Advertisement

Progress and Prospects of Hairy Root Research

  • Suvi T. HäkkinenEmail author
  • Kirsi-Marja Oksman-Caldentey
Chapter

Abstract

Nature’s own genetic engineer Agrobacterium rhizogenes was discovered more than 40 years ago, and an increasing number of publications on the use of hairy roots in biotechnology have been published since – with more than 85% of all the publications during the past 15 years. Hairy roots have been successfully exploited in various fields in biotechnology, including secondary metabolite research, recombinant protein production, and bioremediation, to mention a few. In the following chapter, we will deal with the current state of the art of hairy root research starting from evolutionary facets of hairy root generation and host-bacteria association to a range of applications where hairy roots are efficiently exploited.

Keywords

Hairy root History Applications Secondary metabolites Bioreactor 

References

  1. Akhgari A, Laakso I, Seppänen-Laakso T, Yrjönen T, Vuorela H, Oksman-Caldentey KM et al (2015) Determination of terpenoid indole alkaloids in hairy roots of Rhazya stricta (Apocynaceae) by GC-MS. Phytochem Anal 26:331–338.  https://doi.org/10.1002/pca.2567 CrossRefGoogle Scholar
  2. Altamura MM (2004) Agrobacterium rhizogenes rolB and rolD genes: regulation and involvement in plant development. Plant Cell Tissue Organ Cult 77:89–101.  https://doi.org/10.1023/B:TICU.0000016609.22655.33 CrossRefGoogle Scholar
  3. Asada Y, Saito H, Yoshikawa T, Sakamoto K, Furuya T (1993) Biotransformation of 18β-glycyrrhetinic acid by ginseng hairy root culture. Phytochemistry 34:1049–1052.  https://doi.org/10.1016/S0031-9422(00)90711-8 CrossRefPubMedGoogle Scholar
  4. Baíza A, Quiroz-Moreno A, Ruíz J, Loyola-Vargas V (1999) Genetic stability of hairy root cultures of Datura stramonium. Plant Cell Tissue Organ Cult 59:9–17.  https://doi.org/10.1023/A:1006398727508 CrossRefGoogle Scholar
  5. Banerjee S, Singh S, Rahman LU (2012) Biotransformation studies using hairy root cultures – a review. Biotechnol Adv 30:461–468.  https://doi.org/10.1016/j.biotechadv.2011.08.010 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Banerjee S, Singh S, Pandey P (2017) Transgenesis and secondary metabolism.  https://doi.org/10.1007/978-3-319-27490-4 Google Scholar
  7. Bevan MW, Flavell RB, Chilton M-D (1983) A chimaeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature 304:184–187.  https://doi.org/10.1038/304184a0 CrossRefGoogle Scholar
  8. Braun AC (1958) A physiological basis for autonomous growth of the crown gall tumor cell. Proc Natl Acad Sci U S A 44:344–359CrossRefGoogle Scholar
  9. Bunsupa S, Komastsu K, Nakabayashi R, Saito K, Yamazaki M (2014) Revisiting anabasine biosynthesis in tobacco hairy roots expressing plant lysine decarboxylase gene by using 15N-labeled lysine. Plant Biotechnol 31:511–518.  https://doi.org/10.5511/plantbiotechnology.14.1008a CrossRefGoogle Scholar
  10. Cai Y, Chen L, Liu X, Sun S, Wu C, Jiang B et al (2015) CRISPR/Cas9-mediated genome editing in soybean hairy roots. PLoS One 10.  https://doi.org/10.1371/journal.pone.0136064 CrossRefGoogle Scholar
  11. Cardillo AB, Rodríguez Talou J, Giulietti AM (2012) Analytical considerations for the successful evaluation of hyoscyamine biotransformation into 6β-hydroxyhyoscyamine and scopolamine. Lat Am J Pharm 31:582–587Google Scholar
  12. Chan MT, Chang HH, Ho SL, Tong WF, Yu SM (1993) Agrobacterium-mediated production of transgenic rice plants expressing a chimeric alphaamylase promoter/beta-glucuronidase gene. Plant Mol Biol 22:491–506. http://www.ncbi.nlm.nih.gov/pubmed/8392395 CrossRefGoogle Scholar
  13. Cheng M, Lowe BA, Spencer TM, Ye X, Armstrong CL (2004) Factors influencing Agrobacterium-mediated transformation of monocotyledonous species. In Vitr Cell Dev Biol Plant 40:31–45.  https://doi.org/10.1079/IVP2003501 CrossRefGoogle Scholar
  14. Chilton M-D, D a T, Petit A, David C, Casse-Delbart F, Tempé J (1982) Agrobacterium rhizogenes inserts T-DNA into the genomes of the host plant root cells. Nature 295:432–434.  https://doi.org/10.1038/295432a0 CrossRefGoogle Scholar
  15. Christey MC (1997) Transgenic crop plants using Agrobacterium rhizogenes mediated transformation. In: Doran PM (ed) Hairy roots: culture and applications. Harwood Academic Publishers, Amsterdam, pp 99–111Google Scholar
  16. Chung IM, Hong SB, Peebles CAM, Kim JA, Ka YS (2007) Effect of the engineered indole pathway on accumulation of phenolic compounds in Catharanthus roseus hairy roots. Biotechnol Prog 23:327–332.  https://doi.org/10.1021/bp060258e CrossRefGoogle Scholar
  17. Dehghan E, Häkkinen ST, Oksman-Caldentey KM, Ahmadi FS (2012) Production of tropane alkaloids in diploid and tetraploid plants and in vitro hairy root cultures of Egyptian henbane (Hyoscyamus muticus L.). Plant Cell Tissue Organ Cult 110:35–44.  https://doi.org/10.1007/s11240-012-0127-8 CrossRefGoogle Scholar
  18. Dommisse EM, Leung DWM, Shaw ML, Conner AJ (1990) Onion is a monocotyledonous host for Agrobacterium. Plant Sci 69:249–257.  https://doi.org/10.1016/0168-9452(90)90124-7 CrossRefGoogle Scholar
  19. Eibl R, Eibl D (2008) Design of bioreactors suitable for plant cell and tissue cultures. Phytochem Rev:593–598.  https://doi.org/10.1007/s11101-007-9083-z CrossRefGoogle Scholar
  20. Eibl D, Peuker T, Eibl R (2011) Single-use equipment in biopharmaceutical manufacture: a brief introduction. Single-Use Technol Biopharm Manuf:1–11.  https://doi.org/10.1002/9780470909997.ch1 Google Scholar
  21. Farré G, Blancquaert D, Capell T, Van Der Straeten D, Christou P, Zhu C (2014) Engineering complex metabolic pathways in plants. Annu Rev Plant Biol 65:187–223.  https://doi.org/10.1146/annurev-arplant-050213-035825 CrossRefPubMedGoogle Scholar
  22. Fons F, Tousch D, Rapior S, Gueiffier A, Roussel JL, Gargadennec A et al (1999) Phenolic profiles of untransformed and hairy root cultures of Plantago lanceolata. Plant Physiol Biochem 37:291–296.  https://doi.org/10.1016/S0981-9428(99)80027-8 CrossRefGoogle Scholar
  23. Fraley RT, Rogers SG, Horsch RB, Sanders PR, Flick JS, Adams SP et al (1983) Expression of bacterial genes in plant cells. Proc Natl Acad Sci U S A 80:4803–4807.  https://doi.org/10.1073/pnas.80.15.4803 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Galanie S, Thodey K, Trenchard IJ, Interrante MF, Smolke CD (2015) Complete biosynthesis of opioids in yeast. Science 349:1095–1100.  https://doi.org/10.1126/science.aac9373 CrossRefGoogle Scholar
  25. Gallego PP, Gago J, Landí M (2011) Artificial neural networks technology to model and predict plant biology process. In: Suzuki K (ed) Artificial neural networks – methodological advances and biomedical applications. InTech, Cop, Rijeka.  https://doi.org/10.5772/14945 CrossRefGoogle Scholar
  26. Geerlings A, Hallard D, Martinez Caballero A, Lopes Cardoso I, van der Heijden R, Verpoorte R (1999) Alkaloid production by a Cinchona officinalis “Ledgeriana” hairy root culture containing constitutive expression constructs of tryptophan decarboxylase and strictosidine synthase cDNAs from Catharanthus roseus. Plant Cell Rep 19:191–196.  https://doi.org/10.1007/s002990050732 CrossRefGoogle Scholar
  27. Georgiev MI, Pavlov AI, Bley T (2007) Hairy root type plant in vitro systems as sources of bioactive substances. Appl Microbiol Biotechnol 74:1175–1185.  https://doi.org/10.1007/s00253-007-0856-5 CrossRefGoogle Scholar
  28. Georgiev MI, Ludwig-Müller J, Bley T (2010) Hairy root culture: copying nature in new bioprocesses copying nature: transformation with Agrobacterium rhizogenes. In: Arora R (ed) Medicinal plant biotechnology. CAB International Oxford shire, Cambridge, MA, pp 156–175Google Scholar
  29. Georgiev MI, Agostini E, Ludwig-Müller J, Xu J (2012) Genetically transformed roots: from plant disease to biotechnological resource. Trends Biotechnol 30:528–537.  https://doi.org/10.1016/j.tibtech.2012.07.001 CrossRefPubMedGoogle Scholar
  30. Giri A, Narasu ML (2000) Transgenic hairy roots: recent trends and applications. Biotechnol Adv 18:1–22.  https://doi.org/10.1016/S0734-9750(99)00016-6 CrossRefPubMedGoogle Scholar
  31. Goossens A, Häkkinen S, Laakso I, Seppänen-Laakso T, Biondi S, Sutter V et al (2003) A functional genomics approach toward the understanding of secondary metabolism in plant cells. Proc Natl Acad Sci 100:8595–8600. Available at: papers2://publication/uuid/1990B1C7-4C39-4B02-A100-3CE21A44B518CrossRefGoogle Scholar
  32. Guillon S, Trémouillaux-Guiller J, Pati PK, Rideau M, Gantet P (2006) Hairy root research: recent scenario and exciting prospects. Curr Opin Plant Biol 9:341–346.  https://doi.org/10.1016/j.pbi.2006.03.008 CrossRefPubMedGoogle Scholar
  33. Guivarc’h A, Boccara M, Prouteau M, Chriqui D (1999) Instability of phenotype and gene expression in long-term culture of carrot hairy root clones. Plant Cell Rep 19:43–50.  https://doi.org/10.1007/s002990050708 CrossRefGoogle Scholar
  34. Hagan DO, Robins RJ, Wilson M, Wong CW, Berry M, Zabetakis I (1999) Fluorinated tropane alkaloids generated by directed biosynthesis in transformed root cultures of Datura stramonium. J Chem Soc Perkin Trans 1:2117–2120Google Scholar
  35. Häkkinen ST, Ritala A (2010) Medicinal compounds produced in plant cell factories. In: Arora R (ed) Medicinal plant biotechnology. CAB International Oxfordshire, Cambridge, MA, pp 13–35Google Scholar
  36. Häkkinen ST, Rischer H, Laskso I, Maaheimo H, Seppänen-Laakso T, Oksman-Caldentey KM (2004) Anatalline and other methyl jasmonateinducible nicotine alkaloids from Nicotiana tabacum cv. BY-2 cell cultures. Planta Med 70:936–941.  https://doi.org/10.1055/s-2004-832620 CrossRefGoogle Scholar
  37. Häkkinen ST, Moyano E, Cusido RM, Palazón J, Piñol MT, Oksman-Caldentey KM (2005) Enhanced secretion of tropane alkaloids in Nicotiana tabacum hairy roots expressing heterologous hyoscyamine-6β -hydroxylase. J Exp Bot 56:2611–2618.  https://doi.org/10.1093/jxb/eri253 CrossRefGoogle Scholar
  38. Häkkinen ST, Tilleman S, Swiatek A, De Sutter V, Rischer H, Vanhoutte I et al (2007) Functional characterisation of genes involved in pyridine alkaloid biosynthesis in tobacco. Phytochemistry 68:2773–2785.  https://doi.org/10.1016/j.phytochem.2007.09.010 CrossRefPubMedGoogle Scholar
  39. Häkkinen ST, Lackman P, Nygrén H, Oksman-Caldentey KM, Maaheimo H, Rischer H (2012) Differential patterns of dehydroabietic acid biotransformation by Nicotiana tabacum and Catharanthus roseus cells. J Biotechnol 157:287–294.  https://doi.org/10.1016/j.jbiotec.2011.11.008 CrossRefGoogle Scholar
  40. Häkkinen ST, Seppänen-Laakso T, Oksman-Caldentey K-M, Rischer H (2015) Bioconversion to raspberry ketone is achieved by several non-related plant cell cultures. Front Plant Sci 6:1–9.  https://doi.org/10.3389/fpls.2015.01035 CrossRefGoogle Scholar
  41. Häkkinen ST, Moyano E, Cusidó RM, Oksman-Caldentey K-M (2016) Exploring the metabolic stability of engineered hairy roots after 16 years maintenance. Front Plant Sci 7.  https://doi.org/10.3389/fpls.2016.01486
  42. Häkkinen ST, Reuter LJ, Nuorti N, Joensuu JJ, Rischer H, Ritala A (2018) Tobacco BY-2 media component optimization for a cost-efficient recombinant protein production. Front Plant Sci 9.  https://doi.org/10.3389/fpls.2018.00045
  43. Hamill JD, Parr AJ, Robins RJ, Rhodes MJC (1986) Secondary product formation by cultures of Beta vulgaris and Nicotiana rustica transformed with Agrobacterium rhizogenes. Plant Cell Rep 5:111–114.  https://doi.org/10.1007/BF00269247 CrossRefGoogle Scholar
  44. Hamilton RH, Fall MZ (1971) The loss of tumor-initiating ability in Agrobacterium tumefaciens by incubation at high temperaturee. Experientia 27:229–230CrossRefGoogle Scholar
  45. Hansen G (2000) Evidence for Agrobacterium-induced apoptosis in maize cells. Mol Plant-Microbe Interact 13:649–657.  https://doi.org/10.1094/MPMI.2000.13.6.649 CrossRefGoogle Scholar
  46. Hansen G, Larribe M, Vaubert D, Tempé J, Biermann BJ, Montoya AL et al (1991) Agrobacterium rhizogenes pRi8196 T-DNA: mapping and DNA sequence of functions involved in mannopine synthesis and hairy root differentiation. Proc Natl Acad Sci 88:7763–7767. http://www.pnas.org/content/88/17/7763.abstract CrossRefGoogle Scholar
  47. Hashimoto T, Yamada Y (1986) Hyoscyamine 6beta-hydroxylase, a 2-oxoglutarate-dependent dioxygenase, in alkaloid-producing root cultures. Plant Physiol 81:619–625.  https://doi.org/10.1104/pp.81.2.619 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Hashimoto T, Yun DJ, Yamada Y (1993) Production of tropane alkaloids in genetically engineered root cultures. Phytochemistry 32:713–718.  https://doi.org/10.1016/S0031-9422(00)95159-8 CrossRefGoogle Scholar
  49. Herrera-Estrella L, Depicker A, Van Montagu M, Schell J (1983) Expression of chimaeric genes transferred into plant cells using a Ti-plasmid-derived vector. Nature 303:209–213.  https://doi.org/10.1038/303209a0 CrossRefGoogle Scholar
  50. Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282.  https://doi.org/10.1046/j.1365-313X.1994.6020271.x CrossRefGoogle Scholar
  51. Huffman GA, White FF, Gordon MP, Nester EW (1984) Hairy-root-inducing plasmid: physical map and homology to tumor-inducing plasmids. J Bacteriol 157:269–276. http://www.ncbi.nlm.nih.gov/pubmed/6690423
  52. Hughes EH, Hong SB, Gibson SI, Shanks JV, San KY (2004) Metabolic engineering of the indole pathway in Catharanthus roseus hairy roots and increased accumulation of tryptamine and serpentine. Metab Eng 6:268–276.  https://doi.org/10.1016/j.ymben.2004.03.002 CrossRefGoogle Scholar
  53. Inzé D, Follin A, Van Lijsebettens M, Simoens C, Genetello C, Van Montagu M et al (1984) Genetic analysis of the individual T-DNA genes of Agrobacterium tumefaciens; further evidence that two genes are involved in indole-3-acetic acid synthesis. Mol Gen Genet MGG 194:265–274.  https://doi.org/10.1007/BF00383526
  54. Jouanin L, Guerche P, Pamboukdjian N, Tourneur C, Delbart FC, Tourneur J (1987) Structure of T-DNA in plants regenerated from roots transformed by Agrobacterium rhizogenes strain A4. Mol Gen Genet MGG 206:387–392.  https://doi.org/10.1007/BF00428876 CrossRefGoogle Scholar
  55. Jouhikainen K, Lindgren L, Jokelainen T, Hiltunen R, Teeri TH, Oksman-Caldentey KM (1999) Enhancement of scopolamine production in Hyoscyamus muticus L. hairy root cultures by genetic engineering. Planta 208:545–551.  https://doi.org/10.1007/s004250050592 CrossRefGoogle Scholar
  56. Kai G, Liu Y, Wang X, Yang S, Fu X, Luo X et al (2011) Functional identification of hyoscyamine 6β -hydroxylase from Anisodus acutangulus and overproduction of scopolamine in genetically-engineered Escherichia coli. Biotechnol Lett 33:1361–1365.  https://doi.org/10.1007/s10529-011-0575-y CrossRefGoogle Scholar
  57. Kang YM, Park DJ, Min JY, Song HJ, Jeong MJ, Kim YD et al (2011) Enhanced production of tropane alkaloids in transgenic Scopolia parviflora hairy root cultures over-expressing putrescine N-methyl transferase (PMT) and hyoscyamine-6β-hydroxylase (H6H). Vitr Cell Dev Biol Plant 47:516–524.  https://doi.org/10.1007/s11627-011-9367-2 CrossRefGoogle Scholar
  58. Kawaguchi K, Hirotani M, Yoshikawa T, Furuya T (1990) Biotransformation of digitoxigenin by ginseng hairy root cultures. Phytochemistry 29:837–843.  https://doi.org/10.1016/0031-9422(90)80029-G CrossRefPubMedGoogle Scholar
  59. Kerr A (1971) Acquisition of virulence by non-pathogenic isolates of Agrobacterium radiobacter. Physiol Plant Pathol 1:241–246.  https://doi.org/10.1016/0048-4059(71)90045-2 CrossRefGoogle Scholar
  60. Khosla C, Keasling JD (2003) Metabolic engineering for drug discovery and development. Nat Drug Discov 2:1019–1025.  https://doi.org/10.1038/nrd1256 CrossRefGoogle Scholar
  61. Lackman P, González-Guzmán M, Tilleman S, Carqueijeiro I, Pérez AC, Moses T et al (2011) Jasmonate signaling involves the abscisic acid receptor PYL4 to regulate metabolic reprogramming in Arabidopsis and tobacco. Proc Natl Acad Sci U S A 108:5891–5896.  https://doi.org/10.1073/pnas.1103010108 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Lehmann N, Dittler I, Lämsä M, Ritala A, Rischer H, Eibl D et al (2014) Disposable bioreactors for cultivation of plant cell cultures. In: Production of biomass and bioactive compounds using bioreactor technology. Springer Netherlands, Dordrecht, pp 17–46.  https://doi.org/10.1007/978-94-017-9223-3_2 CrossRefGoogle Scholar
  63. Liu C, Towler MJ, Medrano G, Cramer CL, Weathers PJ (2009) Production of mouse interleukin-12 is greater in tobacco hairy roots grown in a mist reactor than in an airlift reactor. Biotechnol Bioeng 102:1074–1086.  https://doi.org/10.1002/bit.22154 CrossRefPubMedGoogle Scholar
  64. Magnotta M, Murata J, Chen J, De Luca V (2007) Expression of deacetylvindoline-4-O-acetyltransferase in Catharanthus roseus hairy roots. Phytochemistry 68:1922–1931.  https://doi.org/10.1016/j.phytochem.2007.04.037 CrossRefGoogle Scholar
  65. Maldonado-Mendoza IE, Ayora-Talavera T, Loyola-Vargas VM (1993) Establishment of hairy root cultures of Datura stramonium. Characterization and stability of tropane alkaloid production during long periods of subculturing. Plant Cell Tissue Org Cult 33:321–329.  https://doi.org/10.1007/BF02319018 CrossRefGoogle Scholar
  66. Mano Y, Nabeshima S, Matsui C, Ohkawa H (1986) Production of tropane alkaloids by hairy root cultures of Scopolia japonica. Agric Biol Chem 50:2715–2722.  https://doi.org/10.1080/00021369.1986.10867820 Google Scholar
  67. Matsuda J, Okabe S, Hashimoto T, Yamada Y (1991) Molecular cloning of hyoscyamine 6β -hydroxylase, a 2-oxoglutarate-dependent dioxygenase, from cultured roots of Hyoscyamus niger. J Biol Chem 266:9460–9464Google Scholar
  68. Mehrotra S, Srivastava V, Rahman LU, Kukreja AK (2015) Hairy root biotechnology – indicative timeline to understand missing links and future outlook. Protoplasma 252:1189–1201.  https://doi.org/10.1007/s00709-015-0761-1 CrossRefGoogle Scholar
  69. Memelink J, Gantet P (2007) Transcription factors involved in terpenoid indole alkaloid biosynthesis in Catharanthus roseus. Phytochem Rev 6:353–362.  https://doi.org/10.1007/s11101-006-9051-z CrossRefGoogle Scholar
  70. Michno JM, Wang X, Liu J, Curtin SJ, Kono TJ, Stupar RM (2015) CRISPR/Cas mutagenesis of soybean and Medicago truncatula using a new web-tool and a modified Cas9 enzyme. GM Crops Food 6:243–252.  https://doi.org/10.1080/21645698.2015.1106063 CrossRefGoogle Scholar
  71. Moriguchi K, Maeda Y, Satou M, Hardayani NS, Kataoka M, Tanaka N et al (2001) The complete nucleotide sequence of a plant root-inducing (Ri) plasmid indicates its chimeric structure and evolutionary relationship between tumor-inducing (Ti) and symbiotic (Sym) plasmids in Rhizobiaceae. Chua N-H (ed). J Mol Biol 307:771–784.  https://doi.org/10.1006/jmbi.2001.4488 CrossRefGoogle Scholar
  72. Murai N, Kemp JD, Sutton DW, Murray MG, Slightom JL, Merlo DJ et al (1983) Phaseolin gene from bean is expressed after transfer to sunflower via tumor-inducing plasmid vectors. Science 222:476–482.  https://doi.org/10.1126/science.222.4623.476 CrossRefPubMedGoogle Scholar
  73. Nagata T, Nemoto Y, Hasezawa S (1992) Tobacco BY-2 cell line as the ‘HeLa’ cell in the cell biology of higher plants. Int Rev Cytol:1–30.  https://doi.org/10.1016/S0074-7696(08)62452-3 Google Scholar
  74. Narasimhulu SB, Deng XB, Sarria R, Gelvin SB (1996) Early transcription of Agrobacterium T-DNA genes in tobacco and maize. Plant Cell 8:873–886. http://www.plantcell.org/content/8/5/873.abstract CrossRefGoogle Scholar
  75. Negrotto D, Jolley M, Beer S, Wenck AR, Hansen G (2000) The use of phosphomannose-isomerase as a selectable marker to recover transgenic maize plants (Zea mays L.) via Agrobacterium transformation. Plant Cell Rep 19:798–803.  https://doi.org/10.1007/s002999900187 CrossRefGoogle Scholar
  76. Newman DJ, Cragg GM (2016) Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 79:629–661.  https://doi.org/10.1021/acs.jnatprod.5b01055 CrossRefPubMedGoogle Scholar
  77. Nielsen J, Keasling JD (2016) Engineering cellular metabolism. Cell 164:1185–1197.  https://doi.org/10.1016/j.cell.2016.02.004 CrossRefPubMedGoogle Scholar
  78. Nilsson O, Olsson O (1997) Getting to the root: the role of the Agrobacterium rhizogenes rol genes in the formation of hairy roots. Physiol Plant 100:463–473.  https://doi.org/10.1034/j.1399-3054.1997.1000307.x CrossRefGoogle Scholar
  79. Oksman-Caldentey KM, Kivelä O, Hiltunen R (1991) Spontaneous shoot organogenesis and plant regeneration from hairy root cultures of Hyoscyamus muticus. Plant Sci 78:129–136.  https://doi.org/10.1016/0168-9452(91)90169-9 CrossRefGoogle Scholar
  80. Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, McPhee D et al (2013) High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496:528–532.  https://doi.org/10.1038/nature12051 CrossRefPubMedGoogle Scholar
  81. Palazón J, Cusidó RM, Roig C, Piñol MT (1997) Effect of rol genes from Agrobacterium rhizogenes TL-DNA on nicotine production in tobacco root cultures. Plant Physiol Biochem 35:155–162. http://www.scopus.com/inward/record.url?eid=2-s2.0-0030912513&partnerID=tZOtx3y1
  82. Palazón J, Mallol A, Eibl R, Lettenbauer C, Cusidó RM, Piñol MT (2003a) Growth and ginsenoside production in hairy root cultures of Panax ginseng using a novel bioreactor. Planta Med 69:344–349.  https://doi.org/10.1055/s-2003-38873 CrossRefGoogle Scholar
  83. Palazón J, Moyano E, Cusidó RM, Bonfill M, Oksman-Caldentey KM, Piñol MT (2003b) Alkaloid production in Duboisia hybrid hairy roots and plants overexpressing the h6h gene. Plant Sci 165:1289–1295.  https://doi.org/10.1016/S0168-9452(03)00340-6 CrossRefGoogle Scholar
  84. Palazón J, Navarro-Ocaña A, Hernandez-Vazquez L, Mirjalili MH (2008) Application of metabolic engineering to the production of scopolamine. Molecules 13:1722–1742.  https://doi.org/10.3390/molecules13081722 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Parr AJ, Payne J, Eagles J, Chapman BT, Robins RJ, Rhodes MJC (1990) Variation in tropane alkaloid accumulation within the Solanaceae and strategies for its exploitation. Phytochemistry 29:2545–2550.  https://doi.org/10.1016/0031-9422(90)85185-I CrossRefGoogle Scholar
  86. Peebles CAM, Sander GW, Li M, Shanks JV, San KY (2009) Five year maintenance of the inducible expression of anthranilate synthase in Catharanthus roseus hairy roots. Biotechnol Bioeng 102:1521–1525.  https://doi.org/10.1002/bit.22173 CrossRefGoogle Scholar
  87. Peebles CAM, Sander GW, Hughes EH, Peacock R, Shanks JV, San KY (2011) The expression of 1-deoxy-d-xylulose synthase and geraniol-10-hydroxylase or anthranilate synthase increases terpenoid indole alkaloid accumulation in Catharanthus roseus hairy roots. Metab Eng 13:234–240.  https://doi.org/10.1016/j.ymben.2010.11.005 CrossRefGoogle Scholar
  88. Petit A, Delhaye S, Tempé J, Morel G (1970) Recherches sur les quanidines des tissues de crown gall. Mise en evidence d’une relation biochimique specifique entre les souches d’Agrobacterium tumefaciens et les tumeurs qu’elles induisent. Physiol Veg 8:205–213Google Scholar
  89. Petit A, David C, Dahl GA, Ellis JG, Guyon P, Casse-Delbart F et al (1983) Further extension of the opine concept: plasmids in Agrobacterium rhizogenes cooperate for opine degradation. Mol Gen Genet 190:204–214.  https://doi.org/10.1007/BF00330641
  90. Ramachandra Rao S, Ravishankar GA (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv 20:101–153.  https://doi.org/10.1016/S0734-9750(02)00007-1 CrossRefGoogle Scholar
  91. Rizvi NF, Weaver JD, Cram EJ, Lee-Parsons CWT (2016) Silencing the transcriptional repressor, ZCT1, illustrates the tight regulation of terpenoid indole alkaloid biosynthesis in Catharanthus roseus hairy roots. PLoS One 11:e0159712.  https://doi.org/10.1371/journal.pone.0159712 CrossRefGoogle Scholar
  92. Robins RJ, Parr AJ, Payne J, Walton NJ, Rhodes MJC (1990) Factors regulating tropane-alkaloid production in a transformed root culture of a Datura candida × D. aurea hybrid. Planta 181:414–422.  https://doi.org/10.1007/BF00195896
  93. Rocha P, Stenzel O, Plarr A, Walton N, Christou P, Dräger B et al (2002) Functional expression of tropinone reductase I (trI) and hyoscyamine-6β -hydroxylase (h6h) from Hyoscyamus niger in Nicotiana tabacum. Plant Sci 162:905–913.  https://doi.org/10.1016/S0168-9452(02)00033-X CrossRefGoogle Scholar
  94. Runo S, Macharia S, Alakonya A, Machuka J, Sinha N, Scholes J (2012) Striga parasitizes transgenic hairy roots of Zea mays and provides a tool for studying plant-plant interactions. Plant Methods 8:20.  https://doi.org/10.1186/1746-4811-8-20 CrossRefGoogle Scholar
  95. Sahi SV, Chilton MD, Chilton WS (1990) Corn metabolites affect growth and virulence of Agrobacterium tumefaciens. Proc Natl Acad Sci U.S.A. 87:3879–3883.  https://doi.org/10.1073/pnas.87.10.3879 CrossRefGoogle Scholar
  96. Sajc L, Grubisic D, Vunjak-Novakovic G (2000) Bioreactors for plant engineering: an outlook for further research. Biochem Eng J 4:89–99.  https://doi.org/10.1016/S1369-703X(99)00035-2 CrossRefGoogle Scholar
  97. Sevón N, Oksman-Caldentey KM (2002) Agrobacterium rhizogenes-mediated transformation: root cultures as a source of alkaloids. Planta Med 68:859–868.  https://doi.org/10.1055/s-2002-34924 CrossRefGoogle Scholar
  98. Shoji T, Hashimoto T (2008) Why does anatabine, but not nicotine, accumulate in jasmonate-elicited cultured tobacco BY-2 cells? Plant Cell Physiol 49:1209–1216.  https://doi.org/10.1093/pcp/pcn096 CrossRefPubMedGoogle Scholar
  99. Sinkar VP, White FF, Gordon MP (1987) Molecular biology of Ri-plasmid-a review. J Biosci 11:47–57.  https://doi.org/10.1007/BF02704657 CrossRefGoogle Scholar
  100. Slightom JL, Durand-Tardif M, Jouanin L, Tepfer D (1986) Nucleotide sequence analysis of TL-DNA of Agrobacterium rhizogenes agropine type plasmid. Identification of open reading frames. J Biol Chem 261:108–121Google Scholar
  101. Sood P, Bhattacharya A, Sood A (2011) Problems and possibilities of monocot transformation. Biol Plant 55:1–15.  https://doi.org/10.1007/s10535-011-0001-2 CrossRefGoogle Scholar
  102. Spena A, Schmülling T, Koncz C, Schell JS, Kayani WK (1987) Independent and synergistic activity of rol A, B and C loci in stimulating abnormal growth in plants. EMBO J 6:3891–3899CrossRefGoogle Scholar
  103. Stachel SE, Messens E, van Montagu M, Zambryski P (1985) Identification of the signal molecules produced by wounded plant cell that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318:624–629CrossRefGoogle Scholar
  104. Sun J, Ma L, San KY, Peebles CAM (2017) Still stable after 11 years: a Catharanthus roseus hairy root line maintains inducible expression of anthranilate synthase. Biotechnol Prog 33:66–69.  https://doi.org/10.1002/btpr.2403 CrossRefGoogle Scholar
  105. Sweetlove LJ, Nielsen J, Fernie AR (2017) Engineering central metabolism – a grand challenge for plant biologists. Plant J 90:749–763.  https://doi.org/10.1111/tpj.13464 CrossRefPubMedGoogle Scholar
  106. Tepfer D (1984) Transformation of several species of higher plants by Agrobacterium rhizogenes: sexual transmission of the transformed genotype and phenotype. Cell 37:959–967.  https://doi.org/10.1016/0092-8674(84)90430-6 CrossRefGoogle Scholar
  107. Usami S, Morikawa S, Takebe I, Machida Y (1987) Absence in monocotyledonous plants of the diffusible plant factors inducing T-DNA circularization and vir gene expression in Agrobacterium. Mol Gen Genet 209:221–226.  https://doi.org/10.1007/BF00329646 CrossRefGoogle Scholar
  108. Vasilev N, Schmitz C, Dong L, Ritala A, Imseng N, Häkkinen ST et al (2014) Comparison of plant-based expression platforms for the heterologous production of geraniol. Plant Cell Tissue Organ Cult 117:373–380.  https://doi.org/10.1007/s11240-014-0446-z CrossRefGoogle Scholar
  109. Weber J, Georgiev V, Pavlov A, Bley T (2008) Flow cytometric investigations of diploid and tetraploid plants and in vitro cultures of Datura stramonium and Hyoscyamus niger. Cytometry A 73:931–939.  https://doi.org/10.1002/cyto.a.20628 CrossRefGoogle Scholar
  110. Weber J, Georgiev V, Haas C, Bley T, Pavlov A (2010) Ploidy levels in Beta vulgaris (red beet) plant organs and in vitro systems. Eng Life Sci 10:139–147.  https://doi.org/10.1002/elsc.200900021
  111. Willmitzer L, Dhaese P, Schreier PH, Schmalenbach W, Van Montagu M, Schell J (1983) Size, location and polarity of T-DNA-encoded transcripts in nopaline crown gall tumors; common transcripts in octopine and nopaline tumors. Cell 32:1045–1056.  https://doi.org/10.1016/0092-8674(83)90289-1 CrossRefPubMedGoogle Scholar
  112. Wilson P (1997) The pilot-scale cultivation of transformed roots. In: Doran PM (ed) Hairy roots: culture and applications. Harwood Academic, Amsterdam, pp 179–190Google Scholar
  113. Zaenen I, van Larebeke N, Teuchy H, van Montagu M, Schell J (1974) Supercoiled circular DNA in crown-gall inducing Agrobacterium strains. J Mol Biol 86:109–127.  https://doi.org/10.1016/S0022-2836(74)80011-2 CrossRefGoogle Scholar
  114. Zhang W, Subbarao S, Addae P, Shen A, Armstrong C, Peschke V et al (2003) Cre/lox-mediated marker gene excision in transgenic maize (Zea mays L.) plants. Theor Appl Genet 107:1157–1168.  https://doi.org/10.1007/s00122-003-1368-z CrossRefGoogle Scholar
  115. Zhang L, Ding R, Chai Y, Bonfill M, Moyano E, Oksman-Caldentey K-M et al (2004) Engineering tropane biosynthetic pathway in Hyoscyamus niger hairy root cultures. Proc Natl Acad Sci U.S.A. 101:6786–6791.  https://doi.org/10.1073/pnas.0401391101 CrossRefGoogle Scholar
  116. Zhao ZY, Gu W, Cai T, Tagliani L, Hondred D, Bond D et al (2001) High throughput genetic transformation mediated by Agrobacterium tumefaciens in maize. Mol Breed 8:323–333.  https://doi.org/10.1023/A:1015243600325 CrossRefGoogle Scholar
  117. Zhou M, Memelink J (2016) Jasmonate-responsive transcription factors regulating plant secondary metabolism. Biotechnol Adv 34:441–449.  https://doi.org/10.1016/j.biotechadv.2016.02.004 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Suvi T. Häkkinen
    • 1
    Email author
  • Kirsi-Marja Oksman-Caldentey
    • 1
  1. 1.Industrial Biotechnology and Food SolutionsVTT Technical Research Centre of FinlandEspooFinland

Personalised recommendations