Advertisement

Optical Functions of Methanol and Ethanol in Wide Spectral Range

  • Michal LesňákEmail author
  • Kamil Postava
  • František Staněk
  • Jaromír Pištora
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 526)

Abstract

The motivation of this paper is to determinate the precise complex refractive indices dispersion of ethanol, methanol, and their solutions in the wide spectral range from 8 to 40 000 cm−1 (wavelength range from 250 nm to 1.25 mm) in coupling to biosensors applications (body liquids analyses, tissue ethanol solutions testing, etc.) because a specification of the complex optical functions consistent with Kramers–Kronig dispersion relations in the whole mentioned spectral range was still missing. A general method combining UV/visible/near-infrared spectroscopy and Mueller matrix ellipsometry, Fourier transform infrared spectroscopy (FTIR), infrared attenuated total reflection (ATR) spectroscopy, and terahertz time-domain spectroscopy (THz-TDS) is proposed. The experimental data are modeled using a dielectric function parametrization based on the Brendel–Bormann oscillators.

Keywords

Refractive indices of liquids Terahertz spectroscopy ATR Infrared spectroscopy Ethanol Methanol 

Notes

Acknowledgements

This work was partially supported by the Czech Science Foundation (grant #15-21547S), by the Ministry of Education, Youth and Sports: by the National Program of Sustainability (NPU II) project IT4Innovations excellence in science—LQ1602, and “Regional Materials Science and Technology Centre—Feasibility Program” (# LO1203).

References

  1. 1.
    Vance, S.A., Sandros, M.G.: Zeptomole detection of C-reactive protein in serum by a nanoparticle amplified surface plasmon resonance imaging aptasensor. Sci. Rep. 4.  https://doi.org/10.4049/jimmunol.177.8.5129CrossRefGoogle Scholar
  2. 2.
    Vance, S., Zeidan, E., Henrich, V.C., Sandros, M.G.: Comparative analysis of human growth hormone in serum using SPRi, nano-SPRi and ELISA assays. Jove-J. Vis. Exp. 107, e53508 (2016)Google Scholar
  3. 3.
    Chardin, H., Mercier, K., Frydman, C., Vollmer, N.: Surface plasmon resonance imaging: a method to measure the affinity of the antibodies in allergy diagnosis. J. Immunol. Methods 405, 23–28 (2014)CrossRefGoogle Scholar
  4. 4.
    Klein, A.K., Pan, Y., Balocco, C., Zeze, D., Gallant, A.J.: Micro fabricated spoof surface plasmon polariton structures for THz applications. In: 2015 40th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). IEEE, pp. 1–2 (2015)Google Scholar
  5. 5.
    Vollmer, N., Trombini, F., Hely, M., Bellon, S., Mercier, K., Cazeneuve, C.: Methodology to study polymers interaction by surface plasmon resonance imaging. MethodsX 2, 14–18 (2015)CrossRefGoogle Scholar
  6. 6.
    Chochol, J., Postava, K., Čada, M., Vanwolleghem, M., Mičica, M., Halagačka, L., Pištora, J.: Plasmonic behavior of III-V semiconductors in far-infrared and terahertz range. J. Eur. Opt. Soc.-Rapid Publ. 13(1), 13 (2017)CrossRefGoogle Scholar
  7. 7.
    Dupont, J., Meneghetti, M.R.: On the stabilisation and surface properties of soluble transition-metal nanoparticles in non-functionalised imidazolium-based ionic liquids. Curr. Opin. Colloid Interface Sci. 18(1), 54–60 (2013)CrossRefGoogle Scholar
  8. 8.
    Hale, G.M., Querry, M.R.: Optical constants of water in the 200-nm to 200-microm wavelength region. Appl. Opt. 12(3), 555–563 (1973)CrossRefGoogle Scholar
  9. 9.
    Kedenburg, S., Vieweg, M., Gissibl, T., Giessen, H.: Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region. Opt. Mater. Express 2(11), 1588–1611 (2012)CrossRefGoogle Scholar
  10. 10.
    Moutzouris, K., Papamichael, M., Betsis, S.C., Stavrakas, I., Hloupis, G., Triantis, D.: Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared. Appl. Phys. B-Lasers Opt. 116(3), 617–622 (2014)CrossRefGoogle Scholar
  11. 11.
    Schwager, F., Marand, E., Davis, R.M.: Determination of self-association equilibrium constants of ethanol by FTIR spectroscopy. J. Phys. Chem. 100(50), 19268–19272 (1996)CrossRefGoogle Scholar
  12. 12.
    Kindt, J.T., Schmuttenmaer, C.A.: Far-infrared dielectric properties of polar liquids probed by femtosecond terahertz pulse spectroscopy. J. Phys. Chem. 100(24), 10373–10379 (1996)CrossRefGoogle Scholar
  13. 13.
    Brendel, R., Bormann, D.: An infrared dielectric function model for amorphous solids. J. Appl. Phys. 71(1), 1–6 (1992)CrossRefGoogle Scholar
  14. 14.
  15. 15.
    Kozma, I.Z., Krok, P., Riedle, E.: Direct measurement of the group-velocity mismatch and derivation of the refractive-index dispersion for a variety of solvents in the ultraviolet. J. Opt. Soc. Am. B-Opt. Phys. 22(7), 1479–1485 (2005)CrossRefGoogle Scholar
  16. 16.
    El-Kashef, H.: The necessary requirements imposed on polar dielectric laser dye solvents. Phys. B-Condens. Matter 279(4), 295–301 (2000)CrossRefGoogle Scholar
  17. 17.
    Moutzouris, K., Papamichael, M., Betsis, S.C., Stavrakas, I., Hloupis, G., Triantis, D.: Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared. Appl. Phys. B-Lasers and Opt. 116(3), 617–622 (2014)CrossRefGoogle Scholar
  18. 18.
  19. 19.
    Sani, E., Dell’Oro, A.: Spectral optical constants of ethanol and isopropanol from ultraviolet to far infrared. Opt. Mater. 60, 137–141 (2016)CrossRefGoogle Scholar
  20. 20.
    Rioboo, R.J.J., Philipp, M., Ramos, M.A., Kruger, J.K.: Concentration and temperature dependence of the refractive index of ethanol-water mixtures: Influence of intermolecular interactions. Eur. Phys. J. E 30(1), 19–26 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Michal Lesňák
    • 1
    • 2
    Email author
  • Kamil Postava
    • 2
  • František Staněk
    • 1
  • Jaromír Pištora
    • 2
  1. 1.Institute of PhysicsVSB-Technical University of OstravaOstrava-PorubaCzech Republic
  2. 2.Nanotechnology Centre, VSB-Technical University of OstravaOstrava-PorubaCzech Republic

Personalised recommendations