Advertisement

An Ecological Context Toward Understanding Dengue Disease Dynamics in Urban Cities: A Case Study in Metropolitan Manila, Philippines

  • Thaddeus M. CarvajalEmail author
  • Howell T. Ho
  • Lara Fides T. Hernandez
  • Katherine M. Viacrusis
  • Divina M. Amalin
  • Kozo Watanabe
Chapter

Abstract

Dengue fever is considered as a rapidly emerging arthropod-borne viral disease all over the world especially in the Philippines. The disease dynamics of dengue is affected by ecological factors, namely, urbanization and climate. This book review discusses the significance and impact of these ecological factors, most notably to its vector. A case study is presented on how these ecological factors currently affect an urban city, Metro Manila, Philippines. This context is very significant in the control of this arboviral disease.

Keywords

Aedes mosquito Vector biology Urbanization Climate change 

References

  1. 1.
    Abe M, McCall PJ, Lenhart A, Villegas E, Kroeger A (2005) The Buen Pastor cemetery in Trujillo, Venezuela: measuring dengue vector output from a public area. Tropical Med Int Health 10(6):597–603CrossRefGoogle Scholar
  2. 2.
    Alcazaren P (2013) 10 reasons why it floods in Manila. Retrieved from http://www.philstar.com/modern-living/2013/06/15/953965/10-reasons-why-it-floods-manila. Accessed 10 May 2016
  3. 3.
    Almanzor BL, Ho HT, Carvajal TM (2016, March 1) Ecdysis period and rate deviations of dengue mosquito vector, Aedes aegypti reared in different artificial water-holding containers. J Vector Borne Dis 53(1):37Google Scholar
  4. 4.
    Arunachalam N, Tana S, Espino F, Kittayapong P, Abeyewickrem W, Wai KT, Tyagi BK, Kroeger A, Sommerfeld J, Petzold M (2010) Eco-bio-social determinants of dengue vector breeding: a multicountry study in urban and periurban Asia. Bull World Health Organ 88(3):173–184CrossRefGoogle Scholar
  5. 5.
    Banu S, Hu W, Guo Y, Hurst C, Tong S (2014) Projecting the impact of climate change on dengue transmission in Dhaka, Bangladesh. Environ Int 63:137–142CrossRefGoogle Scholar
  6. 6.
    Banu S, Guo Y, Hu W, Dale P, Mackenzie JS, Mengersen K, Tong S (2015) Impacts of El Niño Southern oscillation and Indian Ocean dipole on dengue incidence in Bangladesh. Sci Rep 5Google Scholar
  7. 7.
    Bartlett-Healy K, Unlu I, Obenauer P, Hughes T, Healy S, Crepeau T, Farajollahi A, Kesavaraju B, Fonseca D, Schoeler G, Gaugler R (2012) Larval mosquito habitat utilization and community dynamics of Aedes albopictus and Aedes japonicus (Diptera: Culicidae). J Med Entomol 49(4):813–824CrossRefGoogle Scholar
  8. 8.
    Bravo L, Roque VG, Brett J, Dizon R, L’Azou M (2014) Epidemiology of dengue disease in the Philippines (2000–2011): a systematic literature review. PLoS Negl Trop Dis 8(11):e3027.  https://doi.org/10.1371/journal.pntd.0003027 CrossRefGoogle Scholar
  9. 9.
    Buczak AL, Baugher B, Babin SM, Ramac-Thomas LC, Guven E, Elbert Y, Koshute PT, Velasco JM, Roque VG Jr, Tayag EA, Yoon IK (2014, April 10) Prediction of high incidence of dengue in the Philippines. PLoS Negl Trop Dis 8(4):e2771CrossRefGoogle Scholar
  10. 10.
    Carbayas RV (2012) DOH says cleanliness is key to fight dengue. Retrieved from http://pia.gov.ph/news/index.php?article=1421340598984. Accessed 15 Aug 2012
  11. 11.
    Carvajal TM, Hernandez LF, Ho HT, Cuenca MG, Orantia BM, Estrada CR, Viacrusis KM, Amalin DM, Watanabe K (2016) Spatial analysis of wing geometry in dengue vector mosquito, Aedes aegypti (L.)(Diptera: Culicidae), populations in Metropolitan Manila, Philippines. J Vector Borne Dis 53(2):127Google Scholar
  12. 12.
    Chadee DD (2004) Key premises, a guide to Aedes aegypti (Diptera Culicidae) surveillance control. Bull Entomol Res 94:201–207CrossRefGoogle Scholar
  13. 13.
    Centers for Disease Control and Prevention (2012) Mosquitoes’ main aquatic habitats. Retrieved from http://www.cdc.gov/Dengue/entomologyEcology/m_habitats.html. Accessed 15 Aug 2012
  14. 14.
    Cheong YL, Leitão PJ, Lakes T (2014) Assessment of land use factors associated with dengue cases in Malaysia using boosted regression trees. Spat Spatio-temporal Epidemiol 10:75–84CrossRefGoogle Scholar
  15. 15.
    Chowell G, Cazelles B, Broutin H, Munayco CV (2011) The influence of geographic and climate factors on the timing of dengue epidemics in Peru, 1994–2008. BMC Infect Dis 11:164–110CrossRefGoogle Scholar
  16. 16.
    Costa-da-Silva ALD, Capurro ML, Bracco JE (2005) Genetic lineages in the yellow fever mosquito Aedes (Stegomyia) aegypti (Diptera: Culicidae) from Peru. Mem Inst Oswaldo Cruz 100(6):539–544CrossRefGoogle Scholar
  17. 17.
    Cruz EI, Salazar FV, Porras E, Mercado R, Orais V, Bunyr J (2008) Entomological survey of dengue vectors as basis for developing vector control measures in Barangay Poblacion, Muntinlupa City, Phillipines. Dengue Bull 32:167–170Google Scholar
  18. 18.
    Dela Cruz RT (2001) Bromeliads: the exotic plant. Bureau of Agricultural Research Research and Development Digest 3(4). October–December 2001Google Scholar
  19. 19.
    Earnest A, Tan SB, Wilder-Smith A (2012) Meteorological factors and El Nino Southern oscillation are independently associated with dengue infections. Epidemiol Infect 140(07):1244–1251CrossRefGoogle Scholar
  20. 20.
    Fan J, Wei W, Bai Z, Fan C, Li S, Liu Q, Yang K (2014) A systematic review and meta-analysis of dengue risk with temperature change. Int J Environ Res Public Health 12(1):1–15CrossRefGoogle Scholar
  21. 21.
    Fulmali PV, Walimbe A, Mahadev PVM (2008) Spread, establishment, and prevalence of dengue vector Aedes aegypti (L.) in Konkan region, Maharashtra, India. Indian J Med Res 127(6):589–601Google Scholar
  22. 22.
    Gubler DJ (1998, July 1) Dengue and dengue hemorrhagic fever. Clin Microbiol Rev 11(3):480–496CrossRefGoogle Scholar
  23. 23.
    Gubler DJ (2011) Dengue, urbanization and globalization: the unholy trinity of the 21 st century. Trop Med Health 39(4supplement):S3–S11CrossRefGoogle Scholar
  24. 24.
    Hashizume M, Dewan AM, Sunahara T, Rahman MZ, Yamamoto T (2012) Hydroclimatological variability and dengue transmission in Dhaka, Bangladesh: a time-series study. BMC Infect Dis 12(1):1CrossRefGoogle Scholar
  25. 25.
    Heilig GK (2012) World urbanization prospects: The 2011 revision. United Nations, Department of Economic and Social Affairs (DESA), Population Division. Population Estimates and Projections Section, New YorkGoogle Scholar
  26. 26.
    Hoel DF, Kline DL, Allan SA (2009) Evaluation of six mosquito traps for collection of Aedes albopictus and associated mosquito species in a suburban setting in North Central Florida. J Am Mosq Control Assoc 25(1):47–57CrossRefGoogle Scholar
  27. 27.
    Hu W, Clements A, Williams G, Tong S (2010) Dengue fever and El Nino/Southern oscillation in Queensland, Australia: a time series predictive model. Occup Environ Med 67(5):307–311CrossRefGoogle Scholar
  28. 28.
    Ibarra AMS, Ryan SJ, Beltrán E, Mejía R, Silva M, Muñoz Á (2013) Dengue vector dynamics (Aedes aegypti) influenced by climate and social factors in Ecuador: implications for targeted control. PLoS One 8(11):e78263CrossRefGoogle Scholar
  29. 29.
    Karim MN, Munshi SU, Anwar N, Alam MS (2012) Climatic factors influencing dengue cases in Dhaka city: a model for dengue prediction. Indian J Med Res 136(1):32Google Scholar
  30. 30.
    Lambrechts L, Paaijmans KP, Fansiri T, Carrington LB, Kramer LD, Thomas MB, Scott TW (2011) Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti. Proc Natl Acad Sci 108(18):7460–7465CrossRefGoogle Scholar
  31. 31.
    Li Y, Kamara F, Zhou G, Puthiyakunnon S, Li C, Liu Y, Zhou Y, Yao L, Yan G, Chen XG (2014) Urbanization increases Aedes albopictus larval habitats and accelerates mosquito development and survivorship. PLoS Negl Trop Dis 8(11):e3301CrossRefGoogle Scholar
  32. 32.
    Liew C, Curtis CF (2004) Horizontal and vertical dispersal of dengue vector mosquitoes, Aedes aegypti and Aedes albopictus, in Singapore. Med Vet Entomol 18(4):351–360CrossRefGoogle Scholar
  33. 33.
    Limper M, Thai KTD, Gerstenbluth I, Osterhaus ADME, Duits AJ, van Gorp ECM (2016) Climate factors as important determinants of dengue incidence in Curaçao. Zoonoses Public Health 63:129–137.  https://doi.org/10.1111/zph.12213 CrossRefGoogle Scholar
  34. 34.
    Medronho RA, Macrini L, Novellino DM, Lagrotta MT, Câmara VM, Pedreira CE (2009, March 1) Aedes aegypti immature forms distribution according to type of breeding site. Am J Trop Med Hyg 80(3):401–404CrossRefGoogle Scholar
  35. 35.
    Mohammed A, Chadee DD (2011) Effects of different temperature regimens on the development of Aedes aegypti (L.) (Diptera: Culicidae) mosquitoes. Acta Trop 119(1):38–43CrossRefGoogle Scholar
  36. 36.
    Montgomery BL, Ritchie SA (2002) Roof gutters: a key container for Aedes aegypti and Ochlerotatus notoscriptus (diptera: culcidae) in Australia. Am Soc Trop Med Hyg 67(3):244–246CrossRefGoogle Scholar
  37. 37.
    Morin CW, Comrie AC, Ernst K (2013) Climate and dengue transmission: evidence and implications. Environ Health Perspect (Online) 121(11–12):1264CrossRefGoogle Scholar
  38. 38.
    Morrison AC, Astete H, Chapilliquen F, Ramirez-Prada G, Diaz G, Getis A, Gray K, Scott TW (2004) Evaluation of a sampling methodology for rapid assessment of Aedes aegypti infestation levels in Iquitos, Peru. J Med Entomol 41(3):502–510CrossRefGoogle Scholar
  39. 39.
    Naish S, Dale P, Mackenzie JS, McBride J, Mengersen K, Tong S (2014) Climate change and dengue: a critical and systematic review of quantitative modelling approaches. BMC Infect Dis 14(1):1CrossRefGoogle Scholar
  40. 40.
    Nazri CD, Hassan AA Latif ZA, Ismail R (2011) December. Impact of climate and landuse variability based on dengue epidemic outbreak in Subang Jaya. In: Humanities, Science and Engineering (CHUSER), 2011 IEEE Colloquium on. IEEE, pp 907–912Google Scholar
  41. 41.
    NSO (2012) Philippine statistics authority: population and housing. http://psa.gov.ph/. Accessed on Jun 2012
  42. 42.
    Ooi EE, Gubler DJ (2009) Dengue in Southeast Asia: epidemiological characteristics and strategic challenges in disease prevention. Cad Saude Publica 25:S115–24CrossRefGoogle Scholar
  43. 43.
    Olano VA, Matiz MI, Lenhart A, Cabezas L, Vargas SL, Jaramillo JF, Sarmiento D, Alexander N, Stenström TA, Overgaard HJ (2015) Schools as potential risk sites for vector-borne disease transmission: mosquito vectors in rural schools in two municipalities in Colombia. J Am Mosq Control Assoc 31(3):212–222CrossRefGoogle Scholar
  44. 44.
    Pham HV, Doan HT, Phan TT, Minh NNT (2011) Ecological factors associated with dengue fever in a central highlands province, Vietnam. BMC Infect Dis 11(1):1CrossRefGoogle Scholar
  45. 45.
    Powell JR, Tabachnick WJ (2013) History of domestication and spread of Aedes aegypti—a review. Mem Inst Oswaldo Cruz 108(Suppl 1):11–17CrossRefGoogle Scholar
  46. 46.
    Ragragio J (2003) The case of Metro Manila, Philippines. UNDERSTANDING SLUMS: Case Studies for the Global Report on Human SettlementsGoogle Scholar
  47. 47.
    Ramadona AL, Lazuardi L, Hii YL, Holmner Å, Kusnanto H, Rocklöv J (2016) Prediction of dengue outbreaks based on disease surveillance and meteorological data. PLoS One 11(3):e0152688CrossRefGoogle Scholar
  48. 48.
    Rigau-Perez JG, Ayala-Lopez A, Garcia-Rivera EJ, Hudson SM, Vorndam V, Reiter P, Cano MP, Clark GG (2002) The reappearance of dengue-3 and a subsequent dengue-4 and dengue-1 epidemic in Puerto Rico in 1998. Am J Trop Med Hyg 67:355–362CrossRefGoogle Scholar
  49. 49.
    Sang RC, Ahmed O, Faye O, Kelly CLH, Yahaya AA, Mmadi I, Toilibou A, Sergon K, Brown J, Agata N, Yakouide A, Ball MD, Breiman RF, Miller BR, Powers AM (2008) Entomologic investigations of a Chikunguya virus epidemic in the Union of the Comoros. Am J Trop Med Hyg 78(1):77–82CrossRefGoogle Scholar
  50. 50.
    Schultz GW (1993) Seasonal abundance of dengue vectors in Manila, Republic of the Philippines. Southeast Asian J Trop Med Public Health 24:369–375Google Scholar
  51. 51.
    Scott TW, Morrison AC (2010) Longitudinal field studies will guide a paradigm shift in dengue prevention. In: Vector biology, ecology and control. Springer, Dordrecht, pp 139–161CrossRefGoogle Scholar
  52. 52.
    Shaharom NA, Nyamah MA, Norashikin M, Zaharah MS, Zuhaida AJ, Norb H, DaudA R (2009) Dengue control during flood disaster in Johore, Malaysia. Malays J Community Health 15:104–110Google Scholar
  53. 53.
    Shultis EB (2009) Bromeliads as a breeding site for the dengue vector Aedes aegypti. ISP collection, 616Google Scholar
  54. 54.
    Shuman EK (2010) Global climate change and infectious diseases. N Engl J Med 362:1061–1063CrossRefGoogle Scholar
  55. 55.
    Sia Su GL (2008) Correlation of climactic factors and dengue incidence in metro Manila, Philippines. Ambio 37(4):292CrossRefGoogle Scholar
  56. 56.
    Stoler J, Brodine SK, Bromfield S, Weeks JR, Scarlett HP (2011, June 27) Exploring the relationships between dengue fever knowledge and Aedes aegypti breeding in St. Catherine Parish, Jamaica: a pilot of enhanced low-cost surveillance. Res Rep Trop Med 2:93–103Google Scholar
  57. 57.
    Tong S (2008) Impact of climate change on Vectorborne disease: what are the early signs so far? Epidemiology 19(6):S56Google Scholar
  58. 58.
    Tun-Lin W, Burkot TR, Kay BH (2000) Effects of temperature and larval diet on development rates and survival of the dengue vector Aedes aegypti in North Queensland Australia. Med Vet Entomol 14(1):31–37CrossRefGoogle Scholar
  59. 59.
    Williams CR, Johnson PH, Long SA, Rapley LP, Ritchie SA (2008) Rapid estimation of Aedes aegypti population size using simulation modeling, with a novel approach to calibration and field validation. J Med Entomol 45(6):1173–1179CrossRefGoogle Scholar
  60. 60.
    Wu PC, Lay JG, Guo HR, Lin CY, Lung SC, Su HJ (2007) Weather as an effective predictor for occurrence of dengue fever in Taiwan. Acta Trop 103:50–57CrossRefGoogle Scholar
  61. 61.
    Wu PC, Lay JG, Guo HR, Lin CY, Lung SC, Su HJ (2009) Higher temperature and urbanization affect the spatial patterns of dengue fever transmission in subtropical Taiwan. Sci Total Environ 407(7):2224–2233CrossRefGoogle Scholar
  62. 62.
    Wu JY, Lun ZR, James AA, Chen XG (2010) Dengue fever in mainland China. Am J Trop Med Hyg 83:664–671CrossRefGoogle Scholar
  63. 63.
    Vanwambeke SO, Lambin EF, Eichhorn MP, Flasse SP, Harbach RE, Oskam L, Somboon P, van Beers S, van Benthem BH, Walton C, Butlin RK (2007) Impact of land-use change on dengue and malaria in northern Thailand. EcoHealth 4(1):37–51CrossRefGoogle Scholar
  64. 64.
    World Health Organization Dengue: guidelines for diagnosis, treatment, prevention and control. WHO/HTM/NTD/DEN/2009.1 (World Health Organization, 2009)Google Scholar
  65. 65.
    Xu HY, Fu X, Lee LK, Ma S, Goh KT, Wong J, Habibullah MS, Lee GK, Lim TK, Tambyah PA, Lim CL (2014) Statistical modeling reveals the effect of absolute humidity on dengue in Singapore. PLoS Negl Trop Dis 8(5):e2805CrossRefGoogle Scholar
  66. 66.
    Yang HM, Macoris MLG, Galvani KC, Andrighetti MTM, Wanderley DMV (2009) Assessing the effects of temperature on the population of Aedes aegypti, the vector of dengue. Epidemiol Infect 137(08):1188–1202CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Thaddeus M. Carvajal
    • 1
    • 2
    Email author
  • Howell T. Ho
    • 2
  • Lara Fides T. Hernandez
    • 1
  • Katherine M. Viacrusis
    • 1
  • Divina M. Amalin
    • 2
  • Kozo Watanabe
    • 1
    • 2
  1. 1.Department of Civil and Environmental EngineeringEhime UniversityMatsuyamaJapan
  2. 2.Biology DepartmentDe La Salle UniversityManilaPhilippines

Personalised recommendations