Advertisement

Hairy Roots pp 275-292 | Cite as

Hairy Roots as a Tool for the Functional Analysis of Plant Genes

  • Chonglu Zhong
  • Mathish Nambiar-Veetil
  • Didier Bogusz
  • Claudine FrancheEmail author
Chapter

Abstract

With its root-inducing (Ri) plasmid, Agrobacterium rhizogenes is a valuable alternative to transfer gene constructs into the genome of plant species which are difficult to stably transform with disarmed strains of Agrobacterium tumefaciens. Composite plants consisting of transformed hairy roots induced on a non-transgenic shoot have been reported in an increasing number of legume and nonlegume plant species. They were first used in the model legumes Medicago truncatula and Lotus japonicus to study the symbiotic interaction with rhizobia. Since then, composite plants have been shown to be effective to investigate the function of genes involved in mycorrhizal symbiosis, root-nematode and root-pathogen interactions, resistance response of plant roots to parasitic weeds, root development and branching, and the formation of wood. The different methodologies developed to generate composite plants and the applications of co-transformed hairy roots for studying gene function are discussed in this chapter, together with recent opportunities offered by genome editing technologies in hairy roots.

Keywords

Agrobacterium rhizogenes Composite plant Gene functional analysis Genome editing Hairy root 

Notes

Acknowledgments

Dr. Chonglu Zhong acknowledges the supports of the Specific Program for National Non-profit Scientific Institutions (CAFYBB2018ZB003) and CAF International Cooperation Innovation Project “Tropical Tree Genetic Resources and Genetic Diversity.” Research conducted at the Institute of Forest Genetics and Tree Breeding was supported by the Indian Council of Forestry Research and Education, Dehradun, India. Research conducted in UMR DIADE was supported by the Research Institute for sustainable Development and the University of Montpellier, France.

References

  1. Abdel-Lateif K, Vaissayre V, Gherbi H et al (2013) Silencing of the chalcone synthase gene in Casuarina glauca highlights the important role of flavonoids during nodulation. New Phytol 199:1012–1021PubMedCrossRefPubMedCentralGoogle Scholar
  2. Alagarsamy K, Shamala LF, Wei S (2018) Protocol: high-efficiency in-planta Agrobacterium-mediated transgenic hairy root induction of Camellia sinensis var. sinensis. Plant Methods 14:17PubMedPubMedCentralCrossRefGoogle Scholar
  3. Alpizar E, Dechamp E, Espeout S et al (2006) Efficient production of Agrobacterium rhizogenes-transformed roots and composite plants for studying gene expression in coffee roots. Plant Cell Rep 25:959–967PubMedCrossRefPubMedCentralGoogle Scholar
  4. An J, Hu Z, Che B, Chen H et al (2017) Heterologous expression of Panax ginseng PgTIP1 confers enhanced salt tolerance of soybean cotyledon hairy roots, composite, and whole plants. Front Plant Sci 8:1232PubMedPubMedCentralCrossRefGoogle Scholar
  5. Anami S, Njuguna E, Coussens G et al (2013) Higher plant transformation: principles and molecular tools. Int J Dev Biol 57:483–494PubMedCrossRefPubMedCentralGoogle Scholar
  6. Balasubramanian A, Venkatachalam R, Selvakesavan R et al (2011) Optimisation of methods for Agrobacterium rhizogenes mediated generation of composite plants in Eucalyptus camaldulensis. BMC Proc 5(suppl. 7):45–46CrossRefGoogle Scholar
  7. Banasiak J, Biala W, Staszków A et al (2013) A Medicago truncatula ABC transporter belonging to subfamily G modulates the level of isoflavonoids. J Exp Bot 64(4):1005–1015PubMedCrossRefPubMedCentralGoogle Scholar
  8. Beach KH, Gresshoff PM (1988) Characterization and culture of Agrobacterium rhizogenes transformed roots of forage Legumes. Plant Sci 57:73–81CrossRefGoogle Scholar
  9. Belhaj K, Chaparro-Garcia A, Kamoun S et al (2015) Editing plant genomes with CRISPR/Cas9. Curr Opin Biotechnol 32:76–84PubMedCrossRefPubMedCentralGoogle Scholar
  10. Belmondo S, Calcagno C, Genre A (2016) The Medicago truncatula MtRbohE gene is activated in arbusculated cells and is involved in root cortex colonization. Planta 243:251–262PubMedCrossRefPubMedCentralGoogle Scholar
  11. Boisson-Dernier A, Chabaud M, Garcia F et al (2001) Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations. Mol Plant Microbe Interact 14:695–700PubMedCrossRefPubMedCentralGoogle Scholar
  12. Boisson-Dernier A, Andriankaja A, Chabaud M et al (2005) MtENOD11 gene activation during rhizobial infection and mycorrhizal arbuscule development requires a common AT-rich-containing regulatory sequence. Mol Plant Microbe Interact 18:1269–1276PubMedCrossRefPubMedCentralGoogle Scholar
  13. Bonaldi K, Gherbi H, Franche C et al (2010) The Nod factor-independent symbiotic signalling pathway: development of Agrobacterium rhizogenes-mediated transformation for the legume Aeschynomene indica. Mol Plant Microbe Interact 12:1537–1544PubMedCrossRefPubMedCentralGoogle Scholar
  14. Bosselut N, Van Ghelder C, Claverie M et al (2011) Agrobacterium rhizogenes-mediated transformation of Prunus as an alternative for gene functional analysis in hairy-roots and composite plants. Plant Cell Rep 30:1313–1326PubMedCrossRefPubMedCentralGoogle Scholar
  15. Britton MT, Escobar MA, Dandekar M (2008) The oncogenes of Agrobacterium tumefaciens and Agrobacterium rhizogenes. In: Tzfira T, Citovsky V (eds) Agrobacterium: from biology to biotechnology. Springer, Heidelberg, pp 525–563Google Scholar
  16. Cai Y, Chen L, Liu X et al (2015) CRISPR/Cas9-mediated genome editing in soybean hairy roots. PLoS One 10(8):e0136064PubMedPubMedCentralCrossRefGoogle Scholar
  17. Cao D, Hou W, Song S et al (2009) Assessment of conditions affecting Agrobacterium rhizogenes-mediated transformation of soybean. Plant Cell Tissue Organ Cult 96:45–52CrossRefGoogle Scholar
  18. Claverie M, Dirlewanger E, Bosselut N et al (2011) The Ma gene for complete-spectrum resistance to Meloidogyne species in Prunus is a TNL with a huge repeated C-terminal post-LRR region. Plant Physiol 156:779–792PubMedPubMedCentralCrossRefGoogle Scholar
  19. Collier R, Fuchs B, Walter N et al (2005) Ex vitro composite plants: an inexpensive, rapid method for root biology. Plant J 43:449–457PubMedCrossRefPubMedCentralGoogle Scholar
  20. Colpaert N, Tilleman S, van Montagu M et al (2008) Composite Phaseolus vulgaris plants with transgenic roots as research tool. African J Biotechnol 7:404–408Google Scholar
  21. Coque L, Neogi P, Pislariu C et al (2008) Transcription of ENOD8 in Medicago truncatula nodules directs ENOD8 esterase to developing and mature symbiosomes. Mol Plant Microbe Interact 21:404–410PubMedCrossRefPubMedCentralGoogle Scholar
  22. Díaz CL, Melchers LS, Hooykaas PJJ et al (1989) Root lectin as a determinant of host-plant specificity in the Rhizobium-legume symbiosis. Nature 338:579–581CrossRefGoogle Scholar
  23. Diaz CL, Spaink JD, Kijne JW (2000) Heterologous rhizobial lipochitin oligosaccharides and chitin oligomers induce cortical cell divisions in red clover roots, transformed with the pea lectin gene. Mol Plant-Microbe Interact 13:268–276PubMedCrossRefPubMedCentralGoogle Scholar
  24. Diouf D, Gherbi H, Prin Y et al (1995) Hairy root nodulation of Casuarina glauca: a system for the study of symbiotic gene expression in an actinorhizal tree. Mol Plant Microbe Interact 8(4):532–537PubMedCrossRefPubMedCentralGoogle Scholar
  25. Dolatabadian A, Modarres Sanavy SA et al (2013) Agrobacterium rhizogenes transformed soybean roots differ in their nodulation and nitrogen fixation response to genistein and salt stress. World J Microbiol Biotechnol 29:1327–1339PubMedCrossRefPubMedCentralGoogle Scholar
  26. Du H, Zeng X, Zhao M et al (2016) Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9. J Biotechnol 217:90–97PubMedCrossRefPubMedCentralGoogle Scholar
  27. Estrada-Navarrete G, Alvarado-Affantranger X, Olivares JE et al (2006) Agrobacterium rhizogenes transformation of the Phaseolus spp.: a tool for functional genomics. Mol Plant Microbe Interact 19:1385–1393PubMedCrossRefPubMedCentralGoogle Scholar
  28. Fan Y, Liu J, Lyu S et al (2017) The Soybean Rfg1 gene restricts nodulation by Sinorhizobium fredii USDA193. Front Plant Sci 8:1548PubMedPubMedCentralCrossRefGoogle Scholar
  29. Fosu-Nyarko J, Jones MG (2016) Advances in understanding the molecular mechanisms of root lesion nematode host interactions. Annu Rev Phytopathol 54:253–278PubMedCrossRefPubMedCentralGoogle Scholar
  30. Geng L, Chi J, Shu C, Gresshoff PM et al (2013) A chimeric cry8Ea1 gene flanked by MARs efficiently controls Holotrichia parallela. Plant Cell Rep 32:1211–1218PubMedCrossRefPubMedCentralGoogle Scholar
  31. Geurts R, Xiao TT, Reinhold-Hurek B (2016) What does it take to evolve a nitrogen-fixing endosymbiosis? Trends Plant Sci 21:199–208PubMedCrossRefPubMedCentralGoogle Scholar
  32. Gherbi H, Svistoonoff S, Estevan J et al (2008a) SymRK defines a common genetic basis for plant root endosymbioses with AM fungi, rhizobia and Frankia bacteria. Proc National Acad Sci USA 105:4928–4932CrossRefGoogle Scholar
  33. Gherbi H, Nambiar-Veetil M, Zhong C et al (2008b) Post-transcriptional gene silencing in the root system of the actinorhizal tree Allocasuarina verticillata. Mol Plant Microbe Interact 21:518–524PubMedCrossRefPubMedCentralGoogle Scholar
  34. Guillon S, Trémouillaux-Guiller J, Kumar Pati P et al (2006) Hairy root research: recent scenario and exciting prospects. Cur Opin Plant Biol 9:341–346CrossRefGoogle Scholar
  35. Guimaraes LA, Pereira BM, Araujo ACG et al (2017a) Ex vitro hairy root induction in detached peanut leaves for plant-nematode interaction studies. Plant Methods 13:25PubMedPubMedCentralCrossRefGoogle Scholar
  36. Guimaraes LA, Mota APZ, Araujo ACG et al (2017b) Genome-wide analysis of expansin superfamily in wild Arachis discloses a stress-responsive expansin-like B gene. Plant Mol Biol 94:79–96PubMedPubMedCentralCrossRefGoogle Scholar
  37. Guo W, Zhao J, Li X, Qin L et al (2011) A soybean β-expansin gene GmEXPB2 intrinsically involved in root system architecture responses to abiotic stresses. Plant J 66:541–552PubMedCrossRefPubMedCentralGoogle Scholar
  38. Hansen J, Jorgensen JE, Stougaard J, Marcker K (1989) Hairy roots – a short cut to transgenic root nodules. Plant Cell Rep 8:12–15PubMedCrossRefGoogle Scholar
  39. Haselhoff J, Siemering KR (2006) The use of green fluorescent protein in plants. Methods Biochem Anal 47:259–284Google Scholar
  40. Horn P, Santala J, Nielsen SL et al (2014) Composite potato plants with transgenic roots on non-transgenic shoots: a model system for studying gene silencing in roots. Plant Cell Rep 33:1977–1992PubMedCrossRefPubMedCentralGoogle Scholar
  41. Iaffaldano B, Zhang Y, Cornish K (2016) CRISPR/Cas9 genome editing of rubber producing dandelion Taraxacum kok-saghyz using Agrobacterium rhizogenes without selection. Ind Crop Prod 89:356–362Google Scholar
  42. Ilina EL, Logachov AA, Laplaze L et al (2012) Composite Cucurbita pepo plants with transgenic roots as a tool to study root development. Ann Bot 110:479–489PubMedPubMedCentralCrossRefGoogle Scholar
  43. Imanishi L, Vayssières A, Franche C et al (2011) Transformed hairy roots of Discaria trinervis: a valuable tool for studying actinorhizal symbiosis in the context of intercellular infection. Mol Plant Microbe Interact 24:1317–1324PubMedCrossRefPubMedCentralGoogle Scholar
  44. Jacobs TB, LaFayette PR, Schmitz RJ, Parrott WA (2015) Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnol 15:16PubMedPubMedCentralCrossRefGoogle Scholar
  45. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusion: ß-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907PubMedPubMedCentralCrossRefGoogle Scholar
  46. Jensen JS, Marcker KA, Otten L, Schell J (1986) Nodule-specific expression of a chimeric soybean leghemoglobin gene in transgenic Lotus corniculatus. Nature 321:669–674CrossRefGoogle Scholar
  47. Karami O (2008) Factors affecting Agrobacterium-mediated transformation of plants. Transgenic Plant J 2:127–137Google Scholar
  48. Kassaw T, Nowak S, Schnabel E, Frugoli J (2017) ROOT DETERMINED NODULATION1 is required for M. truncatula CLE12, but not CLE13, peptide signaling through the SUNN receptor kinase. Plant Physiol 174:2445–2456PubMedPubMedCentralCrossRefGoogle Scholar
  49. Kereszt A, Li D, Indrasumunar A et al (2007) Agrobacterium rhizogenes-mediated transformation of soybean to study root biology. Nature Protoc 2:948–952CrossRefGoogle Scholar
  50. Kiirika LM, Bergmann HF, Schikowsky C et al (2012) Silencing of the Rac1 GTPase MtROP9 in Medicago truncatula stimulates early mycorrhizal and oomycete root colonizations but negatively affects rhizobial infection. Plant Physiol 159:501–516PubMedPubMedCentralCrossRefGoogle Scholar
  51. Kirchner TW, Niehaus M, Debener T et al (2017) Efficient generation of mutations mediated by CRISPR/Cas9 in the hairy root transformation system of Brassica carinata. PLoS One 12:e0185429PubMedPubMedCentralCrossRefGoogle Scholar
  52. Koplow J, Byrne MC, Jen G et al (1984) Physical map of the Agrobacterium rhizogenes strain 8196 virulence plasmid. Plasmid 11:130–140CrossRefGoogle Scholar
  53. Lacroix B, Citovsky V (2013) The roles of bacterial and host plant factors in Agrobacterium-mediated genetic transformation. Int J Dev Biol 57:46481CrossRefGoogle Scholar
  54. Lanfranco L, Bonfante P, Genre A (2016) The mutualistic interaction between plants and arbuscular mycorrhizal fungi. Microbiol Spectr 4(6)Google Scholar
  55. Lee NG, Stein B, Suzuki H, Verma DPS (1993) Expression of antisense nodulin-35 RNA in Vigna aconitifolia transgenic root nodules retards peroxisome development and affects nitrogen availability to the plant. Plant J 3:599–606PubMedCrossRefPubMedCentralGoogle Scholar
  56. Leppyanen IV, Shakhnazarova VY, Shtark OY et al (2017) Receptor-like kinase LYK9 in Pisum sativum L. is the CERK1-Like Receptor that controls both plant immunity and AM symbiosis development. Int J Mol Sci 19(1):E8PubMedCrossRefPubMedCentralGoogle Scholar
  57. Li J, Todd TC, Trick HN (2010) Rapid in planta evaluation of root expressed transgenes in chimeric soybean plants. Plant Cell Rep 29:113–123PubMedPubMedCentralCrossRefGoogle Scholar
  58. Li J-F, Zhang D, Sheen J (2014) Cas9-based genome editing in Arabidopsis and tobacco. Methods Enzymol 546:459–472PubMedCrossRefPubMedCentralGoogle Scholar
  59. Li X, Zhao J, Tan Z et al (2015) GmEXPB2, a cell wall β-expansin, affects soybean nodulation through modifying root architecture and promoting nodule formation and development. Plant Physiol 169:2640–2653PubMedPubMedCentralGoogle Scholar
  60. Li B, Cui G, Shen G, Zhan Z et al (2017) Targeted mutagenesis in the medicinal plant Salvia miltiorrhiza. Sci Rep 7:43320PubMedPubMedCentralCrossRefGoogle Scholar
  61. Liang Z, Zhang K, Chen K, Gao C (2014) Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J Genet Genom 41:63–68CrossRefGoogle Scholar
  62. Limpens E, Ramos J, Franken C et al (2004) RNA interference in Agrobacterium rhizogenes-transformed roots of Arabidopsis and Medicago truncatula. J Exp Bot 55:983–992PubMedCrossRefPubMedCentralGoogle Scholar
  63. Liu D, Hu R, Palla KJ et al (2016) Advances and perspectives on the use of CRISPR/Cas9 systems in plant genomics research. Curr Opin Plant Biol 30:70–77PubMedCrossRefPubMedCentralGoogle Scholar
  64. Markmann K, Giczey C, Parniske M (2008) Functional adaptation of a plant receptor-kinase paved the way for the evolution of intracellular root symbioses with bacteria. PLoS Biol 6:e68PubMedPubMedCentralCrossRefGoogle Scholar
  65. Mehrotra S, Srivastava V, Ur Rahman L, Kukreja AK (2015) Hairy root biotechnology – indicative timeline to understand missing links and future outlook. Protoplasma 252:1189–1201CrossRefGoogle Scholar
  66. Mellor KE, Hoffman AM, Timko MP (2012) Use of ex vitro composite plants to study the interaction of cowpea (Vigna unguiculata L.) with the root parasitic angiosperm Striga gesnerioides. Plant Methods 8(1):22PubMedPubMedCentralCrossRefGoogle Scholar
  67. Miao J, Guo D, Zhang J et al (2013) Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res 23:1233–1236PubMedPubMedCentralCrossRefGoogle Scholar
  68. Michno JM, Wang X, Liu J et al (2015) CRISPR/Cas mutagenesis of soybean and Medicago truncatula using a new web-tool and a modified Cas9 enzyme. GM Crops Food 6:243–252PubMedPubMedCentralCrossRefGoogle Scholar
  69. Mrosk C, Forner S, Hause G et al (2009) Composite Medicago truncatula plants harbouring Agrobacterium rhizogenes-transformed roots reveal normal mycorrhization by Glomus intraradices. J Exp Bot 60:3797–3807PubMedPubMedCentralCrossRefGoogle Scholar
  70. Nanjareddy K, Arthikala MK, Aguirre AL et al (2017) Plant promoter analysis: identification and characterization of root nodule specific promoter in the common bean. J Vis Exp 130Google Scholar
  71. Neb D, Das A, Hintelmann A, Nehls U (2017) Composite poplars: a novel tool for ectomycorrhizal research. Plant Cell Rep 36:1959–1970PubMedPubMedCentralCrossRefGoogle Scholar
  72. Nogué F, Mara K, Collonnier C, Casacuberta JM (2016) Genome engineering and plant breeding: impact on trait discovery and development. Plant Cell Rep 35:1475–1486PubMedPubMedCentralCrossRefGoogle Scholar
  73. Plasencia A, Soler M, Dupas A et al (2016) Eucalyptus hairy roots, a fast, efficient and versatile tool to explore function and expression of genes involved in wood formation. Plant Biotechnol J 14:1381–1393PubMedCrossRefPubMedCentralGoogle Scholar
  74. Prabhu SA, Ndlovu B, Engelbrecht J, van den Berg N (2017) Generation of composite Persea americana (Mill.) (avocado) plants: a proof-of-concept-study. PLoS One 12:e0185896PubMedPubMedCentralCrossRefGoogle Scholar
  75. Quandt H-J, Pühler A, Broer I (1993) Transgenic root nodules of Vicia hirsuta: a fast and efficient system for the study of gene expression in indeterminate-type nodules. Mol Plant-Microbe Interact 6:699–706CrossRefGoogle Scholar
  76. Ree SY, Mutwill M (2014) Towards revealing the functions of all genes in plants. Trends Plant Sci 19:212–221CrossRefGoogle Scholar
  77. Ron M, Kajala K, Pauluzzi G et al (2014) Hairy root transformation using Agrobacterium rhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model. Plant Physiol 166:455–469PubMedPubMedCentralCrossRefGoogle Scholar
  78. Runo S, Macharia S, Alakonya A et al (2012) Striga parasitizes transgenic hairy roots of Zea mays and provides a tool for studying plant-plant interactions. Plant Methods 8:20PubMedPubMedCentralCrossRefGoogle Scholar
  79. Sinharoy S, Saha S, Chaudhury SR, Dasgupta M (2009) Transformed hairy roots of Arachis hypogea: a tool for studying root nodule symbiosis in a non-infection thread legume of the Aeschynomene tribe. Mol Plant Microbe Interact 22:132–142PubMedCrossRefPubMedCentralGoogle Scholar
  80. Smouni A, Laplaze L, Bogusz D et al (2002) The 35S promoter is not constitutively expressed in the transgenic tropical actinorhizal tree, Casuarina glauca. Funct Plant Biol 29:649–656CrossRefGoogle Scholar
  81. Stiller J, Martirani L, Tuppale S et al (1997) High frequency transformation and regeneration of transgenic plants in the model Lotus japonicus. J Exp Bot 48:1357–1365CrossRefGoogle Scholar
  82. Subramanian S, Hu X, Lu G et al (2004) The promoters of two isoflavone synthase genes respond differentially to nodulation and defense signals in transgenic soybean roots. Plant Mol Biol 54:623–639PubMedCrossRefPubMedCentralGoogle Scholar
  83. Subramanian S, Stacey G, Yu O (2006) Endogenous isoflavones are essential for the establishment of symbiosis between soybean and Bradyrhizobium japonicum. Plant J 48:261–273PubMedCrossRefPubMedCentralGoogle Scholar
  84. Sun X, Hu Z, Chen R et al (2015) Targeted mutagenesis in soybean using the CRISPR-Cas9 system. Sci Rep 5:10342PubMedPubMedCentralCrossRefGoogle Scholar
  85. Svistoonoff S, Gherbi H, Nambiar-Veetil M et al (2010) Contribution of transgenic Casuarinaceae to our knowledge of the actinorhizal symbiosis. Symbiosis 50:3–11CrossRefGoogle Scholar
  86. Svistoonoff S, Benabdoun FM, Nambiar-Veetil M et al (2013) The independent acquisition of plant root nitrogen-fixing symbiosis in Fabids recruited the same genetic pathway for nodule organogenesis. PLoS One 8(5):e64515PubMedPubMedCentralCrossRefGoogle Scholar
  87. Talano MA, Oller AL, Gonzalez P, Agostini E (2012) Hairy roots, their multiple applications and recent patents. Recent Pt Biotechnol 6:115–133CrossRefGoogle Scholar
  88. Tepfer D (1990) Genetic transformation using Agrobacterium rhizogenes. Physiol Plant 79:140–146CrossRefGoogle Scholar
  89. Uhde-Stone C, Liu J, Allan DL, Vance C (2005) Transgenic proteoid roots of white lupin: a vehicle for characterizing and silencing root genes involved in adaptation to P stress. Plant J 44:840–853PubMedCrossRefPubMedCentralGoogle Scholar
  90. Van de Velde W, Mergeay J, Hoslsters M, Goormachtig S (2003) Agrobacterium rhizogenes-mediated transformation of Sesbania rostrata. Plant Sci 165:1281–1288CrossRefGoogle Scholar
  91. Wang Y, Cheng X, Shan Q et al (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnol 32:947–951CrossRefGoogle Scholar
  92. Wang L, Wang L, Tan Q et al (2016) Efficient inactivation of symbiotic nitrogen fixation related genes in Lotus japonicus using CRISPR-Cas9. Front Plant Sci 7:1333PubMedPubMedCentralGoogle Scholar
  93. Wang L, Wang L, Zhou Y, Duanmu D (2017) Use of CRISPR/Cas9 for symbiotic nitrogen fixation research in Legumes. Prog Mol Biol Transl Sci 149:187–213PubMedCrossRefPubMedCentralGoogle Scholar
  94. White LJ, Jothibasu K, Reese RN et al (2015) Spatio temporal influence of isoflavonoids on bacterial diversity in the soybean rhizosphere. Mol Plant Microbe Interact 28:22–29PubMedCrossRefPubMedCentralGoogle Scholar
  95. Yao Z, Tian J, Liao H (2014) Comparative characterization of GmSPX members reveals that GmSPX3 is involved in phosphate homeostasis in soybean. Ann Bot 114:477–488PubMedPubMedCentralCrossRefGoogle Scholar
  96. Yoshida S, Cui S, Ichihashi Y, Shirasu K (2016) The Haustorium, a specialized invasive organ in parasitic plants. Annu Rev Plant Biol 67:643–667PubMedCrossRefPubMedCentralGoogle Scholar
  97. Zhou Z, Tan H, Li Q et al (2018) CRISPR/Cas9-mediated efficient targeted mutagenesis of RAS in Salvia miltiorrhiza. Phytochem 148:63–70CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Chonglu Zhong
    • 1
  • Mathish Nambiar-Veetil
    • 2
  • Didier Bogusz
    • 3
  • Claudine Franche
    • 3
    Email author
  1. 1.Research Institute of Tropical ForestryChinese Academy of ForestryGuangzhouPeople’s Republic of China
  2. 2.Division of Plant BiotechnologyInstitute of Forest Genetics and Tree BreedingCoimbatoreIndia
  3. 3.UMR DIADEInstitut de Recherche pour le Développement (IRD)MontpellierFrance

Personalised recommendations