Hairy Roots pp 295-310 | Cite as

An Update on Transcriptome Sequencing of Hairy Root Cultures of Medicinally Important Plants

  • Deepak GanjewalaEmail author
  • Gurminder Kaur
  • Praveen C. Verma


Hairy root cultures induced by Agrobacterium rhizogenes infection have been recognized as promising and attractive alternative source of secondary metabolites owing to several advantageous features like genetic stability, comparable biosynthetic capabilities to the native plant root, and sizable biomass production. Hairy root cultures are reported to produce all major classes of secondary metabolites, such as isoprenoids/or terpenoids, alkaloids, phenolics, and flavonoids. So far, hairy root cultures have been established from a variety of plants providing commercially valuable products, such as artemisinin (Artemisia annua), astragalosides (Astragalus membranaceus), acteoside (Rehmannia glutinosa), centellosides (Centella asiatica), resveratrol (Arachis hypogaea), camptothecin (Camptotheca acuminata), vinblastine, vincristine (Catharanthus roseus), and kutkin, iridoid glycosides (Picrorhiza kurroa). In hairy root cultures, these specialized metabolites are produced via complex network of several distinctive biochemical pathways operating in an integrated manner. However, biochemical pathways and genes involved in production of many phytochemicals have not been completely elucidated. Transcriptome sequencing of hairy root cultures by next-generation sequencing techniques has been proven to be an excellent approach in elucidation of biosynthetic pathways and genes of phytochemical production. Newly emerged next-generation sequencing techniques like Roche/454 and Illumina/Solexa have greatly facilitated sequencing of transcriptome of hairy root cultures. At present, transcriptome sequence datasets of hairy root cultures of only a limited numbers of plants, viz., C. roseus, P. ginseng, A. membranaceus, R. glutinosa, C. asiatica, etc., are available. Thorough analyses of transcriptome sequence datasets of hairy root cultures have unraveled many biosynthetic pathways and genes responsible for the biosynthesis of commercially important phytochemicals. The present chapter provides an up-to-date information of transcriptome sequencing of hairy root cultures of important plants performed by next-generation sequencing techniques.


Agrobacterium rhizogenes Elicitors Hairy root cultures Methyl jasmonate Next-generation sequencing Secondary metabolites Transcriptome 



Corresponding author of this chapter is grateful to Dr. Ashok Kumar Chauhan, Founder President, and Mr. Atul Chauhan, Chancellor, Amity University, Uttar Pradesh, Noida, India, for providing necessary facilities and support. Also, I duly acknowledge SERB, Department of Science and Technology (DST), New Delhi, for providing National Postdoctoral Fellowship to Dr. Gurminder Kaur, who is currently working on transcriptome sequencing of lemongrass.


  1. Alagna F, D’Agostino N, Torchia L, Servili M et al (2009) Comparative 454 pyrosequencing of transcripts from two olive genotypes during fruit development. BMC Genomics 10:399–414PubMedPubMedCentralCrossRefGoogle Scholar
  2. Banerjee S, Singh S, Ur Rahman L (2012) Biotransformation studies using hairy root cultures – A review. Biotechnol Adv 30:461–468PubMedPubMedCentralCrossRefGoogle Scholar
  3. Barakat A, DiLoreto DS, Zhang Y, Smith C et al (2009) Comparison of the transcriptomes of American chestnut (Castanea dentata) and Chinese chestnut (Castanea mollissima) in response to the chestnut blight infection. BMC Plant Biol 9:51–62PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bolger ME, Weisshaar B, Scholz U et al (2014) Plant genome sequencing – applications for crop improvement. Curr Opin Biotech 26:31–37PubMedCrossRefPubMedCentralGoogle Scholar
  5. Cao H, Nuruzzaman M, Xiu H, Huang J et al (2015) Transcriptome analysis of methyl jasmonate-elicited Panax ginseng adventitious roots to discover putative ginsenoside biosynthesis and transport genes. Int J Mol Sci 16:3035–3057PubMedPubMedCentralCrossRefGoogle Scholar
  6. Chakrabarty D, Rai A, Bhardwaj A, Misra P et al (2015) Comparative transcriptional profiling of contrasting rice genotypes shows expression differences during arsenic stress. The Plant Genome 8:1–14Google Scholar
  7. Chaudhary S, Sharma PC (2016) Next generation sequencing-based exploration of genomes and transcriptomes of medicinal plants. Ind J Plant Physiol 21:489–503CrossRefGoogle Scholar
  8. Chen S, Luo H (2014) Transcriptome analysis of medicinal plants with next generation sequencing technologies. Encycl Anal Chem: 1–12Google Scholar
  9. Chen JF, Dong X, Li Q, Zhou X et al (2013) Biosynthesis of the active compounds of Isatis indigotica based on transcriptome sequencing and metabolites profiling. BMC Genome 14:857–869CrossRefGoogle Scholar
  10. Dicosmo F, Misawa M (1985) Eliciting secondary metabolism in plant cell cultures. Trends Biotechnol 3:318–322CrossRefGoogle Scholar
  11. Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209PubMedCrossRefGoogle Scholar
  12. Ebel J, Cosio EG (1994) Elicitors of plant defense responses. Int Rev Cytol 148:1–36CrossRefGoogle Scholar
  13. Egan AN, Schlueter J, Spooner DM (2012) Applications of next-generation sequencing in plant biology. Am J Bot 99:175–185PubMedCrossRefPubMedCentralGoogle Scholar
  14. Gao W, Sun HX, Xiao H, Cui G et al (2014) Combining metabolomics and transcriptomics to characterize tanshinone biosynthesis in Salvia miltiorrhiza. BMC Genomics 15:73PubMedPubMedCentralCrossRefGoogle Scholar
  15. Georgiev MI, Agostini E, Ludwig-Muller J, Xu J (2012) Genetically transformed roots: from plant disease to biotechnological resource. Trends Biotechnol 30:528–537PubMedCrossRefPubMedCentralGoogle Scholar
  16. Giri A, Narasu ML (2000) Transgenic hairy roots. Recent trends and applications. Biotechnol Adv 18:1–22PubMedCrossRefGoogle Scholar
  17. Goel MK, Mehrotra S, Kukreja AK (2011) Elicitor-induced cellular and molecular events are responsible for productivity enhancement in hairy root cultures: an insight study. Appl Biochem Biotechnol 165:1342–1355PubMedCrossRefPubMedCentralGoogle Scholar
  18. Guillon S, Tremouillaux-Guiller J, Pati P, Rideau M et al (2006) Harnessing the potential of hairy roots: dawn of a new era. Trends Biotechnol 24:403–409PubMedCrossRefPubMedCentralGoogle Scholar
  19. Gurkok T, Turktas M, Parmaksiz I, Unver T (2014) Transcriptome profiling of alkaloid biosynthesis in elicitor induced Opium poppy. Plant Mol Biol Rep 33:673–688CrossRefGoogle Scholar
  20. Han XJ, Wang YD, Chen YC et al (2013) Transcriptome sequencing and expression analysis of terpenoid biosynthesis genes in Litsea cubeba. PLoS One 8:e76890PubMedPubMedCentralCrossRefGoogle Scholar
  21. Hao da C, Ge GB, Xiao PG et al (2011) The first insight into the tissue specific Taxus transcriptome via Illumina second generation sequencing. PLoS One 6:e21220PubMedPubMedCentralCrossRefGoogle Scholar
  22. Hayat Q, Hayat S, Irfan M, Ahmad A (2010) Effect of exogenous salicylic acid under changing environment: a review. Environ Exp Bot 68:14–25CrossRefGoogle Scholar
  23. Hou X, Shao F, Ma Y, Lu S (2013) The phenylalanine ammonia-lyase gene family in Salvia miltiorrhiza: genome-wide characterization, molecular cloning and expression analysis. Mol Biol Rep 40:4301–4310PubMedCrossRefGoogle Scholar
  24. Hsiao YY, Jeng MF, Tsai WC, Chung YC et al (2008) A novel homodimeric geranyl diphosphate synthase from the orchid Phalaenopsis bellina lacking a DD(X) 2-4D motif. Plant J 55:719–733PubMedCrossRefGoogle Scholar
  25. Jones-Rhoades MW, Borevitz JO, Preuss D (2007) Genome-wide expression profiling of the Arabidopsis female gametophyte identifies families of small, secreted proteins. PLoS Genet 3:1848–1861PubMedCrossRefGoogle Scholar
  26. Kawauchi M, Arima T, Shirota O, Sekita S et al (2010) Production of sesquiterpene-type phytoalexins by hairy roots of Hyoscyamus albus co-treated with copper sulfate and methyl jasmonate. Chem Pharm Bull (Tokyo) 58:934–938CrossRefGoogle Scholar
  27. Kim Y, Wyslouzil BE, Weathers PJ (2002) Secondary metabolism of hairy root cultures in bioreactors. In Vitro Cell Dev Biol Plant 38:1–10CrossRefGoogle Scholar
  28. Kim OT, Kim MY, Huh SM, Bai DG et al (2005a) Cloning of a cDNA probably encoding oxidosqualene cyclase associated with asiaticoside biosynthesis from Centella asiatica(L.). Urban Plant Cell Rep 24:304–311PubMedCrossRefPubMedCentralGoogle Scholar
  29. Kim OT, Seong NS, Kim MY, Hwang B (2005b) Isolation and characterization of squalene synthase cDNA from Centella asiatica (L.). Urban J Plant Biol 48:263–269CrossRefGoogle Scholar
  30. Kim OT, Lee JW, Bang KH, Kim YC et al (2009) Characterization of a dammarenediol synthase in Centella asiatica (L.). Urban Plant Physiol Biochem 47:998–1002PubMedCrossRefPubMedCentralGoogle Scholar
  31. Kim OT, Um Y, Jin ML, Chang Y et al (2014) Analysis of expressed sequence tags from Centella asiatica (L.) urban hairy roots elicited by methyl jasmonate to discover genes related to cytochrome P450s and glucosyltransferases. Plant Biotechnol Rep 8:211–220CrossRefGoogle Scholar
  32. Ku WL, Duggal G, Li Y, Girvan M et al (2012) Interpreting patterns of gene expression: signatures of coregulation, the data processing inequality, and triplet motifs. PLoS One 7(2):e31969PubMedPubMedCentralCrossRefGoogle Scholar
  33. Kuzma L, Bruchajzer E, Wysokinska H (2009) Methyl jasmonate effect on diterpenoid accumulation in Salvia sclarea hairy root culture in shake flasks and sprinkle bioreactor. Enz Microb Technol 44:406–410CrossRefGoogle Scholar
  34. Legrand S, Valot N, Nicole F, Moja S et al (2010) One-step identification of conserved miRNAs, their targets, potential transcription factors and effector genes of complete secondary metabolism pathways after 454 pyrosequencing of calyx cDNAs from the Labiate Salvia sclarea L. Gene 450:55–62PubMedCrossRefGoogle Scholar
  35. Li Y, Sun C, Luo HM, Niu YY et al (2010) Transcriptome characterization for Salvia miltiorrhiza using 454 GS FLX. Yao Xue Xue Bao 45:524–529PubMedGoogle Scholar
  36. Lister R, O’Malley RC, Tonti-Filippini J, Gregory BD et al (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133:523–536PubMedPubMedCentralCrossRefGoogle Scholar
  37. Liu MH, Yang BR, Cheung WF, Yang KY et al (2015) Transcriptome analysis of leaves, roots and flowers of Panax notoginseng identifies genes involved in ginsenoside and alkaloid biosynthesis. BMC Genomics 16:265PubMedPubMedCentralCrossRefGoogle Scholar
  38. Mardis ER (2008) The impact of next-generation sequencing technology on genetics. Trends Genet 24:133–141PubMedCrossRefPubMedCentralGoogle Scholar
  39. Marioni J, Mason C, Mane S, Stephens M et al (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 18:1509–1517PubMedPubMedCentralCrossRefGoogle Scholar
  40. McCoy E, O’Connor S (2008) Natural products from plant cell cultures. Prog Drug Res 65:330–370Google Scholar
  41. Mehrotra S, Ur Rahman L, Kukreja AK (2010) An extensive case study of hairy-root cultures for enhanced secondary-metabolite production through metabolic-pathway engineering. Biotechnol Appl Biochem 56:161–172PubMedCrossRefPubMedCentralGoogle Scholar
  42. Mehrotra S, Srivastava V, Ur Rahman L, Kukreja AK (2015) Hairy root biotechnology-indicative timeline to understand missing links and future outlook. Protoplasma. CrossRefGoogle Scholar
  43. Morin R, Bainbridge M, Fejes A, Hirst M et al (2008) Profiling the HeLa S3 transcriptome using randomly primed cDNA and massively parallel short-read sequencing. Biotech 45:81–94CrossRefGoogle Scholar
  44. Morozova O, Marra MA (2008) Applications of next-generation sequencing technologies in functional genomics. Genomics 92:255–264PubMedCrossRefPubMedCentralGoogle Scholar
  45. Morozova O, Hirst M, Marra MA (2009) Application of new sequencing technologies for transcriptome analysis. Ann Rev Genomics Hum Genet 10:135–151PubMedCrossRefPubMedCentralGoogle Scholar
  46. Mortazavi A, Williams BA, McCue K, Schaeffer L et al (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5(7):621–628PubMedCrossRefPubMedCentralGoogle Scholar
  47. Nagalakshmi U, Wang Z, Waern K, Shou C et al (2008) The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320:1344–1349PubMedPubMedCentralCrossRefGoogle Scholar
  48. Naik PM, Al-Khayri JM (2016) Abiotic and biotic elicitors: role in secondary metabolites production through in vitro culture of medicinal plants. In: Shanker AK, Shanker C (eds) Abiotic and biotic stress in plants: recent advances and future perspectives. InTech, Al-Hassa, pp 247–277Google Scholar
  49. Namdev AG (2007) Plant cell elicitation for production of secondary metabolites. A review. Pharmacog Rev 11:69–79Google Scholar
  50. Novaes E, Drost DR, Farmerie WG, Pappas GJ Jr et al (2008) High-throughput gene and SNP discovery in Eucalyptus grandis, an uncharacterized genome. BMC Genomics 9:312PubMedPubMedCentralCrossRefGoogle Scholar
  51. Ono NN, Tian L (2011) The multiplicity of hairy root cultures: prolific possibilities. Plant Sci 180:439–446CrossRefGoogle Scholar
  52. Pauwels L, Inze D, Goossens A (2009) Jasmonate-inducible gene: what does it mean? Trends Plant Sci 14:87–91PubMedCrossRefPubMedCentralGoogle Scholar
  53. Pieterse CMJ, van Loon LC (1999) Salicylic acid-independent plant defence pathways. Trends Plant Sci 4:52–58PubMedCrossRefGoogle Scholar
  54. Porter JR, Flores H (1991) Host range and implications of plant infection by Agrobacterium rhizogenes. Crit Rev Plant Sci 10:387–421CrossRefGoogle Scholar
  55. Ramilowski JA, Sawai S, Seki H, Mochida K et al (2013) Glycyrrhiza uralensis transcriptome landscape and study of phytochemicals. Plant Cell Physiol 54:697–710PubMedCrossRefGoogle Scholar
  56. Ramirez-Estrada K, Vidal-Limon H, Hidalgo D, Moyano E et al (2016) Elicitation, an effective strategy for the biotechnological production of bioactive high-added value compounds in plant cell factories. Molecules 21:182PubMedCrossRefGoogle Scholar
  57. Sharma P, Padh H, Shrivastava N (2013) Hairy root cultures: a suitable biological system for studying secondary metabolic pathways in plants. Engg Life Sci 13:62–75CrossRefGoogle Scholar
  58. Shi CY, Yang H, Wei CL, Yu O et al (2011) Deep sequencing of the Camellia sinensis transcriptome revealed candidate genes for major metabolic pathways of tea-specific compounds. BMC Genomics 12:131PubMedPubMedCentralCrossRefGoogle Scholar
  59. Sivakumar G (2006) Bioreactor technology: a novel industrial tool for high-tech production of bioactive molecules and biopharmaceuticals from plant roots. Biotechnol J 1:1419–1427PubMedCrossRefPubMedCentralGoogle Scholar
  60. Song Z, Guo L, Liu T, Lin C et al (2017) Comparative RNA-sequence transcriptome analysis of phenolic acid metabolism in Salvia miltiorrhiza, a traditional Chinese medicine model plant. Int J Genomics. CrossRefGoogle Scholar
  61. Srivastava S, Srivastava AK (2007) Hairy root culture for mass-production of high-value secondary metabolites. Crit Rev Biotechnol 27:29–43PubMedCrossRefGoogle Scholar
  62. Srivastava V, Negi AS, Ajayakumar PV, Khan SA, Banerjee S (2012) Atropa belladonna hairy roots: orchestration of concurrent oxidation and reduction reactions for biotransformation of carbonyl compounds. Appl Biochem Biotechnol 166:1401–1408PubMedCrossRefGoogle Scholar
  63. Srivastava V, Kaur R, Chattopahyay SK, Banerjee S (2013) Production of industrially important cosmeceutical and pharmaceutical derivatives of betuligenol by Atropa belladonna hairy root mediated biotransformation. Ind Crop Prod 44:171–175CrossRefGoogle Scholar
  64. Stewart FC, Rolf FM, Hall FH (1900) A fruit disease survey of western New York in 1900. NY Agri Exp Stat 191:291–331Google Scholar
  65. Sun J, Manmathan H, Sun C, Christie A et al (2016) Examining the transcriptional response of overexpressing anthranilate synthase in the hairy roots of an important medicinal plant Catharanthus roseus by RNA-seq. BMC Plant Biol 16:108PubMedPubMedCentralCrossRefGoogle Scholar
  66. Trick M, Long Y, Meng J, Bancroft I (2009) Single nucleotide polymorphism (SNP) discovery in the polyploid Brassica napus using Solexa transcriptome sequencing. Plant Biotechnol J 7:334–346PubMedCrossRefGoogle Scholar
  67. Tsai CC, Wu KM, Chiang TY, Huang CY et al (2016) Comparative transcriptome analysis of Gastrodia elata (Orchidaceae) in response to fungus symbiosis to identify gastrodin biosynthesis-related genes. BMC Genomics 17:212PubMedPubMedCentralCrossRefGoogle Scholar
  68. Tuan PA, Chung E, Thwe AA et al (2015) Transcriptional profiling and molecular characterization of astragalosides, calycosin, and calycosin-7-O-β-D-glucoside biosynthesis in the hairy roots of Astragalus membranaceus in response to methyl jasmonate. J Agric Food Chem 63:6231–6240PubMedCrossRefGoogle Scholar
  69. Varshney RK, Nayak SN, May GD et al (2009) Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 27:522–530PubMedPubMedCentralCrossRefGoogle Scholar
  70. Wang JW, Wu JY (2013) Effective elicitors and process strategies for enhancement of secondary metabolite production in hairy root cultures. Adv Biochem Engg Biotechnol 134:55–89Google Scholar
  71. Wang W, Wang Y, Zhang Q et al (2009) Global characterization of Artemisia annua glandular trichome transcriptome using 454 pyrosequencing. BMC Genomics 10:465PubMedPubMedCentralCrossRefGoogle Scholar
  72. Wang F, Zhi J, Zhang Z, Wang L et al (2017) Transcriptome analysis of salicylic acid treatment in Rehmannia glutinosa hairy roots using RNA-seq technique for identification of genes involved in acteoside biosynthesis. Front Plant Sci 8:787PubMedPubMedCentralCrossRefGoogle Scholar
  73. Weber AP, Weber KL, Carr K et al (2007) Sampling the Arabidopsis transcriptome with massive parallel pyrosequencing. Plant Physiol 144:32–42PubMedPubMedCentralCrossRefGoogle Scholar
  74. Wei F, Luo S, Zheng Q, Qiu J et al (2015) Transcriptome sequencing and comparative analysis reveal long-term flowing mechanisms in Hevea brasiliensis latex. Gene 556:153–162PubMedCrossRefPubMedCentralGoogle Scholar
  75. Wen J, Egan AN, Dikow RB, Zimmer EA (2015) Utility of transcriptome sequencing for phylogenetic inference and character evolution. Next-generation sequencing in plant systematics. Koeltz Scientific Books. Regnum Vegetabile 158:51–91Google Scholar
  76. Wenping H, Yuan Z, Jie S, Lijun Z (2011) De novo transcriptome sequencing in Salvia miltiorrhiza to identify genes involved in the biosynthesis of active ingredients. Genomics 98:272–279PubMedCrossRefPubMedCentralGoogle Scholar
  77. Wilhelm BT, Marguerat S, Watt S, Schubert F et al (2008) Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature 453:1239–1243PubMedCrossRefPubMedCentralGoogle Scholar
  78. Wu JY, Shi M (2008) Ultra high diterpenoid tanshinone production through repeated osmotic stress and elicitor stimulation in fed-batch culture of Salvia miltiorrhiza hairy roots. Appl Microbiol Biotechnol 78:441–448PubMedCrossRefGoogle Scholar
  79. Xiao Y, Ji Q, Gao S, Tan H (2015) Combined transcriptome and metabolite profiling reveals that IiPLR1 plays an important role in lariciresinol accumulation in Isatis indigotica. J Exp Bot 66:6259–6271PubMedCrossRefGoogle Scholar
  80. Xu Z, Peters RJ, Weirather J, Luo H et al (2015) Full-length transcriptome sequences and splice variants obtained by a combination of sequencing platforms applied to different root tissues of Salvia miltiorrhiza and tanshinone biosynthesis. Plant J 82:951–961PubMedCrossRefGoogle Scholar
  81. Yamazakib M, Mochida K, Asano T, Nakabayashi R et al (2013) Coupling deep transcriptome analysis with untargeted metabolic profiling in Ophiorrhiza pumila to further the understanding of the biosynthesis of the anticancer alkaloid camptothecin and anthraquinones. Plant Cell Physiol 54:686–696CrossRefGoogle Scholar
  82. Yan H, Yoo MJ, Koh J, Liu L et al (2014) Molecular reprogramming of Arabidopsis in response to perturbation of jasmonate signaling. J Proteome Res 13:5751–5766PubMedCrossRefPubMedCentralGoogle Scholar
  83. Yu Y, Wei J, Zhang X (2014) SNP discovery in the transcriptome of white pacific shrimp Litopenaeus vannamei by next generation sequencing. PLoS One 9(1):e87218PubMedPubMedCentralCrossRefGoogle Scholar
  84. Zhang GH, Ma CH, Zhang JJ, Chen JW et al (2015) Transcriptome analysis of Panax vietnamensis var. fuscidiscus discovers putative ocotillol-type ginsenosides biosynthesis genes and genetic markers. BMC Genomics 16:159. CrossRefPubMedPubMedCentralGoogle Scholar
  85. Zhang L, Chen J, Zhou X, Chen X, Li Q et al (2016) Dynamic metabolic and transcriptomic profiling of methyl jasmonate-treated hairy roots reveals synthetic characters and regulators of lignan biosynthesis in Isatis indigotica. Plant Biotechnol J 14:2217–2227PubMedPubMedCentralCrossRefGoogle Scholar
  86. Zhao FJ, McGrath SP, Meharg AA (2010) Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Ann Rev Plant Biol 61:535–559CrossRefGoogle Scholar
  87. Zhao S, Tuan PA, Li X, Kim YB et al (2013) Identification of phenyl propanoid biosynthetic genes and phenyl propanoid accumulation by transcriptome analysis of Lycium chinense. BMC Genomics 14:802PubMedPubMedCentralCrossRefGoogle Scholar
  88. Zhou Y, Gao F, Liu R, Feng J et al (2012) De novo sequencing and analysis of root transcriptome using 454 pyrosequencing to discover putative genes associated with drought tolerance in Ammopiptanthus mongolicus. BMC Genomics 13:266–279PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Deepak Ganjewala
    • 1
    Email author
  • Gurminder Kaur
    • 1
  • Praveen C. Verma
    • 2
  1. 1.Amity Institute of BiotechnologyAmity UniversityNoidaIndia
  2. 2.Division of Plant Molecular Biology and Genetic EngineeringCSIR-National Botanical Research InstituteLucknowIndia

Personalised recommendations