Cellular Signaling in Bacterial Biofilms
Abstract
Development to sedentary community-based complex growth from planktonic growth is one of the most interesting feature of bacterial lifestyle, which is discussed in this chapter. Bacteria have smaller genomes and use simple signaling schemes for such complex transformation. However, diverse bacteria send either specific or shared signals to their neighbors and form complex biofilms in environment and in human host. The interaction between host immunity and antigens associated with bacterial biofilm has been elaborated. The signaling machinery help bacteria modulate transcription, protein synthesis and post-translational modifications that regulate motility and promote adhesion. In this context, the role of Ser/Thr protein kinases such as PrkC is discussed in detail. Biofilms protect the bacteria in harsh conditions, from environmental stress, host immunity and antibiotics, and also alter the virulence patterns. This is one of the most effective way to manipulate host defenses which can lead to development of therapeutic candidates that can alter bacterial signaling machinery and can help in utilizing biofilm formation for medical and industrial proposes.
Keywords
Bacterial biofilms Cellular signalling Host defence VirulenceReferences
- 1.Agarwal, S., Agarwal, S., Pancholi, P., & Pancholi, V. (2012). Strain-specific regulatory role of eukaryote-like serine/threonine phosphatase in pneumococcal adherence. Infection and Immunity, 80, 1361–1372.PubMedPubMedCentralCrossRefGoogle Scholar
- 2.Alber, T. (2009). Signaling mechanisms of the Mycobacterium tuberculosis receptor Ser/Thr protein kinases. Current Opinion in Structural Biology, 19, 650–657.PubMedPubMedCentralCrossRefGoogle Scholar
- 3.Alonso, M. F., Gow, N. A. R., Erwig, L. P., & Bain, J. M. (2017). Macrophage migration is impaired within Candida albicans biofilms. Journal of Fungi (Basel), 3(3), 31.CrossRefGoogle Scholar
- 4.Ammendola, S., D’Amico, Y., Chirullo, B., Drumo, R., Civardelli, D., Pasquali, P., & Battistoni, A. (2016). Zinc is required to ensure the expression of flagella and the ability to form biofilms in Salmonella enterica sv Typhimurium. Metallomics: Integrated Biometal Science, 8, 1131–1140.CrossRefGoogle Scholar
- 5.Anand, A., Verma, P., Singh, A. K., Kaushik, S., Pandey, R., Shi, C., Kaur, H., Chawla, M., Elechalawar, C. K., Kumar, D., Yang, Y., Bhavesh, N. S., Banerjee, R., Dash, D., Singh, A., Natarajan, V. T., Ojha, A. K., Aldrich, C. C., & Gokhale, R. S. (2015). Polyketide quinones are alternate intermediate electron carriers during mycobacterial respiration in oxygen-deficient niches. Molecular Cell, 60, 637–650.PubMedPubMedCentralCrossRefGoogle Scholar
- 6.Anandan, T., Han, J., Baun, H., Nyayapathy, S., Brown, J. T., Dial, R. L., Moltalvo, J. A., Kim, M. S., Yang, S. H., Ronning, D. R., et al. (2014). Phosphorylation regulates mycobacterial proteasome. Journal of Microbiology, 52, 743–754.CrossRefGoogle Scholar
- 7.Andrade, A., Tavares-Carreon, F., Khodai-Kalaki, M., & Valvano, M. A. (2015). Tyrosine phosphorylation and dephosphorylation in Burkholderia cenocepacia affect biofilm formation, growth under nutritional deprivation, and pathogenicity. Applied and Environmental Microbiology, 82, 843–856.PubMedCrossRefPubMedCentralGoogle Scholar
- 8.Ansari, M. Y., & Mande, S. C. (2018). A glimpse into the structure and function of atypical type I chaperonins. Frontiers in Molecular Biosciences, 5, 31.PubMedPubMedCentralCrossRefGoogle Scholar
- 9.Arora, G., et al. (2017). Emerging themes in drug resistance. In G. Arora, A. Sajid, & V. Kalia (Eds.), Drug resistance in bacteria, fungi, malaria, and cancer (pp. 1–24). Cham: Springer.CrossRefGoogle Scholar
- 10.Arora, G., Misra, R., & Sajid, A. (2017a). Synthetic solutions to drug resistance. In G. Arora, A. Sajid, & V. Kalia (Eds.), Drug resistance in bacteria, fungi, malaria, and cancer (pp. 595–608). Cham: Springer.CrossRefGoogle Scholar
- 11.Arora, G., Misra, R., & Sajid, A. (2017b). Model systems for pulmonary infectious diseases: Paradigms of anthrax and tuberculosis. Current Topics in Medicinal Chemistry, 17, 2077–2099.PubMedCrossRefPubMedCentralGoogle Scholar
- 12.Arora, G., Sajid, A., Arulanandh, M. D., Misra, R., Singhal, A., Kumar, S., Singh, L. K., Mattoo, A. R., Raj, R., Maiti, S., et al. (2013). Zinc regulates the activity of kinase-phosphatase pair (BasPrkC/BasPrpC) in Bacillus anthracis. Biometals: An International Journal on the Role of Metal Ions in Biology, Biochemistry, and Medicine, 26, 715–730.CrossRefGoogle Scholar
- 13.Arora, G., Sajid, A., Arulanandh, M. D., Singhal, A., Mattoo, A. R., Pomerantsev, A. P., Leppla, S. H., Maiti, S., & Singh, Y. (2012). Unveiling the novel dual specificity protein kinases in Bacillus anthracis: Identification of the first prokaryotic dual specificity tyrosine phosphorylation-regulated kinase (DYRK)-like kinase. The Journal of Biological Chemistry, 287, 26749–26763.PubMedPubMedCentralCrossRefGoogle Scholar
- 14.Arora, G., Sajid, A., Gupta, M., Bhaduri, A., Kumar, P., Basu-Modak, S., & Singh, Y. (2010). Understanding the role of PknJ in Mycobacterium tuberculosis: Biochemical characterization and identification of novel substrate pyruvate kinase A. PLoS One, 5, e10772.PubMedPubMedCentralCrossRefGoogle Scholar
- 15.Arora, G., Sajid, A., Singhal, A., Joshi, J., Virmani, R., Gupta, M., Verma, N., Maji, A., Misra, R., Baronian, G., et al. (2014). Identification of Ser/Thr kinase and forkhead associated domains in Mycobacterium ulcerans: Characterization of novel association between protein kinase Q and MupFHA. PLoS Neglected Tropical Diseases, 8, e3315.PubMedPubMedCentralCrossRefGoogle Scholar
- 16.Arora, G., Sajid, A., Virmani, R., Singhal, A., Kumar, C. M. S., Dhasmana, N., Khanna, T., Maji, A., Misra, R., Molle, V., et al. (2017c). Ser/Thr protein kinase PrkC-mediated regulation of GroEL is critical for biofilm formation in Bacillus anthracis. NPJ Biofilms and Microbiomes, 3(1), 7.PubMedPubMedCentralCrossRefGoogle Scholar
- 17.Arora, K., Whiteford, D. C., Lau-Bonilla, D., Davitt, C. M., & Dahl, J. L. (2008). Inactivation of lsr2 results in a hypermotile phenotype in Mycobacterium smegmatis. Journal of Bacteriology, 190, 4291–4300.PubMedPubMedCentralCrossRefGoogle Scholar
- 18.Banner, M. A., Cunniffe, J. G., Macintosh, R. L., Foster, T. J., Rohde, H., Mack, D., Hoyes, E., Derrick, J., Upton, M., & Handley, P. S. (2007). Localized tufts of fibrils on Staphylococcus epidermidis NCTC 11047 are comprised of the accumulation-associated protein. Journal of Bacteriology, 189, 2793–2804.PubMedPubMedCentralCrossRefGoogle Scholar
- 19.Banu, L. D., Conrads, G., Rehrauer, H., Hussain, H., Allan, E., & van der Ploeg, J. R. (2010). The Streptococcus mutans serine/threonine kinase, PknB, regulates competence development, bacteriocin production, and cell wall metabolism. Infection and Immunity, 78, 2209–2220.PubMedPubMedCentralCrossRefGoogle Scholar
- 20.Barthe, P., Mukamolova, G. V., Roumestand, C., & Cohen-Gonsaud, M. (2010). The structure of PknB extracellular PASTA domain from mycobacterium tuberculosis suggests a ligand-dependent kinase activation. Structure, 18, 606–615.PubMedCrossRefPubMedCentralGoogle Scholar
- 21.Bielen, K., s Jongers, B., Boddaert, J., Raju, T. K., Lammens, C., Malhotra-Kumar, S., Jorens, P. G., Goossens, H., & Kumar-Singh, S. (2017). Biofilm-induced type 2 innate immunity in a cystic fibrosis model of Pseudomonas aeruginosa. Frontiers in Cellular and Infection Microbiology, 7, 274.PubMedPubMedCentralCrossRefGoogle Scholar
- 22.Bilecen, K., & Yildiz, F. H. (2009). Identification of a calcium-controlled negative regulatory system affecting Vibrio cholerae biofilm formation. Environmental Microbiology, 11, 2015–2029.PubMedPubMedCentralCrossRefGoogle Scholar
- 23.Bilecen, K., Fong, J. C., Cheng, A., Jones, C. J., Zamorano-Sanchez, D., & Yildiz, F. H. (2015). Polymyxin B resistance and biofilm formation in Vibrio cholerae are controlled by the response regulator CarR. Infection and Immunity, 83, 1199–1209.PubMedPubMedCentralCrossRefGoogle Scholar
- 24.Botos, I., Segal, D. M., & Davies, D. R. (2011). The structural biology of Toll-like receptors. Structure, 19, 447–459.PubMedPubMedCentralCrossRefGoogle Scholar
- 25.Brady, R. A., O’May, G. A., Leid, J. G., Prior, M. L., Costerton, J. W., & Shirtliff, M. E. (2011). Resolution of Staphylococcus aureus biofilm infection using vaccination and antibiotic treatment. Infection and Immunity, 79, 1797–1803.PubMedPubMedCentralCrossRefGoogle Scholar
- 26.Brown, L. R., Caulkins, R. C., Schartel, T. E., Rosch, J. W., Honsa, E. S., Schultz-Cherry, S., Meliopoulos, V. A., Cherry, S., & Thornton, J. A. (2017). Increased zinc availability enhances initial aggregation and biofilm formation of streptococcus pneumoniae. Frontiers in Cellular and Infection Microbiology, 7, 233.PubMedPubMedCentralCrossRefGoogle Scholar
- 27.Buhmann, M. T., Schulze, B., Forderer, A., Schleheck, D., & Kroth, P. G. (2016). Bacteria may induce the secretion of mucin-like proteins by the diatom Phaeodactylum tricornutum. Journal of Phycology, 52, 463–474.PubMedCrossRefPubMedCentralGoogle Scholar
- 28.Chambonnier, G., Roux, L., Redelberger, D., Fadel, F., Filloux, A., Sivaneson, M., de Bentzmann, S., & Bordi, C. (2016). The hybrid histidine kinase LadS forms a multicomponent signal transduction system with the GacS/GacA two-component system in Pseudomonas aeruginosa. PLoS Genetics, 12, e1006032.PubMedPubMedCentralCrossRefGoogle Scholar
- 29.Chao, J. D., Wong, D., & Av-Gay, Y. (2014). Microbial protein-tyrosine kinases. The Journal of Biological Chemistry, 289, 9463–9472.PubMedPubMedCentralCrossRefGoogle Scholar
- 30.Chawla, Y., Upadhyay, S., Khan, S., Nagarajan, S. N., Forti, F., & Nandicoori, V. K. (2014). Protein kinase B (PknB) of Mycobacterium tuberculosis is essential for growth of the pathogen in vitro as well as for survival within the host. The Journal of Biological Chemistry, 289, 13858–13875.PubMedPubMedCentralCrossRefGoogle Scholar
- 31.Chen, J. M., German, G. J., Alexander, D. C., Ren, H., Tan, T., & Liu, J. (2006). Roles of Lsr2 in colony morphology and biofilm formation of Mycobacterium smegmatis. Journal of Bacteriology, 188, 633–641.PubMedPubMedCentralCrossRefGoogle Scholar
- 32.Christner, M., Franke, G. C., Schommer, N. N., Wendt, U., Wegert, K., Pehle, P., Kroll, G., Schulze, C., Buck, F., Mack, D., et al. (2010). The giant extracellular matrix-binding protein of Staphylococcus epidermidis mediates biofilm accumulation and attachment to fibronectin. Molecular Microbiology, 75, 187–207.PubMedCrossRefPubMedCentralGoogle Scholar
- 33.Claeys, T. A., & Robinson, R. T. (2018). The many lives of nontuberculous mycobacteria. Journal of Bacteriology, 200(11), e00739–e00717.PubMedCentralCrossRefGoogle Scholar
- 34.Cluzel, M. E., Zanella-Cleon, I., Cozzone, A. J., Futterer, K., Duclos, B., & Molle, V. (2010). The Staphylococcus aureus autoinducer-2 synthase LuxS is regulated by Ser/Thr phosphorylation. Journal of Bacteriology, 192, 6295–6301.PubMedPubMedCentralCrossRefGoogle Scholar
- 35.Colangeli, R., Helb, D., Vilcheze, C., Hazbon, M. H., Lee, C. G., Safi, H., Sayers, B., Sardone, I., Jones, M. B., Fleischmann, R. D., et al. (2007). Transcriptional regulation of multi-drug tolerance and antibiotic-induced responses by the histone-like protein Lsr2 in M. tuberculosis. PLoS Pathogens, 3, e87.PubMedPubMedCentralCrossRefGoogle Scholar
- 36.Corrales, R. M., Leiba, J., Cohen-Gonsaud, M., Molle, V., & Kremer, L. (2013). Mycobacterium tuberculosis S-adenosyl-l-homocysteine hydrolase is negatively regulated by Ser/Thr phosphorylation. Biochemical and Biophysical Research Communications, 430, 858–864.PubMedCrossRefPubMedCentralGoogle Scholar
- 37.Cousin, C., Derouiche, A., Shi, L., Pagot, Y., Poncet, S., & Mijakovic, I. (2013). Protein-serine/threonine/tyrosine kinases in bacterial signaling and regulation. FEMS Microbiology Letters, 346, 11–19.PubMedCrossRefPubMedCentralGoogle Scholar
- 38.Cramton, S. E., Gerke, C., Schnell, N. F., Nichols, W. W., & Gotz, F. (1999). The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infection and Immunity, 67, 5427–5433.PubMedPubMedCentralGoogle Scholar
- 39.Cue, D., Junecko, J. M., Lei, M. G., Blevins, J. S., Smeltzer, M. S., & Lee, C. Y. (2015). SaeRS-dependent inhibition of biofilm formation in Staphylococcus aureus Newman. PLoS One, 10, e0123027.PubMedPubMedCentralCrossRefGoogle Scholar
- 40.Czajkowski, R., & Jafra, S. (2009). Quenching of acyl-homoserine lactone-dependent quorum sensing by enzymatic disruption of signal molecules. Acta Biochimica Polonica, 56, 1–16.PubMedPubMedCentralGoogle Scholar
- 41.Davey, L., Halperin, S. A., & Lee, S. F. (2016). Mutation of the Streptococcus gordonii thiol-disulfide oxidoreductase SdbA leads to enhanced biofilm formation mediated by the CiaRH two-component signaling system. PLoS One, 11, e0166656.PubMedPubMedCentralCrossRefGoogle Scholar
- 42.de Bentzmann, S., Giraud, C., Bernard, C. S., Calderon, V., Ewald, F., Plesiat, P., Nguyen, C., Grunwald, D., Attree, I., Jeannot, K., et al. (2012). Unique biofilm signature, drug susceptibility and decreased virulence in Drosophila through the Pseudomonas aeruginosa two-component system PprAB. PLoS Pathogens, 8, e1003052.PubMedPubMedCentralCrossRefGoogle Scholar
- 43.de Jong, S. D., Basha, G., Wilson, K. D., Kazem, M., Cullis, P., Jefferies, W., & Tam, Y. (2010). The immunostimulatory activity of unmethylated and methylated CpG oligodeoxynucleotide is dependent on their ability to colocalize with TLR9 in late endosomes. Journal of Immunology, 184, 6092–6102.CrossRefGoogle Scholar
- 44.De Silva, P. M., & Kumar, A. (2018). Effect of sodium chloride on surface-associated motility of acinetobacter baumannii and the role of AdeRS two-component system. The Journal of Membrane Biology, 251(1), 5–13.PubMedCrossRefPubMedCentralGoogle Scholar
- 45.Desai, S. K., Winardhi, R. S., Periasamy, S., Dykas, M. M., Jie, Y., & Kenney, L. J. (2016). The horizontally-acquired response regulator SsrB drives a Salmonella lifestyle switch by relieving biofilm silencing. eLife, 5, e10747.PubMedPubMedCentralCrossRefGoogle Scholar
- 46.Deutscher, J., & Saier, M. H., Jr. (2005). Ser/Thr/Tyr protein phosphorylation in bacteria – for long time neglected, now well established. Journal of Molecular Microbiology and Biotechnology, 9, 125–131.PubMedCrossRefPubMedCentralGoogle Scholar
- 47.Devi, S. N., Vishnoi, M., Kiehler, B., Haggett, L., & Fujita, M. (2015). In vivo functional characterization of the transmembrane histidine kinase KinC in Bacillus subtilis. Microbiology, 161, 1092–1104.PubMedCrossRefPubMedCentralGoogle Scholar
- 48.Dlugosz, A., Zakikhany, K., Acevedo, N., D’Amato, M., & Lindberg, G. (2017). Increased expression of toll-like receptors 4, 5, and 9 in small bowel mucosa from patients with irritable bowel syndrome. BioMed Research International, 2017, 9624702.PubMedPubMedCentralCrossRefGoogle Scholar
- 49.Dong, Y. H., & Zhang, L. H. (2005). Quorum sensing and quorum-quenching enzymes. Journal of Microbiology, 43 Spec No, 101–109.Google Scholar
- 50.Donner, J., Reck, M., Bergmann, S., Kirschning, A., Muller, R., & Wagner-Dobler, I. (2016). The biofilm inhibitor Carolacton inhibits planktonic growth of virulent pneumococci via a conserved target. Scientific Reports, 6, 29677.PubMedPubMedCentralCrossRefGoogle Scholar
- 51.Dorel, C., Lejeune, P., & Rodrigue, A. (2006). The Cpx system of Escherichia coli, a strategic signaling pathway for confronting adverse conditions and for settling biofilm communities? Research in Microbiology, 157, 306–314.PubMedCrossRefPubMedCentralGoogle Scholar
- 52.Downey, J. S., Mashburn-Warren, L., Ayala, E. A., Senadheera, D. B., Hendrickson, W. K., McCall, L. W., Sweet, J. G., Cvitkovitch, D. G., Spatafora, G. A., & Goodman, S. D. (2014). In vitro manganese-dependent cross-talk between Streptococcus mutans VicK and GcrR: Implications for overlapping stress response pathways. PLoS One, 9, e115975.PubMedPubMedCentralCrossRefGoogle Scholar
- 53.Dworkin, J. (2015). Ser/Thr phosphorylation as a regulatory mechanism in bacteria. Current Opinion in Microbiology, 24, 47–52.PubMedPubMedCentralCrossRefGoogle Scholar
- 54.Dziarski, R., & Gupta, D. (2005). Staphylococcus aureus peptidoglycan is a toll-like receptor 2 activator: A reevaluation. Infection and Immunity, 73, 5212–5216.PubMedPubMedCentralCrossRefGoogle Scholar
- 55.Eberhard, A. (1972). Inhibition and activation of bacterial luciferase synthesis. Journal of Bacteriology, 109, 1101–1105.PubMedPubMedCentralGoogle Scholar
- 56.Eberl, L., & Tummler, B. (2004). Pseudomonas aeruginosa and Burkholderia cepacia in cystic fibrosis: Genome evolution, interactions and adaptation. International Journal of Medical Microbiology: IJMM, 294, 123–131.PubMedCrossRefPubMedCentralGoogle Scholar
- 57.Elsholz, A. K., Wacker, S. A., & Losick, R. (2014). Self-regulation of exopolysaccharide production in Bacillus subtilis by a tyrosine kinase. Genes & Development, 28, 1710–1720.CrossRefGoogle Scholar
- 58.Erttmann, S. F., Gekara, N. O., & Fallman, M. (2014). Bacteria induce prolonged PMN survival via a phosphatidylcholine-specific phospholipase C- and protein kinase C-dependent mechanism. PLoS One, 9, e87859.PubMedPubMedCentralCrossRefGoogle Scholar
- 59.Esteban, J., & Garcia-Coca, M. (2017). Mycobacterium biofilms. Frontiers in Microbiology, 8, 2651.PubMedCrossRefPubMedCentralGoogle Scholar
- 60.Even-Tov, E., Bendori, S. O., Valastyan, J., Ke, X., Pollak, S., Bareia, T., Ben-Zion, I., Bassler, B. L., & Eldar, A. (2016). Social evolution selects for redundancy in bacterial quorum sensing. PLoS Biology, 14, e1002386.PubMedPubMedCentralCrossRefGoogle Scholar
- 61.Faezi, S., Bahrmand, A. R., Mahdavi, M., Siadat, S. D., Nikokar, I., & Sardari, S. (2017). Development of a novel anti-adhesive vaccine against Pseudomonasaeruginosa targeting the C-terminal disulfide loop of the pilin protein. International Journal of Molecular and Cellular Medicine, 6, 96–108.PubMedPubMedCentralGoogle Scholar
- 62.Fang, F. C. (2004). Antimicrobial reactive oxygen and nitrogen species: Concepts and controversies. Nature Reviews Microbiology, 2, 820–832.PubMedCrossRefPubMedCentralGoogle Scholar
- 63.Faria, S., Joao, I., & Jordao, L. (2015). General overview on nontuberculous mycobacteria, biofilms, and human infection. Journal of Pathogens, 2015, 809014.PubMedPubMedCentralCrossRefGoogle Scholar
- 64.Fennelly, K. P., Ojano-Dirain, C., Yang, Q., Liu, L., Lu, L., Progulske-Fox, A., Wang, G. P., Antonelli, P., & Schultz, G. (2016). Biofilm formation by mycobacterium abscessus in a lung cavity. American Journal of Respiratory and Critical Care Medicine, 193, 692–693.PubMedCrossRefPubMedCentralGoogle Scholar
- 65.Ferreira, A. S., Leitao, J. H., Sousa, S. A., Cosme, A. M., Sa-Correia, I., & Moreira, L. M. (2007). Functional analysis of Burkholderia cepacia genes bceD and bceF, encoding a phosphotyrosine phosphatase and a tyrosine autokinase, respectively: Role in exopolysaccharide biosynthesis and biofilm formation. Applied and Environmental Microbiology, 73, 524–534.PubMedCrossRefPubMedCentralGoogle Scholar
- 66.Ferreira, A. S., Silva, I. N., Oliveira, V. H., Becker, J. D., Givskov, M., Ryan, R. P., Fernandes, F., & Moreira, L. M. (2013). Comparative transcriptomic analysis of the Burkholderia cepacia tyrosine kinase bceF mutant reveals a role in tolerance to stress, biofilm formation, and virulence. Applied and Environmental Microbiology, 79, 3009–3020.PubMedPubMedCentralCrossRefGoogle Scholar
- 67.Formosa-Dague, C., Speziale, P., Foster, T. J., Geoghegan, J. A., & Dufrene, Y. F. (2016). Zinc-dependent mechanical properties of Staphylococcus aureus biofilm-forming surface protein SasG. Proceedings of the National Academy of Sciences of the United States of America, 113, 410–415.PubMedCrossRefPubMedCentralGoogle Scholar
- 68.Fuqua, W. C., Winans, S. C., & Greenberg, E. P. (1994). Quorum sensing in bacteria: The LuxR-LuxI family of cell density-responsive transcriptional regulators. Journal of Bacteriology, 176, 269–275.PubMedPubMedCentralCrossRefGoogle Scholar
- 69.Gao, T., Greenwich, J., Li, Y., Wang, Q., & Chai, Y. (2015). The bacterial tyrosine kinase activator TkmA contributes to biofilm formation largely independently of the cognate kinase PtkA in Bacillus subtilis. Journal of Bacteriology, 197, 3421–3432.PubMedPubMedCentralCrossRefGoogle Scholar
- 70.Gerwig, J., Kiley, T. B., Gunka, K., Stanley-Wall, N., & Stulke, J. (2014). The protein tyrosine kinases EpsB and PtkA differentially affect biofilm formation in Bacillus subtilis. Microbiology, 160, 682–691.PubMedPubMedCentralCrossRefGoogle Scholar
- 71.Gopalaswamy, R., Narayanan, S., Jacobs, W. R., Jr., & Av-Gay, Y. (2008). Mycobacterium smegmatis biofilm formation and sliding motility are affected by the serine/threonine protein kinase PknF. FEMS Microbiology Letters, 278, 121–127.PubMedCrossRefPubMedCentralGoogle Scholar
- 72.Gottesman, S., Trisler, P., & Torres-Cabassa, A. (1985). Regulation of capsular polysaccharide synthesis in Escherichia coli K-12: Characterization of three regulatory genes. Journal of Bacteriology, 162, 1111–1119.PubMedPubMedCentralGoogle Scholar
- 73.Greenstein, A. E., Grundner, C., Echols, N., Gay, L. M., Lombana, T. N., Miecskowski, C. A., Pullen, K. E., Sung, P. Y., & Alber, T. (2005). Structure/function studies of Ser/Thr and Tyr protein phosphorylation in Mycobacterium tuberculosis. Journal of Molecular Microbiology and Biotechnology, 9, 167–181.PubMedCrossRefPubMedCentralGoogle Scholar
- 74.Grumbein, S., Opitz, M., & Lieleg, O. (2014). Selected metal ions protect Bacillus subtilis biofilms from erosion. Metallomics: Integrated Biometal Science, 6, 1441–1450.CrossRefGoogle Scholar
- 75.Gunther, F., Wabnitz, G. H., Stroh, P., Prior, B., Obst, U., Samstag, Y., Wagner, C., & Hansch, G. M. (2009). Host defence against Staphylococcus aureus biofilms infection: Phagocytosis of biofilms by polymorphonuclear neutrophils (PMN). Molecular Immunology, 46, 1805–1813.PubMedCrossRefPubMedCentralGoogle Scholar
- 76.Gupta, K. R., Kasetty, S., & Chatterji, D. (2015). Novel functions of (p)ppGpp and cyclic di-GMP in mycobacterial physiology revealed by phenotype microarray analysis of wild-type and isogenic strains of Mycobacterium smegmatis. Applied and Environmental Microbiology, 81, 2571–2578.PubMedPubMedCentralCrossRefGoogle Scholar
- 77.Gupta, M., Sajid, A., Arora, G., Tandon, V., & Singh, Y. (2009). Forkhead-associated domain-containing protein Rv0019c and polyketide-associated protein PapA5, from substrates of serine/threonine protein kinase PknB to interacting proteins of Mycobacterium tuberculosis. The Journal of Biological Chemistry, 284, 34723–34734.PubMedPubMedCentralCrossRefGoogle Scholar
- 78.Gupta, M., Sajid, A., Sharma, K., Ghosh, S., Arora, G., Singh, R., Nagaraja, V., Tandon, V., & Singh, Y. (2014). HupB, a nucleoid-associated protein of Mycobacterium tuberculosis, is modified by serine/threonine protein kinases in vivo. Journal of Bacteriology, 196, 2646–2657.PubMedPubMedCentralCrossRefGoogle Scholar
- 79.Hanke, M. L., & Kielian, T. (2012). Deciphering mechanisms of staphylococcal biofilm evasion of host immunity. Frontiers in Cellular and Infection Microbiology, 2, 62.PubMedPubMedCentralCrossRefGoogle Scholar
- 80.Hanke, M. L., Angle, A., & Kielian, T. (2012). MyD88-dependent signaling influences fibrosis and alternative macrophage activation during Staphylococcus aureus biofilm infection. PLoS One, 7, e42476.PubMedPubMedCentralCrossRefGoogle Scholar
- 81.Hardt, P., Engels, I., Rausch, M., Gajdiss, M., Ulm, H., Sass, P., Ohlsen, K., Sahl, H. G., Bierbaum, G., Schneider, T., & Grein, F. (2017). The cell wall precursor lipid II acts as a molecular signal for the Ser/Thr kinase PknB of Staphylococcus aureus. International Journal of Medical Microbiology: IJMM, 307, 1–10.PubMedCrossRefPubMedCentralGoogle Scholar
- 82.Hashimoto, M., Tawaratsumida, K., Kariya, H., Aoyama, K., Tamura, T., & Suda, Y. (2006). Lipoprotein is a predominant Toll-like receptor 2 ligand in Staphylococcus aureus cell wall components. International Immunology, 18, 355–362.PubMedCrossRefPubMedCentralGoogle Scholar
- 83.Holm, A., & Vikstrom, E. (2014). Quorum sensing communication between bacteria and human cells: Signals, targets, and functions. Frontiers in Plant Science, 5, 309.PubMedPubMedCentralCrossRefGoogle Scholar
- 84.Holt, J. E., Houston, A., Adams, C., Edwards, S., & Kjellerup, B. V. (2017). Role of extracellular polymeric substances in polymicrobial biofilm infections of Staphylococcus epidermidis and Candida albicans modelled in the nematode Caenorhabditis elegans. Pathogens and Disease, 75, 1–7.CrossRefGoogle Scholar
- 85.Holtfreter, S., Kolata, J., & Broker, B. M. (2010). Towards the immune proteome of Staphylococcus aureus – The anti-S. aureus antibody response. International Journal of Medical Microbiology: IJMM, 300, 176–192.PubMedCrossRefPubMedCentralGoogle Scholar
- 86.Hoyle, B. D., Alcantara, J., & Costerton, J. W. (1992). Pseudomonas aeruginosa biofilm as a diffusion barrier to piperacillin. Antimicrobial Agents and Chemotherapy, 36, 2054–2056.PubMedPubMedCentralCrossRefGoogle Scholar
- 87.Hussain, H., Branny, P., & Allan, E. (2006). A eukaryotic-type serine/threonine protein kinase is required for biofilm formation, genetic competence, and acid resistance in Streptococcus mutans. Journal of Bacteriology, 188, 1628–1632.PubMedPubMedCentralCrossRefGoogle Scholar
- 88.Huynh, T. T., McDougald, D., Klebensberger, J., Al Qarni, B., Barraud, N., Rice, S. A., Kjelleberg, S., & Schleheck, D. (2012). Glucose starvation-induced dispersal of Pseudomonas aeruginosa biofilms is cAMP and energy dependent. PLoS One, 7, e42874.PubMedPubMedCentralCrossRefGoogle Scholar
- 89.Isaka, M., Tatsuno, I., Maeyama, J., Matsui, H., Zhang, Y., & Hasegawa, T. (2016). The YvqE two-component system controls biofilm formation and acid production in Streptococcus pyogenes. APMIS: Acta pathologica, microbiologica, et immunologica. Scandinavica, 124, 574–585.Google Scholar
- 90.Ismail, A. S., Valastyan, J. S., & Bassler, B. L. (2016). A host-produced autoinducer-2 mimic activates bacterial quorum sensing. Cell Host & Microbe, 19, 470–480.CrossRefGoogle Scholar
- 91.Iwasaki, A., & Medzhitov, R. (2010). Regulation of adaptive immunity by the innate immune system. Science, 327, 291–295.PubMedPubMedCentralCrossRefGoogle Scholar
- 92.Janeway, C. A., Jr., & Medzhitov, R. (2002). Innate immune recognition. Annual Review of Immunology, 20, 197–216.PubMedCrossRefPubMedCentralGoogle Scholar
- 93.Jayaraman, A., & Wood, T. K. (2008). Bacterial quorum sensing: Signals, circuits, and implications for biofilms and disease. Annual Review of Biomedical Engineering, 10, 145–167.PubMedCrossRefPubMedCentralGoogle Scholar
- 94.Ji, Y., Li, W., Zhang, Y., Chen, L., Zhang, Y., Zheng, X., Huang, X., & Ni, B. (2017). QseB mediates biofilm formation and invasion in Salmonella enterica serovar Typhi. Microbial Pathogenesis, 104, 6–11.PubMedCrossRefPubMedCentralGoogle Scholar
- 95.Joo, H. S., & Otto, M. (2012). Molecular basis of in vivo biofilm formation by bacterial pathogens. Chemistry & Biology, 19, 1503–1513.CrossRefGoogle Scholar
- 96.Kalia, V. C. (2013). Quorum sensing inhibitors: An overview. Biotechnology Advances, 31, 224–245.PubMedCrossRefPubMedCentralGoogle Scholar
- 97.Kalia, V. C., & Purohit, H. J. (2011). Quenching the quorum sensing system: Potential antibacterial drug targets. Critical Reviews in Microbiology, 37, 121–140.PubMedCrossRefPubMedCentralGoogle Scholar
- 98.Kalia, V. C., Wood, T. K., & Kumar, P. (2014). Evolution of resistance to quorum-sensing inhibitors. Microbial Ecology, 68, 13–23.PubMedCrossRefPubMedCentralGoogle Scholar
- 99.Kant, S., Asthana, S., Missiakas, D., & Pancholi, V. (2017). A novel STK1-targeted small-molecule as an “antibiotic resistance breaker” against multidrug-resistant Staphylococcus aureus. Scientific Reports, 7, 5067.PubMedPubMedCentralCrossRefGoogle Scholar
- 100.Kennedy, A. D., Bubeck Wardenburg, J., Gardner, D. J., Long, D., Whitney, A. R., Braughton, K. R., Schneewind, O., & DeLeo, F. R. (2010). Targeting of alpha-hemolysin by active or passive immunization decreases severity of USA300 skin infection in a mouse model. The Journal of Infectious Diseases, 202, 1050–1058.PubMedPubMedCentralCrossRefGoogle Scholar
- 101.Kiley, T. B., & Stanley-Wall, N. R. (2010). Post-translational control of Bacillus subtilis biofilm formation mediated by tyrosine phosphorylation. Molecular Microbiology, 78, 947–963.PubMedCrossRefPubMedCentralGoogle Scholar
- 102.Kim, H. K., Cheng, A. G., Kim, H. Y., Missiakas, D. M., & Schneewind, O. (2010). Nontoxigenic protein A vaccine for methicillin-resistant Staphylococcus aureus infections in mice. The Journal of Experimental Medicine, 207, 1863–1870.PubMedPubMedCentralCrossRefGoogle Scholar
- 103.Kim, H. R., Choi, J. Y., Kim, K. S., Jung, Y. S., Cho, J. Y., Hwang, D. Y., & Song, H. K. (2017). Comparison of humoral and cell-mediated immunity in three different C57BL/6N mouse substrains. Laboratory Animal Research, 33, 132–139.PubMedPubMedCentralCrossRefGoogle Scholar
- 104.Kim, J., & Park, W. (2015). Indole: A signaling molecule or a mere metabolic byproduct that alters bacterial physiology at a high concentration? Journal of Microbiology, 53, 421–428.CrossRefGoogle Scholar
- 105.Kobayashi, K. (2007). Gradual activation of the response regulator DegU controls serial expression of genes for flagellum formation and biofilm formation in Bacillus subtilis. Molecular Microbiology, 66, 395–409.PubMedCrossRefPubMedCentralGoogle Scholar
- 106.Koch, G., Nadal-Jimenez, P., Cool, R. H., & Quax, W. J. (2014). Deinococcus radiodurans can interfere with quorum sensing by producing an AHL-acylase and an AHL-lactonase. FEMS Microbiology Letters, 356, 62–70.PubMedCrossRefPubMedCentralGoogle Scholar
- 107.Kostakioti, M., Hadjifrangiskou, M., Pinkner, J. S., & Hultgren, S. J. (2009). QseC-mediated dephosphorylation of QseB is required for expression of genes associated with virulence in uropathogenic Escherichia coli. Molecular Microbiology, 73, 1020–1031.PubMedPubMedCentralCrossRefGoogle Scholar
- 108.Koul, S., & Kalia, V. C. (2017). Multiplicity of quorum quenching enzymes: A potential mechanism to limit quorum sensing bacterial population. Indian Journal of Microbiology, 57, 100–108.PubMedCrossRefPubMedCentralGoogle Scholar
- 109.Kravchenko, V. V., & Kaufmann, G. F. (2013). Bacterial inhibition of inflammatory responses via TLR-independent mechanisms. Cellular Microbiology, 15, 527–536.PubMedCrossRefPubMedCentralGoogle Scholar
- 110.Kulka, K., Hatfull, G., & Ojha, A. K. (2012). Growth of Mycobacterium tuberculosis biofilms. Journal of Visualized Experiments, 60, 3820.Google Scholar
- 111.Kumari, S., Mangwani, N., & Das, S. (2016). Synergistic effect of quorum sensing genes in biofilm development and PAHs degradation by a marine bacterium. Bioengineered, 7, 205–211.PubMedPubMedCentralCrossRefGoogle Scholar
- 112.Kundu, P., Dutta, D., & Kumar Das, A. (2017). The alpha1beta1 region is crucial for biofilm enhancement activity of MTC28 in Mycobacterium smegmatis. FEBS Letters, 591, 3333–3347.PubMedCrossRefPubMedCentralGoogle Scholar
- 113.Kusebauch, U., Ortega, C., Ollodart, A., Rogers, R. S., Sherman, D. R., Moritz, R. L., & Grundner, C. (2014). Mycobacterium tuberculosis supports protein tyrosine phosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 111, 9265–9270.PubMedPubMedCentralCrossRefGoogle Scholar
- 114.Landini, P. (2009). Cross-talk mechanisms in biofilm formation and responses to environmental and physiological stress in Escherichia coli. Research in Microbiology, 160, 259–266.PubMedCrossRefPubMedCentralGoogle Scholar
- 115.Lee, M. R., Sheng, W. H., Hung, C. C., Yu, C. J., Lee, L. N., & Hsueh, P. R. (2015). Mycobacterium abscessus complex infections in humans. Emerging Infectious Diseases, 21, 1638–1646.PubMedPubMedCentralGoogle Scholar
- 116.Lehman, M. K., Bose, J. L., Sharma-Kuinkel, B. K., Moormeier, D. E., Endres, J. L., Sadykov, M. R., Biswas, I., & Bayles, K. W. (2015). Identification of the amino acids essential for LytSR-mediated signal transduction in Staphylococcus aureus and their roles in biofilm-specific gene expression. Molecular Microbiology, 95, 723–737.PubMedPubMedCentralCrossRefGoogle Scholar
- 117.Leiba, J., Hartmann, T., Cluzel, M. E., Cohen-Gonsaud, M., Delolme, F., Bischoff, M., & Molle, V. (2012). A novel mode of regulation of the Staphylococcus aureus catabolite control protein A (CcpA) mediated by Stk1 protein phosphorylation. The Journal of Biological Chemistry, 287, 43607–43619.PubMedPubMedCentralCrossRefGoogle Scholar
- 118.Li, J. L., Lim, C. H., Tay, F. W., Goh, C. C., Devi, S., Malleret, B., Lee, B., Bakocevic, N., Chong, S. Z., Evrard, M., et al. (2016). Neutrophils self-regulate immune complex-mediated cutaneous inflammation through CXCL2. The Journal of Investigative Dermatology, 136, 416–424.PubMedCrossRefPubMedCentralGoogle Scholar
- 119.Lin, M. H., Hsu, T. L., Lin, S. Y., Pan, Y. J., Jan, J. T., Wang, J. T., Khoo, K. H., & Wu, S. H. (2009). Phosphoproteomics of Klebsiella pneumoniae NTUH-K2044 reveals a tight link between tyrosine phosphorylation and virulence. Molecular & Cellular Proteomics: MCP, 8, 2613–2623.CrossRefGoogle Scholar
- 120.Liu, Q., Fan, J., Niu, C., Wang, D., Wang, J., Wang, X., Villaruz, A. E., Li, M., Otto, M., & Gao, Q. (2011). The eukaryotic-type serine/threonine protein kinase Stk is required for biofilm formation and virulence in Staphylococcus epidermidis. PLoS One, 6, e25380.PubMedPubMedCentralCrossRefGoogle Scholar
- 121.Lou, Q., Zhu, T., Hu, J., Ben, H., Yang, J., Yu, F., Liu, J., Wu, Y., Fischer, A., Francois, P., et al. (2011). Role of the SaeRS two-component regulatory system in Staphylococcus epidermidis autolysis and biofilm formation. BMC Microbiology, 11, 146.PubMedPubMedCentralCrossRefGoogle Scholar
- 122.Lynnes, T., Pruss, B. M., & Samanta, P. (2013). Acetate metabolism and Escherichia coli biofilm: New approaches to an old problem. FEMS Microbiology Letters, 344, 95–103.PubMedCrossRefPubMedCentralGoogle Scholar
- 123.Madec, E., Laszkiewicz, A., Iwanicki, A., Obuchowski, M., & Seror, S. (2002). Characterization of a membrane-linked Ser/Thr protein kinase in Bacillus subtilis, implicated in developmental processes. Molecular Microbiology, 46, 571–586.PubMedCrossRefPubMedCentralGoogle Scholar
- 124.Maeda, K., Tribble, G. D., Tucker, C. M., Anaya, C., Shizukuishi, S., Lewis, J. P., Demuth, D. R., & Lamont, R. J. (2008). A Porphyromonas gingivalis tyrosine phosphatase is a multifunctional regulator of virulence attributes. Molecular Microbiology, 69, 1153–1164.PubMedPubMedCentralCrossRefGoogle Scholar
- 125.Mai, G. T., Seow, W. K., Pier, G. B., McCormack, J. G., & Thong, Y. H. (1993). Suppression of lymphocyte and neutrophil functions by Pseudomonas aeruginosa mucoid exopolysaccharide (alginate): Reversal by physicochemical, alginase, and specific monoclonal antibody treatments. Infection and Immunity, 61, 559–564.PubMedPubMedCentralGoogle Scholar
- 126.Maiti, K., Syal, K., Chatterji, D., & Jayaraman, N. (2017). Synthetic arabinomannan heptasaccharide glycolipids inhibit biofilm growth and augment isoniazid effects in mycobacterium smegmatis. Chembiochem, 18, 1959–1970.PubMedCrossRefPubMedCentralGoogle Scholar
- 127.Malhotra, N., & Chakraborti, P. K. (2016). Eukaryotic-type Ser/Thr protein kinase mediated phosphorylation of mycobacterial phosphodiesterase affects its localization to the cell wall. Frontiers in Microbiology, 7, 123.PubMedPubMedCentralCrossRefGoogle Scholar
- 128.Marguerettaz, M., Dieppois, G., Que, Y. A., Ducret, V., Zuchuat, S., & Perron, K. (2014). Sputum containing zinc enhances carbapenem resistance, biofilm formation and virulence of Pseudomonas aeruginosa. Microbial Pathogenesis, 77, 36–41.PubMedCrossRefPubMedCentralGoogle Scholar
- 129.Marsollier, L., Aubry, J., Coutanceau, E., Andre, J. P., Small, P. L., Milon, G., Legras, P., Guadagnini, S., Carbonnelle, B., & Cole, S. T. (2005). Colonization of the salivary glands of Naucoris cimicoides by Mycobacterium ulcerans requires host plasmatocytes and a macrolide toxin, mycolactone. Cellular Microbiology, 7, 935–943.PubMedCrossRefPubMedCentralGoogle Scholar
- 130.Marsollier, L., Brodin, P., Jackson, M., Kordulakova, J., Tafelmeyer, P., Carbonnelle, E., Aubry, J., Milon, G., Legras, P., Andre, J. P., et al. (2007). Impact of Mycobacterium ulcerans biofilm on transmissibility to ecological niches and Buruli ulcer pathogenesis. PLoS Pathogens, 3, e62.PubMedPubMedCentralCrossRefGoogle Scholar
- 131.Martinez, F. O., & Gordon, S. (2014). The M1 and M2 paradigm of macrophage activation: Time for reassessment. F1000Prime Reports, 6, 13.PubMedPubMedCentralCrossRefGoogle Scholar
- 132.Mashruwala, A. A., Gries, C. M., Scherr, T. D., Kielian, T., & Boyd, J. M. (2017a). SaeRS is responsive to cellular respiratory status and regulates fermentative biofilm formation in Staphylococcus aureus. Infection and Immunity, 85(8), e00157–e00117.PubMedPubMedCentralCrossRefGoogle Scholar
- 133.Mashruwala, A. A., Guchte, A. V., & Boyd, J. M. (2017b). Impaired respiration elicits SrrAB-dependent programmed cell lysis and biofilm formation in Staphylococcus aureus. eLife, 6. Google Scholar
- 134.Mayer-Pinto, M., Coleman, R. A., Underwood, A. J., & Tolhurst, T. J. (2011). Effects of zinc on microalgal biofilms in intertidal and subtidal habitats. Biofouling, 27, 721–727.PubMedCrossRefGoogle Scholar
- 135.Mazzi, P., Caveggion, E., Lapinet-Vera, J. A., Lowell, C. A., & Berton, G. (2015). The Src-family kinases Hck and Fgr regulate early lipopolysaccharide-induced myeloid cell recruitment into the lung and their ability to secrete chemokines. Journal of Immunology, 195, 2383–2395.CrossRefGoogle Scholar
- 136.McGuinness, W. A., Kobayashi, S. D., & DeLeo, F. R. (2016). Evasion of neutrophil killing by Staphylococcus aureus. Pathogens, 5(1), 32.PubMedCentralCrossRefPubMedGoogle Scholar
- 137.Mills, C. D., Kincaid, K., Alt, J. M., Heilman, M. J., & Hill, A. M. (2000). M-1/M-2 macrophages and the Th1/Th2 paradigm. Journal of Immunology, 164, 6166–6173.CrossRefGoogle Scholar
- 138.Milton, M. E., Allen, C. L., Feldmann, E. A., Bobay, B. G., Jung, D. K., Stephens, M. D., Melander, R. J., Theisen, K. E., Zeng, D., Thompson, R. J., et al. (2017). Structure of the Francisella response regulator QseB receiver domain, and characterization of QseB inhibition by antibiofilm 2-aminoimidazole-based compounds. Molecular Microbiology, 106(2), 223–235.PubMedPubMedCentralCrossRefGoogle Scholar
- 139.Mir, M., Asong, J., Li, X., Cardot, J., Boons, G. J., & Husson, R. N. (2011). The extracytoplasmic domain of the Mycobacterium tuberculosis Ser/Thr kinase PknB binds specific muropeptides and is required for PknB localization. PLoS Pathogens, 7, e1002182.PubMedPubMedCentralCrossRefGoogle Scholar
- 140.Moraes, J. J., Stipp, R. N., Harth-Chu, E. N., Camargo, T. M., Hofling, J. F., & Mattos-Graner, R. O. (2014). Two-component system VicRK regulates functions associated with establishment of Streptococcus sanguinis in biofilms. Infection and Immunity, 82, 4941–4951.PubMedPubMedCentralCrossRefGoogle Scholar
- 141.Mulcahy, H., & Lewenza, S. (2011). Magnesium limitation is an environmental trigger of the Pseudomonas aeruginosa biofilm lifestyle. PLoS One, 6, e23307.PubMedPubMedCentralCrossRefGoogle Scholar
- 142.Navarrete, F., & De La Fuente, L. (2014). Response of Xylella fastidiosa to zinc: Decreased culturability, increased exopolysaccharide production, and formation of resilient biofilms under flow conditions. Applied and Environmental Microbiology, 80, 1097–1107.PubMedCrossRefPubMedCentralGoogle Scholar
- 143.Nealson, K. H., Platt, T., & Hastings, J. W. (1970). Cellular control of the synthesis and activity of the bacterial luminescent system. Journal of Bacteriology, 104, 313–322.PubMedPubMedCentralGoogle Scholar
- 144.Neyrolles, O., Wolschendorf, F., Mitra, A., & Niederweis, M. (2015). Mycobacteria, metals, and the macrophage. Immunological Reviews, 264, 249–263.PubMedPubMedCentralCrossRefGoogle Scholar
- 145.Ohlsen, K., & Donat, S. (2010). The impact of serine/threonine phosphorylation in Staphylococcus aureus. International Journal of Medical Microbiology: IJMM, 300, 137–141.PubMedCrossRefPubMedCentralGoogle Scholar
- 146.Ojha, A. K., Baughn, A. D., Sambandan, D., Hsu, T., Trivelli, X., Guerardel, Y., Alahari, A., Kremer, L., Jacobs, W. R., Jr., & Hatfull, G. F. (2008). Growth of Mycobacterium tuberculosis biofilms containing free mycolic acids and harbouring drug-tolerant bacteria. Molecular Microbiology, 69, 164–174.PubMedPubMedCentralCrossRefGoogle Scholar
- 147.Ojha, A., Anand, M., Bhatt, A., Kremer, L., Jacobs, W. R., Jr., & Hatfull, G. F. (2005). GroEL1: A dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria. Cell, 123, 861–873.PubMedCrossRefPubMedCentralGoogle Scholar
- 148.Ono, K., Oka, R., Toyofuku, M., Sakaguchi, A., Hamada, M., Yoshida, S., & Nomura, N. (2014). cAMP signaling affects irreversible attachment during biofilm formation by Pseudomonas aeruginosa PAO1. Microbes and Environments, 29, 104–106.PubMedPubMedCentralCrossRefGoogle Scholar
- 149.O’Toole, G., Kaplan, H. B., & Kolter, R. (2000). Biofilm formation as microbial development. Annual Review of Microbiology, 54, 49–79.CrossRefGoogle Scholar
- 150.Parikh, A., Verma, S. K., Khan, S., Prakash, B., & Nandicoori, V. K. (2009). PknB-mediated phosphorylation of a novel substrate, N-acetylglucosamine-1-phosphate uridyltransferase, modulates its acetyltransferase activity. Journal of Molecular Biology, 386, 451–464.PubMedCrossRefGoogle Scholar
- 151.Park, S. T., Kang, C. M., & Husson, R. N. (2008). Regulation of the SigH stress response regulon by an essential protein kinase in Mycobacterium tuberculosis. Proceedings of the National Academy of Sciences of the United States of America, 105, 13105–13110.PubMedPubMedCentralCrossRefGoogle Scholar
- 152.Pensinger, D. A., Schaenzer, A. J., & Sauer, J. D. (2017). Do shoot the messenger: PASTA kinases as virulence determinants and antibiotic targets. Trends in Microbiology. https://doi.org/10.1016/j.tim.2017.06.010.PubMedCrossRefGoogle Scholar
- 153.Pereira, S. F., Goss, L., & Dworkin, J. (2011). Eukaryote-like serine/threonine kinases and phosphatases in bacteria. Microbiology and Molecular Biology Reviews: MMBR, 75, 192–212.PubMedCrossRefPubMedCentralGoogle Scholar
- 154.Petrova, O. E., & Sauer, K. (2009). A novel signaling network essential for regulating Pseudomonas aeruginosa biofilm development. PLoS Pathogens, 5, e1000668.PubMedPubMedCentralCrossRefGoogle Scholar
- 155.Petrova, O. E., & Sauer, K. (2010). The novel two-component regulatory system BfiSR regulates biofilm development by controlling the small RNA rsmZ through CafA. Journal of Bacteriology, 192, 5275–5288.PubMedPubMedCentralCrossRefGoogle Scholar
- 156.Prigent-Combaret, C., Brombacher, E., Vidal, O., Ambert, A., Lejeune, P., Landini, P., & Dorel, C. (2001). Complex regulatory network controls initial adhesion and biofilm formation in Escherichia coli via regulation of the csgD gene. Journal of Bacteriology, 183, 7213–7223.PubMedPubMedCentralCrossRefGoogle Scholar
- 157.Prisic, S., & Husson, R. N. (2014). Mycobacterium tuberculosis serine/threonine protein kinases. Microbiology Spectrum, 2, 1–26 MGM2-006-2013.CrossRefGoogle Scholar
- 158.Prisic, S., Dankwa, S., Schwartz, D., Chou, M. F., Locasale, J. W., Kang, C. M., Bemis, G., Church, G. M., Steen, H., & Husson, R. N. (2010). Extensive phosphorylation with overlapping specificity by Mycobacterium tuberculosis serine/threonine protein kinases. Proceedings of the National Academy of Sciences of the United States of America, 107, 7521–7526.PubMedPubMedCentralCrossRefGoogle Scholar
- 159.Pruss, B. M. (2017). Involvement of two-component signaling on bacterial motility and biofilm development. Journal of Bacteriology, 199(18), e00259–e00217.PubMedPubMedCentralCrossRefGoogle Scholar
- 160.Pruss, B. M., & Wolfe, A. J. (1994). Regulation of acetyl phosphate synthesis and degradation, and the control of flagellar expression in Escherichia coli. Molecular Microbiology, 12, 973–984.PubMedCrossRefGoogle Scholar
- 161.Pryjma, M., Burian, J., & Thompson, C. J. (2018). Rifabutin acts in synergy and is bactericidal with frontline Mycobacterium abscessus antibiotics clarithromycin and tigecycline, suggesting a potent treatment combination. Antimicrobials Agents Chemotheraphy, .AAC–00283.Google Scholar
- 162.Qvist, T., Eickhardt, S., Kragh, K. N., Andersen, C. B., Iversen, M., Hoiby, N., & Bjarnsholt, T. (2015). Chronic pulmonary disease with Mycobacterium abscessus complex is a biofilm infection. The European Respiratory Journal, 46, 1823–1826.PubMedCrossRefPubMedCentralGoogle Scholar
- 163.Rada, B. (2017). Interactions between neutrophils and Pseudomonas aeruginosa in cystic fibrosis. Pathogens, 6(1), 10.PubMedCentralCrossRefGoogle Scholar
- 164.Rajput, A., Kaur, K., & Kumar, M. (2016). SigMol: Repertoire of quorum sensing signaling molecules in prokaryotes. Nucleic Acids Research, 44, D634–D639.PubMedCrossRefPubMedCentralGoogle Scholar
- 165.Rasamiravaka, T., Labtani, Q., Duez, P., & El Jaziri, M. (2015). The formation of biofilms by Pseudomonas aeruginosa: A review of the natural and synthetic compounds interfering with control mechanisms. BioMed Research International, 2015, 759348.PubMedPubMedCentralCrossRefGoogle Scholar
- 166.Rastogi, S., Singh, A. K., Pant, G., Mitra, K., Sashidhara, K. V., & Krishnan, M. Y. (2017). Down-regulation of PE11, a cell wall associated esterase, enhances the biofilm growth of Mycobacterium tuberculosis and reduces cell wall virulence lipid levels. Microbiology, 163, 52–61.PubMedCrossRefPubMedCentralGoogle Scholar
- 167.Recht, J., & Kolter, R. (2001). Glycopeptidolipid acetylation affects sliding motility and biofilm formation in Mycobacterium smegmatis. Journal of Bacteriology, 183, 5718–5724.PubMedPubMedCentralCrossRefGoogle Scholar
- 168.Recht, J., Martinez, A., Torello, S., & Kolter, R. (2000). Genetic analysis of sliding motility in Mycobacterium smegmatis. Journal of Bacteriology, 182, 4348–4351.PubMedPubMedCentralCrossRefGoogle Scholar
- 169.Reck, M., Rutz, K., Kunze, B., Tomasch, J., Surapaneni, S. K., Schulz, S., & Wagner-Dobler, I. (2011). The biofilm inhibitor carolacton disturbs membrane integrity and cell division of Streptococcus mutans through the serine/threonine protein kinase PknB. Journal of Bacteriology, 193, 5692–5706.PubMedPubMedCentralCrossRefGoogle Scholar
- 170.Redanz, S., Standar, K., Podbielski, A., & Kreikemeyer, B. (2012). Heterologous expression of sahH reveals that biofilm formation is autoinducer-2-independent in Streptococcus sanguinis but is associated with an intact activated methionine cycle. The Journal of Biological Chemistry, 287, 36111–36122.PubMedPubMedCentralCrossRefGoogle Scholar
- 171.Richards, J. P., & Ojha, A. K. (2014). Mycobacterial biofilms. In Molecular genetics of mycobacteria (2nd edn, pp. 773–784). 2014 Jan 1.Google Scholar
- 172.Richmond, G. E., Evans, L. P., Anderson, M. J., Wand, M. E., Bonney, L. C., Ivens, A., Chua, K. L., Webber, M. A., Sutton, J. M., Peterson, M. L., & Piddock, L. J. (2016). The Acinetobacter baumannii two-component system AdeRS regulates genes required for multidrug efflux, biofilm formation, and virulence in a strain-specific manner. MBio, 7, e00430–e00416.PubMedPubMedCentralGoogle Scholar
- 173.Ruggiero, A., De Simone, P., Smaldone, G., Squeglia, F., & Berisio, R. (2012). Bacterial cell division regulation by Ser/Thr kinases: A structural perspective. Current Protein & Peptide Science, 13, 756–766.CrossRefGoogle Scholar
- 174.Sajid, A., Arora, G., Virmani, R., & Singhal, A. (2017). Antimycobacterial agents: To target or not to target. In V. Kalia (Ed.), Microbial applications (Vol. 2, pp. 83–104). Cham: Springer.CrossRefGoogle Scholar
- 175.Sajid, A., Arora, G., Gupta, M., Singhal, A., Chakraborty, K., Nandicoori, V. K., & Singh, Y. (2011a). Interaction of Mycobacterium tuberculosis elongation factor Tu with GTP is regulated by phosphorylation. Journal of Bacteriology, 193, 5347–5358.PubMedPubMedCentralCrossRefGoogle Scholar
- 176.Sajid, A., Arora, G., Gupta, M., Upadhyay, S., Nandicoori, V. K., & Singh, Y. (2011b). Phosphorylation of Mycobacterium tuberculosis Ser/Thr phosphatase by PknA and PknB. PLoS One, 6, e17871.PubMedPubMedCentralCrossRefGoogle Scholar
- 177.Sajid, A., Arora, G., Singhal, A., Kalia, V. C., & Singh, Y. (2015). Protein phosphatases of pathogenic bacteria: Role in physiology and virulence. Annual Review of Microbiology, 69, 527–547.PubMedCrossRefPubMedCentralGoogle Scholar
- 178.Sakamoto, A., Terui, Y., Yamamoto, T., Kasahara, T., Nakamura, M., Tomitori, H., Yamamoto, K., Ishihama, A., Michael, A. J., Igarashi, K., & Kashiwagi, K. (2012). Enhanced biofilm formation and/or cell viability by polyamines through stimulation of response regulators UvrY and CpxR in the two-component signal transducing systems, and ribosome recycling factor. The International Journal of Biochemistry & Cell Biology, 44, 1877–1886.CrossRefGoogle Scholar
- 179.Sato, T., Takano, A., Hori, N., Izawa, T., Eda, T., Sato, K., Umekawa, M., Miyagawa, H., Matsumoto, K., Muramatsu-Fujishiro, A., et al. (2017). Role of the inner-membrane histidine kinase RcsC and outer-membrane lipoprotein RcsF in the activation of the Rcs phosphorelay signal transduction system in Escherichia coli. Microbiology, 163, 1071–1080.PubMedCrossRefPubMedCentralGoogle Scholar
- 180.Savill, J. (1997). Apoptosis in resolution of inflammation. Journal of Leukocyte Biology, 61, 375–380.PubMedCrossRefPubMedCentralGoogle Scholar
- 181.Schaefers, M. M., Liao, T. L., Boisvert, N. M., Roux, D., Yoder-Himes, D., & Priebe, G. P. (2017). An oxygen-sensing two-component system in the Burkholderia cepacia complex regulates biofilm, intracellular invasion, and pathogenicity. PLoS Pathogens, 13, e1006116.PubMedPubMedCentralCrossRefGoogle Scholar
- 182.Schwan, W. R., Lee, J. L., Lenard, F. A., Matthews, B. T., & Beck, M. T. (2002). Osmolarity and pH growth conditions regulate fim gene transcription and type 1 pilus expression in uropathogenic Escherichia coli. Infection and Immunity, 70, 1391–1402.PubMedPubMedCentralCrossRefGoogle Scholar
- 183.Senadheera, M. D., Guggenheim, B., Spatafora, G. A., Huang, Y. C., Choi, J., Hung, D. C., Treglown, J. S., Goodman, S. D., Ellen, R. P., & Cvitkovitch, D. G. (2005). A VicRK signal transduction system in Streptococcus mutans affects gtfBCD, gbpB, and ftf expression, biofilm formation, and genetic competence development. Journal of Bacteriology, 187, 4064–4076.PubMedPubMedCentralCrossRefGoogle Scholar
- 184.Servetas, S. L., Carpenter, B. M., Haley, K. P., Gilbreath, J. J., Gaddy, J. A., & Merrell, D. S. (2016). Characterization of key helicobacter pylori regulators identifies a role for ArsRS in biofilm formation. Journal of Bacteriology, 198, 2536–2548.PubMedPubMedCentralCrossRefGoogle Scholar
- 185.Sethi, S., & Chakraborty, T. (2011). Role of TLR- /NLR-signaling and the associated cytokines involved in recruitment of neutrophils in murine models of Staphylococcus aureus infection. Virulence, 2, 316–328.PubMedCrossRefPubMedCentralGoogle Scholar
- 186.Shah, I. M., Laaberki, M. H., Popham, D. L., & Dworkin, J. (2008). A eukaryotic-like Ser/Thr kinase signals bacteria to exit dormancy in response to peptidoglycan fragments. Cell, 135, 486–496.PubMedPubMedCentralCrossRefGoogle Scholar
- 187.Sharma, S., Pal, R., Hameed, S., & Fatima, Z. (2016). Antimycobacterial mechanism of vanillin involves disruption of cell-surface integrity, virulence attributes, and iron homeostasis. Intermational Journal of Mycobacteriology, 5, 460–468.CrossRefGoogle Scholar
- 188.Sharma-Kuinkel, B. K., Mann, E. E., Ahn, J. S., Kuechenmeister, L. J., Dunman, P. M., & Bayles, K. W. (2009). The Staphylococcus aureus LytSR two-component regulatory system affects biofilm formation. Journal of Bacteriology, 191, 4767–4775.PubMedPubMedCentralCrossRefGoogle Scholar
- 189.Shin, S., & Park, C. (1995). Modulation of flagellar expression in Escherichia coli by acetyl phosphate and the osmoregulator OmpR. Journal of Bacteriology, 177, 4696–4702.PubMedPubMedCentralCrossRefGoogle Scholar
- 190.Shinefield, H., Black, S., Fattom, A., Horwith, G., Rasgon, S., Ordonez, J., Yeoh, H., Law, D., Robbins, J. B., Schneerson, R., et al. (2002). Use of a Staphylococcus aureus conjugate vaccine in patients receiving hemodialysis. The New England Journal of Medicine, 346, 491–496.PubMedCrossRefPubMedCentralGoogle Scholar
- 191.Shrout, J. D., Tolker-Nielsen, T., Givskov, M., & Parsek, M. R. (2011). The contribution of cell-cell signaling and motility to bacterial biofilm formation. MRS Bulletin, 36, 367–373.PubMedPubMedCentralCrossRefGoogle Scholar
- 192.Silva, M. T. (2010). When two is better than one: Macrophages and neutrophils work in concert in innate immunity as complementary and cooperative partners of a myeloid phagocyte system. Journal of Leukocyte Biology, 87, 93–106.PubMedCrossRefPubMedCentralGoogle Scholar
- 193.Singh, D. K., Singh, P. K., Tiwari, S., Singh, S. K., Kumari, R., Tripathi, D. K., & Srivastava, K. K. (2014). Phosphorylation of pyruvate kinase A by protein kinase J leads to the altered growth and differential rate of intracellular survival of mycobacteria. Applied Microbiology and Biotechnology, 98, 10065–10076.PubMedCrossRefPubMedCentralGoogle Scholar
- 194.Singh, P. K., Yadav, V. K., Kalia, M., Dohare, S., Sharma, D., & Agarwal, V. (2017). Pseudomonas aeruginosa auto inducer3-oxo-C12-HSL exerts bacteriostatic effect and inhibits Staphylococcus epidermidis biofilm. Microbial Pathogenesis, 110, 612–619.PubMedCrossRefPubMedCentralGoogle Scholar
- 195.Singhal, A., Arora, G., Sajid, A., Maji, A., Bhat, A., Virmani, R., Upadhyay, S., Nandicoori, V. K., Sengupta, S., & Singh, Y. (2013). Regulation of homocysteine metabolism by Mycobacterium tuberculosis S-adenosylhomocysteine hydrolase. Scientific Reports, 3, 2264.PubMedPubMedCentralCrossRefGoogle Scholar
- 196.Smith, J. A. (1994). Neutrophils, host defense, and inflammation: A double-edged sword. Journal of Leukocyte Biology, 56, 672–686.PubMedCrossRefPubMedCentralGoogle Scholar
- 197.Stanley, N. R., & Lazazzera, B. A. (2005). Defining the genetic differences between wild and domestic strains of Bacillus subtilis that affect poly-gamma-dl-glutamic acid production and biofilm formation. Molecular Microbiology, 57, 1143–1158.PubMedCrossRefPubMedCentralGoogle Scholar
- 198.Sterer, N., Jeffet, U., Dadoun, A., Greenstein, R. B., & Kohavi, D. (2014). Zinc enhances the phototoxic effect of blue light against malodour-producing bacteria in an experimental oral biofilm. Journal of Medical Microbiology, 63, 1071–1075.PubMedCrossRefPubMedCentralGoogle Scholar
- 199.Stipp, R. N., Boisvert, H., Smith, D. J., Hofling, J. F., Duncan, M. J., & Mattos-Graner, R. O. (2013). CovR and VicRK regulate cell surface biogenesis genes required for biofilm formation in Streptococcus mutans. PLoS One, 8, e58271.PubMedPubMedCentralCrossRefGoogle Scholar
- 200.Suci, P. A., Mittelman, M. W., Yu, F. P., & Geesey, G. G. (1994). Investigation of ciprofloxacin penetration into Pseudomonas aeruginosa biofilms. Antimicrobial Agents and Chemotherapy, 38, 2125–2133.PubMedPubMedCentralCrossRefGoogle Scholar
- 201.Sugareva, V., Arlt, R., Fiedler, T., Riani, C., Podbielski, A., & Kreikemeyer, B. (2010). Serotype- and strain- dependent contribution of the sensor kinase CovS of the CovRS two-component system to Streptococcus pyogenes pathogenesis. BMC Microbiology, 10, 34.PubMedPubMedCentralCrossRefGoogle Scholar
- 202.Summers, C., Rankin, S. M., Condliffe, A. M., Singh, N., Peters, A. M., & Chilvers, E. R. (2010). Neutrophil kinetics in health and disease. Trends in Immunology, 31, 318–324.PubMedPubMedCentralCrossRefGoogle Scholar
- 203.Sun, Y. C., Koumoutsi, A., & Darby, C. (2009). The response regulator PhoP negatively regulates Yersinia pseudotuberculosis and Yersinia pestis biofilms. FEMS Microbiology Letters, 290, 85–90.PubMedCrossRefPubMedCentralGoogle Scholar
- 204.Surette, M. G. (2016). Looks who’s talking now. Cell Host & Microbe, 19, 429–430.CrossRefGoogle Scholar
- 205.Svensson, S. L., Huynh, S., Parker, C. T., & Gaynor, E. C. (2015). The Campylobacter jejuni CprRS two-component regulatory system regulates aspects of the cell envelope. Molecular Microbiology, 96, 189–209.PubMedCrossRefPubMedCentralGoogle Scholar
- 206.Tang, D., Kang, R., Coyne, C. B., Zeh, H. J., & Lotze, M. T. (2012). PAMPs and DAMPs: Signal 0s that spur autophagy and immunity. Immunological Reviews, 249, 158–175.PubMedPubMedCentralCrossRefGoogle Scholar
- 207.Tatke, G., Kumari, H., Silva-Herzog, E., Ramirez, L., & Mathee, K. (2015). Pseudomonas aeruginosa MifS-MifR two-component system is specific for alpha-ketoglutarate utilization. PLoS One, 10, e0129629.PubMedPubMedCentralCrossRefGoogle Scholar
- 208.Temel, D. B., Dutta, K., Alphonse, S., Nourikyan, J., Grangeasse, C., & Ghose, R. (2013). Regulatory interactions between a bacterial tyrosine kinase and its cognate phosphatase. The Journal of Biological Chemistry, 288, 15212–15228.PubMedPubMedCentralCrossRefGoogle Scholar
- 209.Temel, D. B., Dutta, K., & Ghose, R. (2014). Sequence-specific backbone (1)H, (1)(3)C and (1)(5)N assignments of the catalytic domain of the Escherichia coli protein tyrosine kinase, Wzc. Biomolecular NMR Assignments, 8, 37–41.PubMedCrossRefPubMedCentralGoogle Scholar
- 210.Teschler, J. K., Cheng, A. T., & Yildiz, F. H. (2017). The two-component signal transduction system VxrAB positively regulates vibrio cholerae biofilm formation. Journal of Bacteriology, 199(18), e00139–e00117.PubMedPubMedCentralCrossRefGoogle Scholar
- 211.Thakur, Z., Saini, V., Arya, P., Kumar, A., & Mehta, P. K. (2018). Computational insights into promoter architecture of toxin-antitoxin systems of Mycobacterium tuberculosis. Gene, 641, 161–171.PubMedCrossRefPubMedCentralGoogle Scholar
- 212.Thurlow, L. R., Hanke, M. L., Fritz, T., Angle, A., Aldrich, A., Williams, S. H., Engebretsen, I. L., Bayles, K. W., Horswill, A. R., & Kielian, T. (2011). Staphylococcus aureus biofilms prevent macrophage phagocytosis and attenuate inflammation in vivo. Journal of Immunology, 186, 6585–6596.CrossRefGoogle Scholar
- 213.Troutman, T. D., Bazan, J. F., & Pasare, C. (2012). Toll-like receptors, signaling adapters and regulation of the pro-inflammatory response by PI3K. Cell Cycle, 11, 3559–3567.PubMedPubMedCentralCrossRefGoogle Scholar
- 214.Ueda, A., & Wood, T. K. (2009). Connecting quorum sensing, c-di-GMP, pel polysaccharide, and biofilm formation in Pseudomonas aeruginosa through tyrosine phosphatase TpbA (PA3885). PLoS Pathogens, 5, e1000483.PubMedPubMedCentralCrossRefGoogle Scholar
- 215.Unal, C. M., Singh, B., Fleury, C., Singh, K., Chavez de Paz, L., Svensater, G., & Riesbeck, K. (2012). QseC controls biofilm formation of non-typeable Haemophilus influenzae in addition to an AI-2-dependent mechanism. International Journal of Medical Microbiology: IJMM, 302, 261–269.PubMedCrossRefPubMedCentralGoogle Scholar
- 216.Valentini, M., & Filloux, A. (2016). Biofilms and cyclic di-GMP (c-di-GMP) signaling: Lessons from Pseudomonas aeruginosa and other Bacteria. The Journal of Biological Chemistry, 291, 12547–12555.PubMedPubMedCentralCrossRefGoogle Scholar
- 217.Vasu, D., Sunitha, M. M., Srikanth, L., Swarupa, V., Prasad, U. V., Sireesha, K., Yeswanth, S., Kumar, P. S., Venkatesh, K., Chaudhary, A., & Sarma, P. V. (2015). In Staphylococcus aureus the regulation of pyruvate kinase activity by serine/threonine protein kinase favors biofilm formation. 3 Biotech, 5, 505–512.PubMedCrossRefPubMedCentralGoogle Scholar
- 218.Venglarcik, J. S., 3rd, Blair, L. L., & Dunkle, L. M. (1983). pH-dependent oxacillin tolerance of Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 23, 232–235.PubMedPubMedCentralCrossRefGoogle Scholar
- 219.Vuong, C., Kocianova, S., Voyich, J. M., Yao, Y., Fischer, E. R., DeLeo, F. R., & Otto, M. (2004). A crucial role for exopolysaccharide modification in bacterial biofilm formation, immune evasion, and virulence. The Journal of Biological Chemistry, 279, 54881–54886.PubMedCrossRefPubMedCentralGoogle Scholar
- 220.Wang, Q., Marchetti, R., Prisic, S., Ishii, K., Arai, Y., Ohta, I., Inuki, S., Uchiyama, S., Silipo, A., Molinaro, A., et al. (2017). A comprehensive study of interaction between peptidoglycan fragments and extracelluar domain of Mycobacterium tuberculosis Ser/Thr kinase PknB. Chembiochem 2, 18(21), 2094–2098.PubMedPubMedCentralCrossRefGoogle Scholar
- 221.Welkos, S., Bozue, J., Twenhafel, N., & Cote, C. (2015). Animal models for the pathogenesis, treatment, and prevention of infection by Bacillus anthracis. Microbiology Spectrum, 3, 1–38 TBS-0001-2012.Google Scholar
- 222.Whitchurch, C. B., Tolker-Nielsen, T., Ragas, P. C., & Mattick, J. S. (2002). Extracellular DNA required for bacterial biofilm formation. Science, 295, 1487.PubMedCrossRefPubMedCentralGoogle Scholar
- 223.Whitmore, S. E., & Lamont, R. J. (2012). Tyrosine phosphorylation and bacterial virulence. International Journal of Oral Science, 4, 1–6.PubMedPubMedCentralCrossRefGoogle Scholar
- 224.Wolff, K. A., de la Pena, A. H., Nguyen, H. T., Pham, T. H., Amzel, L. M., Gabelli, S. B., & Nguyen, L. (2015). A redox regulatory system critical for mycobacterial survival in macrophages and biofilm development. PLoS Pathogens, 11, e1004839.PubMedPubMedCentralCrossRefGoogle Scholar
- 225.Wu, C., Labrie, J., Tremblay, Y. D., Haine, D., Mourez, M., & Jacques, M. (2013). Zinc as an agent for the prevention of biofilm formation by pathogenic bacteria. Journal of Applied Microbiology, 115, 30–40.PubMedCrossRefPubMedCentralGoogle Scholar
- 226.Wu, Y., Wang, J., Xu, T., Liu, J., Yu, W., Lou, Q., Zhu, T., He, N., Ben, H., Hu, J., et al. (2012). The two-component signal transduction system ArlRS regulates Staphylococcus epidermidis biofilm formation in an ica-dependent manner. PLoS One, 7, e40041.PubMedPubMedCentralCrossRefGoogle Scholar
- 227.Xu, K., Li, S., Yang, W., Li, K., Bai, Y., Xu, Y., Jin, J., Wang, Y., & Bartlam, M. (2015). Structural and biochemical analysis of tyrosine phosphatase related to biofilm formation a (TpbA) from the opportunistic pathogen Pseudomonas aeruginosa PAO1. PLoS One, 10(4), e0124330.PubMedPubMedCentralCrossRefGoogle Scholar
- 228.Yaseen, I., Choudhury, M., Sritharan, M., & Khosla, S. (2018). Histone methyltransferase SUV39H1 participates in host defense by methylating mycobacterial histone-like protein HupB. The EMBO Journal, 37, 183–200.PubMedCrossRefPubMedCentralGoogle Scholar
- 229.Yavvari, P. S., Gupta, S., Arora, D., Nandicoori, V. K., Srivastava, A., & Bajaj, A. (2017). Clathrin-independent killing of intracellular mycobacteria and biofilm disruptions using synthetic antimicrobial polymers. Biomacromolecules, 18, 2024–2033.PubMedCrossRefPubMedCentralGoogle Scholar
- 230.Zamorano, L., Moya, B., Juan, C., Mulet, X., Blazquez, J., & Oliver, A. (2014). The Pseudomonas aeruginosa CreBC two-component system plays a major role in the response to beta-lactams, fitness, biofilm growth, and global regulation. Antimicrobial Agents and Chemotherapy, 58, 5084–5095.PubMedPubMedCentralCrossRefGoogle Scholar
- 231.Zheng, L., Wang, F. F., Ren, B. Z., Liu, W., Liu, Z., & Qian, W. (2016). Systematic mutational analysis of histidine kinase genes in the nosocomial pathogen stenotrophomonas maltophilia identifies BfmAK system control of biofilm development. Applied and Environmental Microbiology, 82, 2444–2456.PubMedPubMedCentralCrossRefGoogle Scholar