineering for secondary metabolite and recombinant protein production. With the advancement of CRISPR/Cas9 genome editing tools, plant genome can be easily manipulated for metabolic engineering. However, CRISPR/Cas9-mediated genome editing requires efficient A. rhizogenes-mediated genetic transformation and selection. In this chapter, we discussed the different essential component of CRISPR/Cas9 editing tools. Different types of CRISPR/Cas9 vectors are now available for various purposes such as disruption, replacement, transcriptional activators, and inhibitors of desired gene.


Agrobacterium rhizogenes CRISPR/Cas9 Genome editing Hairy root Transformation 



Authors are thankful to Panjab University, Chandigarh, NABI and CIAB-Mohali, for providing facility.


  1. Betts L, Xiang S, Short SA, Wolfenden R, Carter CW Jr (1994) Cytidine deaminase. The 2.3 a crystal structure of an enzyme: transition-state analog complex. J Mol Biol 235:635–656CrossRefGoogle Scholar
  2. Breyer D, Kopertekh L, Reheul D (2014) Alternatives to antibiotic resistance marker genes for in vitro selection of genetically modified plants-scientific developments, current use, operational access and biosafety considerations. Crit Rev Plant Sci 33:286–330CrossRefGoogle Scholar
  3. Cai Y, Chen L, Liu X, Sun S, Wu C, Jiang B, Han T, Hou W (2015) CRISPR/Cas9-mediated genome editing in soybean hairy roots. PLoS One 10:e0136064. CrossRefPubMedPubMedCentralGoogle Scholar
  4. Camilleri C (1991) The TR-DNA region carrying the auxin synthesis genes of the Agrobacterium rhizogenes Agropine-type plasmid pRiA4: nucleotide sequence analysis and introduction into tobacco plants. Mol Plant-Microbe Interact 4:155. CrossRefPubMedGoogle Scholar
  5. Čermák T, Baltes NJ, Čegan R, Zhang Y, Voytas DF (2015) High-frequency, precise modification of the tomato genome. Genome Biol 16:1–15. CrossRefGoogle Scholar
  6. Chen B, Gilbert LA, Cimini BA, Schnitzbauer J, Zhang W, Li GW, Park J, Blackburn EH, Weissman JS, Qi LS, Huang B (2013) Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155:1479–1491. CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chen Y, Wang Z, Ni H, Xu Y, Chen Q, Jiang L (2017) CRISPR/Cas9-mediated base-editing system efficiently generates gain-of-function mutations in Arabidopsis. Sci China Life Sci 60:520–523CrossRefGoogle Scholar
  8. Chilton MD, Tepfer DA, Petit A, Petit A, David C, Casse-Delbart F, Tempéal J (1982) Agrobacterium rhizogenes inserts T-DNA into the genomes of the host plant root cells. Nature 295:432–434. CrossRefGoogle Scholar
  9. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Curtin SJ, Zhang F, Sander JD, Haun WJ, Starker C, Baltes NJ, Reyon D, Dahlborg EJ, Goodwin MJ, Coffman AP, Dobbs D, Joung JK, Voytas DF, Stupar RM (2011) Targeted mutagenesis of duplicated genes in soybean with zinc-finger nucleases. Plant Physiol 156:466–473. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Esvelt KM, Mali P, Braff JL, Moosburner M, Yaung SJ, Church GM (2013) Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat Methods 10:1116–1123. CrossRefPubMedPubMedCentralGoogle Scholar
  12. Fonfara I, Le Rhun A, Chylinski K, Makarova KS, Lécrivain AL, Bzdrenga J, Koonin EV, Charpentier E (2014) Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems. Nucleic Acids Res 42:2577–2590CrossRefGoogle Scholar
  13. Fujita T, Yuno M, Fujii H (2016) Efficient sequence-specific isolation of DNA fragments and chromatin by in vitro enChIP technology using recombinant CRISPR ribonucleoproteins. Genes Cells 21:370–377. CrossRefPubMedGoogle Scholar
  14. Gaj T, Gersbach CA, Barbas CF (2013) ZFN, TALEN and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Hefferon KL (2015) Nutritionally enhanced food crops; progress and perspectives. Int J Mol Sci 16:3895–3914CrossRefGoogle Scholar
  16. Hosokawa K, Matsuki R, Oikawa Y, Yamamura S (1997) Genetic transformation of gentian using wild-type Agrobacterium rhizogenes. Plant Cell Tissue Organ Cult 51:137–140. CrossRefGoogle Scholar
  17. Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O, Cradick TJ, Marraffini LA, Bao G, Zhang F (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31:827–832CrossRefGoogle Scholar
  18. Hücherig S, Petersen M (2013) RNAi suppression and overexpression studies of hydroxyphenylpyruvate reductase (HPPR) and rosmarinic acid synthase (RAS) genes related to rosmarinic acid biosynthesis in hairy root cultures of Coleus blumei. Plant Cell Tissue Organ Cult 113:375–385. CrossRefGoogle Scholar
  19. Iaffaldano B, Zhang Y, Cornish K (2016) CRISPR/Cas9 genome editing of rubber producing dandelion Taraxacum kok-saghyz using Agrobacterium rhizogenes without selection. Ind Crop Prod 89:356–362. CrossRefGoogle Scholar
  20. Jacobs TB, LaFayette PR, Schmitz RJ, Parrott WA (2015) Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnol. CrossRefGoogle Scholar
  21. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821. CrossRefPubMedGoogle Scholar
  22. Kirchner TW, Niehaus M, Debener T, Schenk MK, Herde M (2017) Efficient generation of mutations mediated by CRISPR/Cas9 in the hairy root transformation system of Brassica carinata. PLoS One 12:e0185429. CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kumar M, Mitra A (2017) Hairy root culture of Nicotiana tabacum (tobacco) as a platform for gene manipulation of secondary metabolism BT – production of plant derived natural compounds through hairy root culture. In: Malik S (ed) Production of plant derived natural compounds through hairy root culture. Springer International Publishing, Cham, pp 145–163CrossRefGoogle Scholar
  24. Li B, Cui G, Shen G, Zhan Z, Huang L, Chen J, Qi X (2017) Targeted mutagenesis in the medicinal plant Salvia miltiorrhiza. Sci Rep 7:43320. CrossRefPubMedPubMedCentralGoogle Scholar
  25. Liang P, Ding C, Sun H, Xie X, Xu Y, Zhang X, Sun Y, Xiong Y, Ma W, Liu Y, Wang Y, Fang J, Liu D, Songyang Z, Zhou C, Huang J (2017) Correction of β-thalassemia mutant by base editor in human embryos. Protein Cell 8:811–822. CrossRefPubMedPubMedCentralGoogle Scholar
  26. Mankin SL, Hill DS, Olhoft PM, Toren E, Wenck AR, Nea L, Xing L, Brown JA, Fu H, Ireland L, Jia H, Hillebrand H, Jones T, Song HS (2007) Disarming and sequencing of Agrobacterium rhizogenes strain K599 (NCPPB2659) plasmid pRi2659. Vitro Cell Dev Biol Plant 43:521–535. CrossRefGoogle Scholar
  27. Mehrotra S, Srivastava V, Rahman LU, Kukreja AK (2015) Hairy root biotechnology- indicative timeline to understand missing links and future outlook. Protoplasma 252:1189–1201CrossRefGoogle Scholar
  28. Nester E (2011) Agrobacterium: the natural genetic engineer (100 years later). APSnet Featur.
  29. Nester EW (2015) Agrobacterium: natureâ€TMs genetic engineer. Front Plant Sci 5.
  30. Newell-McGloughlin M (2008) Nutritionally improved agricultural crops. Plant Physiol 147:939–953. CrossRefPubMedPubMedCentralGoogle Scholar
  31. Offringa IA, Melchers LS, Regensburg-Tuink AJG, Costantino P, Schilperoort RA, Hooykaas PJJ (1986) Complementation of Agrobacterium tumefaciens tumor-inducing aux mutants by genes from the T(R)-region of the Ri plasmid of Agrobacterium rhizogenes. Proc Natl Acad Sci U S A 83:6935–6939. CrossRefPubMedPubMedCentralGoogle Scholar
  32. Plasencia A, Soler M, Dupas A, Ladouce N, Silva-Martins G, Martinez Y, Lapierre C, Franche C, Truchet I, Grima-Pettenati J (2016) Eucalyptus hairy roots, a fast, efficient and versatile tool to explore function and expression of genes involved in wood formation. Plant Biotechnol J 14:1381–1393. CrossRefPubMedGoogle Scholar
  33. Ron M, Kajala K, Pauluzzi G, Wang D, Reynoso MA, Zumstein K, Garcha J, Winte S, Masson H, Inagaki S, Federici F, Sinha N, Deal RB, Bailey-Serres J, Brady SM (2014) Hairy root transformation using Agrobacterium rhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model. Plant Physiol 166:455–469. CrossRefPubMedPubMedCentralGoogle Scholar
  34. Slightom JL, Durand-Tardif M, Jouanin L, Tepfer D (1986) Nucleotide sequence analysis of TL-DNA of Agrobacterium rhizogenes agropine type plasmid. Identification of open reading frames. J Biol Chem 261:108–121PubMedGoogle Scholar
  35. Srivastava V, Mehrotra S, Verma PK (2016) Biotechnological interventions for production of therapeutic secondary metabolites using hairy root cultures of medicinal plants. In: Dubey S, Pandey A (eds) Current developments in biotechnology and bioengineering, book 8: crop modification, nutrition, and food production. ElsevierGoogle Scholar
  36. Sun X, Hu Z, Chen R, Jiang Q, Song G, Zhang H, Xi Y (2015) Targeted mutagenesis in soybean using the CRISPR-Cas9 system. Sci Rep 5.
  37. Thakore PI, D’Ippolito AM, Song L, Safi A, Shivakumar NK, Kabadi AM, Reddy TE, Crawford GE, Gersbach CA (2015) Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements. Nat Methods 12:1143–1149. CrossRefPubMedPubMedCentralGoogle Scholar
  38. Tiwari RK, Trivedi M, Guang ZC, Guo GQ, Zheng GC (2008) Agrobacterium rhizogenes mediated transformation of Scutellaria baicalensis and production of flavonoids in hairy roots. Biol Plant 52:26–35. CrossRefGoogle Scholar
  39. Upadhyay SK, Kumar J, Alok A, Tuli R (2013) RNA-guided genome editing for target gene mutations in wheat. G3 (Bethesda) 3:2233–2238CrossRefGoogle Scholar
  40. Xu T, Li Y, Van Nostrand JD, He Z, Zhou J (2014) Cas9-based tools for targeted genome editing and transcriptional control. Appl Environ Microbiol 80:1544–1552CrossRefGoogle Scholar
  41. Young JM, Kuykendall LD, Martínez-Romero E, Kerr A, Sawada H (2001) A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi. Int J Syst Evol Microbiol 51:89–103. CrossRefPubMedGoogle Scholar
  42. Zhang D, Zhang H, Li T, Chen K, Qiu JL, Gao C (2017) Perfectly matched 20-nucleotide guide RNA sequences enable robust genome editing using high-fidelity SpCas9 nucleases. Genome Biol.

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Anshu Alok
    • 1
  • Jitesh Kumar
    • 2
  • Santosh Kumar Upadhyay
    • 3
    Email author
  1. 1.Department of Biotechnology (DBT)National Agri-Food Biotechnology Institute (NABI)MohaliIndia
  2. 2.Department of Biotechnology (DBT)Center of Innovative and Applied Bioprocessing (CIAB)MohaliIndia
  3. 3.Department of BotanyPanjab UniversityChandigarhIndia

Personalised recommendations