Bacterial Quorum Sensing in Pathogenic Relationships: Relevance to Complex Signalling Networks and Prospective Applications

  • K. V. Deepika
  • Pallaval Veera Bramhachari


Quorum sensing (QS) is of at most significance in bacterial pathogenic relationships as it permits bacteria to coordinate gene expression of local populations therefore work in harmony. Bacterial growth and virulence usually related to the cooperative release of extracellular factors liberated due to QS. QS enables pathogenic bacteria to control genes promoting invasion, defence and spread of diseases which invariably affect human and animal health besides agricultural productivity. Apparently several bacterial pathogens use QS to regulate premature occurrence of virulence factors to protect themselves from host defence systems. More over emergence of bacterial strains with multiple drug resistance increased the need to develop modern approaches to control bacterial diseases. Since bacterial pathogenesis depends on QS regulatory systems, intervention with QS serves as a novel approach for the therapeutic or prophylactic control of infection. In this review, paradigms of pathogenic relationships, focusing on gram positive and gram negative model microorganisms were elucidated. Thereafter, attention is drawn on the exploitation of QS in antimicrobial therapy and biological control.


Bacterial pathogens Quorum sensing Antimicrobial therapy Biological control Multiple-drug-resistance 


  1. 1.
    Andersson, R. A., Eriksson, A. R., Heikinheimo, R., Mäe, A., Pirhonen, M., Kõiv, V., et al. (2000). Quorum sensing in the plant pathogen Erwinia carotovora subsp. carotovora: The role of expREcc. Molecular Plant-Microbe Interactions, 13(4), 384–393.CrossRefGoogle Scholar
  2. 2.
    Anguita, J., Aparicio, L. R., & Naharro, G. E. R. M. A. N. (1993). Purification, gene cloning, amino acid sequence analysis, and expression of an extracellular lipase from an Aeromonas hydrophila human isolate. Applied and Environmental Microbiology, 59(8), 2411–2417.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Arevalo Ferro, C., Hentzer, M., Reil, G., Görg, A., Kjelleberg, S., Givskov, M., Riedel, K., & Eberl, L. (2003). Identification of quorum sensing regulated proteins in the opportunistic pathogen Pseudomonas aeruginosa by proteomics. Environmental Microbiology, 5(12), 1350–1369.CrossRefGoogle Scholar
  4. 4.
    Arias, C. A., Contreras, G. A., & Murray, B. E. (2010). Management of multidrug resistant enterococcal infections. Clinical Microbiology and Infection, 16(6), 555–562.CrossRefGoogle Scholar
  5. 5.
    Bzdrenga, J., Daudé, D., Rémy, B., Jacquet, P., Plener, L., Elias, M., & Chabriere, E. (2017). Biotechnological applications of quorum quenching enzymes. Chemico-Biological Interactions, 267, 104–115.CrossRefGoogle Scholar
  6. 6.
    Choudhary, S., & Schmidt-Dannert, C. (2010). Applications of quorum sensing in biotechnology. Applied Microbiology and Biotechnology, 86(5), 1267–1279.CrossRefGoogle Scholar
  7. 7.
    Cvitkovitch, D. G., Li, Y. H., & Ellen, R. P. (2003). Quorum sensing and biofilm formation in Streptococcal infections. The Journal of Clinical Investigation, 112(11), 1626–1632.CrossRefGoogle Scholar
  8. 8.
    Darkoh, C., & Asiedu, G. A. (2015). Quorum sensing systems in Clostridia. In Quorum sensing vs quorum quenching: A battle with no end in sight (pp. 133–154). New Delhi: Springer.Google Scholar
  9. 9.
    Defoirdt, T., Boon, N., Bossier, P., & Verstraete, W. (2004). Disruption of bacterial quorum sensing: An unexplored strategy to fight infections in aquaculture. Aquaculture, 240(1–4), 69–88.CrossRefGoogle Scholar
  10. 10.
    Del Papa, M. F., & Perego, M. (2011). Enterococcus faecalis virulence regulator FsrA binding to target promoters. Journal of Bacteriology, 193(7), 1527–1532.CrossRefGoogle Scholar
  11. 11.
    Dong, Y. H., Wang, L. H., & Zhang, L. H. (2007). Quorum-quenching microbial infections: Mechanisms and implications. Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1483), 1201–1211.CrossRefGoogle Scholar
  12. 12.
    Dunman, P. Á., Murphy, E., Haney, S., Palacios, D., Tucker-Kellogg, G., Wu, S., Brown, E. L., Zagursky, R. J., Shlaes, D., & Projan, S. J. (2001). Transcription profiling-based identification of Staphylococcus aureus genes regulated by the agr and/or sarA Loci. Journal of Bacteriology, 183(24), 7341–7353.CrossRefGoogle Scholar
  13. 13.
    Dunny, G. M., & Winans, S. C. (1999). Cell-cell signaling in bacteria. Washington, DC: ASM Press.Google Scholar
  14. 14.
    Eberhard, A. (1972). Inhibition and activation of bacterial luciferase synthesis. Journal of Bacteriology, 109(3), 1101–1105.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Fujiya, M., Musch, M. W., Nakagawa, Y., Hu, S., Alverdy, J., Kohgo, Y., et al. (2007). The Bacillus subtilis quorum-sensing molecule CSF contributes to intestinal homeostasis via OCTN2, a host cell membrane transporter. Cell Host & Microbe, 1(4), 299–308.CrossRefGoogle Scholar
  16. 16.
    Garde, C., Bjarnsholt, T., Givskov, M., Jakobsen, T. H., Hentzer, M., Claussen, A., et al. (2010). Quorum sensing regulation in Aeromonas hydrophila. Journal of Molecular Biology, 396(4), 849–857.CrossRefGoogle Scholar
  17. 17.
    Gaspar, F., Teixeira, N., Rigottier-Gois, L., Marujo, P., Nielsen-LeRoux, C., Crespo, M. T. B., et al. (2009). Virulence of Enterococcus faecalis dairy strains in an insect model: The role of fsrB and gelE. Microbiology, 155(11), 3564–3571.CrossRefGoogle Scholar
  18. 18.
    Givskov, M., de Nys, R., Manefield, M., Gram, L., Maximilien, R. I. A., Eberl, L. E. O., et al. (1996). Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling. Journal of Bacteriology, 178(22), 6618–6622.CrossRefGoogle Scholar
  19. 19.
    González, J. E., & Keshavan, N. D. (2006). Messing with bacterial quorum sensing. Microbiology and Molecular Biology Reviews, 70(4), 859–875.CrossRefGoogle Scholar
  20. 20.
    Huang, J. J., Han, J. I., Zhang, L. H., & Leadbetter, J. R. (2003). Utilization of acyl-homoserine lactone quorum signals for growth by a soil pseudomonad and Pseudomonas aeruginosa PAO1. Applied and Environmental Microbiology, 69(10), 5941–5949.CrossRefGoogle Scholar
  21. 21.
    Igbinosa, I. H., Igumbor, E. U., Aghdasi, F., Tom, M., & Okoh, A. I. (2012). Emerging Aeromonas species infections and their significance in public health. The Scientific World Journal, 2012, 625023.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Janda, J. M., & Abbott, S. L. (2010). The genus Aeromonas: Taxonomy, pathogenicity, and infection. Clinical Microbiology Reviews, 23(1), 35–73.CrossRefGoogle Scholar
  23. 23.
    Jha, A. K., Bais, H. P., & Vivanco, J. M. (2005). Enterococcus faecalis mammalian virulence-related factors exhibit potent pathogenicity in the Arabidopsis thaliana plant model. Infection and Immunity, 73(1), 464–475.CrossRefGoogle Scholar
  24. 24.
    Kalpana, B. J., Aarthy, S., & Pandian, S. K. (2012). Antibiofilm activity of α-amylase from Bacillus subtilis S8-18 against biofilm forming human bacterial pathogens. Applied Biochemistry and Biotechnology, 167(6), 1778–1794.CrossRefGoogle Scholar
  25. 25.
    Kastbjerg, V. G., Nielsen, K. F., Dalsgaard, I., Rasch, M., Bruhn, J. B., Givskov, M., & Gram, L. (2007). Profiling acylated homoserine lactones in Yersinia ruckeri and influence of exogenous acyl homoserine lactones and known quorum sensing inhibitors on protease production. Journal of Applied Microbiology, 102(2), 363–374.CrossRefGoogle Scholar
  26. 26.
    Khajanchi, B. K., Sha, J., Kozlova, E. V., Erova, T. E., Suarez, G., Sierra, J. C., et al. (2009). N-acylhomoserine lactones involved in quorum sensing control the type VI secretion system, biofilm formation, protease production, and in vivo virulence in a clinical isolate of Aeromonas hydrophila. Microbiology, 155(11), 3518–3531.CrossRefGoogle Scholar
  27. 27.
    Kirke, D. F., Swift, S., Lynch, M. J., & Williams, P. (2004). The Aeromonas hydrophila LuxR homologue AhyR regulates the N-acyl homoserine lactone synthase, AhyI positively and negatively in a growth phase-dependent manner. FEMS Microbiology Letters, 241(1), 109–117.CrossRefGoogle Scholar
  28. 28.
    Kleerebezem, M., Quadri, L. E., Kuipers, O. P., & De Vos, W. M. (1997). Quorum sensing by peptide pheromones and two component signal-transduction systems in Gram positive bacteria. Molecular Microbiology, 24(5), 895–904.CrossRefGoogle Scholar
  29. 29.
    Kong, K. F., Vuong, C., & Otto, M. (2006). Staphylococcus quorum sensing in biofilm formation and infection. International Journal of Medical Microbiology, 296(2–3), 133–139.CrossRefGoogle Scholar
  30. 30.
    Kozlova, E. V., Khajanchi, B. K., Popov, V. L., Wen, J., & Chopra, A. K. (2012). Impact of QseBC system in c-di-GMP-dependent quorum sensing regulatory network in a clinical isolate SSU of Aeromonas hydrophila. Microbial Pathogenesis, 53(3–4), 115–124.CrossRefGoogle Scholar
  31. 31.
    Kristensen, J. B., Meyer, R. L., Laursen, B. S., Shipovskov, S., Besenbacher, F., & Poulsen, C. H. (2008). Antifouling enzymes and the biochemistry of marine settlement. Biotechnology Advances, 26(5), 471–481.CrossRefGoogle Scholar
  32. 32.
    Kusari, P., Kusari, S., Spiteller, M., & Kayser, O. (2015). Implications of endophyte-plant crosstalk in light of quorum responses for plant biotechnology. Applied Microbiology and Biotechnology, 99(13), 5383–5390.CrossRefGoogle Scholar
  33. 33.
    LaSarre, B., & Federle, M. J. (2013). Exploiting quorum sensing to confuse bacterial pathogens. Microbiology and Molecular Biology Reviews, 77(1), 73–111.CrossRefGoogle Scholar
  34. 34.
    Lewenza, S., Conway, B., Greenberg, E. P., & Sokol, P. A. (1999). Quorum sensing in Burkholderia cepacia: Identification of the LuxRI homologs CepRI. Journal of Bacteriology, 181(3), 748–756.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Li, T., Wang, D., Liu, N., Ma, Y., Ding, T., Mei, Y., & Li, J. (2018). Inhibition of quorum sensing-controlled virulence factors and biofilm formation in Pseudomonas fluorescens by cinnamaldehyde. International Journal of Food Microbiology, 269, 98–106.CrossRefGoogle Scholar
  36. 36.
    Lynch, M. J., Swift, S., Kirke, D. F., Keevil, C. W., Dodd, C. E., & Williams, P. (2002). The regulation of biofilm development by quorum sensing in Aeromonas hydrophila. Environmental Microbiology, 4(1), 18–28.CrossRefGoogle Scholar
  37. 37.
    Mäkinen, P. L., Clewell, D. B., An, F., & Mäkinen, K. K. (1989). Purification and substrate specificity of a strongly hydrophobic extracellular metalloendopeptidase (“gelatinase”) from Streptococcus faecalis (strain 0G1–10). Journal of Biological Chemistry, 264(6), 3325–3334.PubMedGoogle Scholar
  38. 38.
    Merino, S., Rubires, X., Knøchel, S., & Tomás, J. M. (1995). Emerging pathogens: Aeromonas spp. International Journal of Food Microbiology, 28(2), 157–168.CrossRefGoogle Scholar
  39. 39.
    Mole, B. M., Baltrus, D. A., Dangl, J. L., & Grant, S. R. (2007). Global virulence regulation networks in phytopathogenic bacteria. Trends in Microbiology, 15(8), 363–371.CrossRefGoogle Scholar
  40. 40.
    Nakayama, J., Cao, Y., Horii, T., Sakuda, S., Akkermans, A. D., De Vos, W. M., & Nagasawa, H. (2001). Gelatinase biosynthesis activating pheromone: A peptide lactone that mediates a quorum sensing in Enterococcus faecalis. Molecular Microbiology, 41(1), 145–154.CrossRefGoogle Scholar
  41. 41.
    Nakayama, J., Chen, S., Oyama, N., Nishiguchi, K., Azab, E. A., Tanaka, E., et al. (2006). Revised model for Enterococcus faecalis fsr quorum-sensing system: The small open reading frame fsrD encodes the gelatinase biosynthesis-activating pheromone propeptide corresponding to staphylococcal AgrD. Journal of Bacteriology, 188(23), 8321–8326.CrossRefGoogle Scholar
  42. 42.
    Newman, K. L., Chatterjee, S., Ho, K. A., & Lindow, S. E. (2008). Virulence of plant pathogenic bacteria attenuated by degradation of fatty acid cell-to-cell signaling factors. Molecular Plant-Microbe Interactions, 21(3), 326–334.CrossRefGoogle Scholar
  43. 43.
    Nithya, C., Devi, M. G., & Karutha Pandian, S. (2011). A novel compound from the marine bacterium Bacillus pumilus S6-15 inhibits biofilm formation in gram-positive and gram-negative species. Biofouling, 27(5), 519–528.CrossRefGoogle Scholar
  44. 44.
    Park, S. Y., Shin, Y. P., Kim, C. H., Park, H. J., Seong, Y. S., Kim, B. S., et al. (2008). Immune evasion of Enterococcus faecalis by an extracellular gelatinase that cleaves C3 and iC3b. The Journal of Immunology, 181(9), 6328–6336.CrossRefGoogle Scholar
  45. 45.
    Parsek, M. R., & Greenberg, E. P. (2000). Acyl-homoserine lactone quorum sensing in gram-negative bacteria: A signaling mechanism involved in associations with higher organisms. Proceedings of the National Academy of Sciences, 97(16), 8789–8793.CrossRefGoogle Scholar
  46. 46.
    Parsek, M. R., Val, D. L., Hanzelka, B. L., Cronan, J. E., & Greenberg, E. P. (1999). Acyl homoserine-lactone quorum-sensing signal generation. Proceedings of the National Academy of Sciences, 96(8), 4360–4365.CrossRefGoogle Scholar
  47. 47.
    Patel, B., Kumari, S., Banerjee, R., Samanta, M., & Das, S. (2017). Disruption of the quorum sensing regulated pathogenic traits of the biofilm-forming fish pathogen Aeromonas hydrophila by tannic acid, a potent quorum quencher. Biofouling, 33(7), 580–590.CrossRefGoogle Scholar
  48. 48.
    Pearson, J. P., Van Delden, C., & Iglewski, B. H. (1999). Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals. Journal of Bacteriology, 181(4), 1203–1210.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Prajsnar, T. K., Renshaw, S. A., Ogryzko, N. V., Foster, S. J., Serror, P., & Mesnage, S. (2013). Zebrafish as a novel vertebrate model to dissect enterococcal pathogenesis. Infection and Immunity, 81(11), 4271–4279.CrossRefGoogle Scholar
  50. 50.
    Qin, X., Singh, K. V., Weinstock, G. M., & Murray, B. E. (2000). Effects of Enterococcus faecalis fsr genes on production of gelatinase and a serine protease and virulence. Infection and Immunity, 68(5), 2579–2586.CrossRefGoogle Scholar
  51. 51.
    Qin, X., Singh, K. V., Weinstock, G. M., & Murray, B. E. (2001). Characterization of fsr, a regulator controlling expression of gelatinase and serine protease in Enterococcus faecalis OG1RF. Journal of Bacteriology, 183(11), 3372–3382.CrossRefGoogle Scholar
  52. 52.
    Rasmussen, T. B., & Givskov, M. (2006). Quorum sensing inhibitors: A bargain of effects. Microbiology, 152(4), 895–904.CrossRefGoogle Scholar
  53. 53.
    Reading, N. C., & Sperandio, V. (2005). Quorum sensing: The many languages of bacteria. FEMS Microbiology Letters, 254(1), 1–11.CrossRefGoogle Scholar
  54. 54.
    Romero, M., Muras, A., Mayer, C., Buján, N., Magariños, B., & Otero, A. (2014). In vitro quenching of fish pathogen Edwardsiella tarda AHL production using marine bacterium Tenacibaculum sp. strain 20J cell extracts. Diseases of Aquatic Organisms, 108(3), 217–225.CrossRefGoogle Scholar
  55. 55.
    Schwenteit, J., Gram, L., Nielsen, K. F., Fridjonsson, O. H., Bornscheuer, U. T., Givskov, M., & Gudmundsdottir, B. K. (2011). Quorum sensing in Aeromonas salmonicida subsp. achromogenes and the effect of the autoinducer synthase AsaI on bacterial virulence. Veterinary Microbiology, 147(3–4), 389–397.CrossRefGoogle Scholar
  56. 56.
    Shinohara, M., Nakajima, N., & Uehara, Y. (2007). Purification and characterization of a novel esterase (β-hydroxypalmitate methyl ester hydrolase) and prevention of the expression of virulence by Ralstonia solanacearum. Journal of Applied Microbiology, 103(1), 152–162.CrossRefGoogle Scholar
  57. 57.
    Singh, R. P., & Nakayama, J. (2015). Quorum-sensing systems in Enterococci. In Quorum sensing vs quorum quenching: A battle with no end in sight (pp. 155–163). Springer India.Google Scholar
  58. 58.
    Swift, S., Karlyshev, A. V., Fish, L., Durant, E. L., Winson, M. K., Chhabra, S. R., et al. (1997). Quorum sensing in Aeromonas hydrophila and Aeromonas salmonicida: Identification of the LuxRI homologs AhyRI and AsaRI and their cognate N-acylhomoserine lactone signal molecules. Journal of Bacteriology, 179(17), 5271–5281.CrossRefGoogle Scholar
  59. 59.
    Swift, S., Downie, J. A., Whitehead, N. A., Barnard, A. M., Salmond, G. P., & Williams, P. (2001). Quorum sensing as a population-density-dependent determinant of bacterial physiology. Advances in Microbial Physiology, 45, 200–272.Google Scholar
  60. 60.
    Teixeira, N., Varahan, S., Gorman, M. J., Palmer, K. L., Zaidman-Remy, A., Yokohata, R., et al. (2013). Drosophila host model reveals new Enterococcus faecalis quorum-sensing associated virulence factors. PloS One, 8(5), e64740.CrossRefGoogle Scholar
  61. 61.
    Thurlow, L. R., Thomas, V. C., Narayanan, S., Olson, S., Fleming, S. D., & Hancock, L. E. (2010). Gelatinase contributes to the pathogenesis of endocarditis caused by Enterococcus faecalis. Infection and Immunity, 78(11), 4936–4943.CrossRefGoogle Scholar
  62. 62.
    Vadivelu, J., Puthucheary, S. D., & Navaratnam, P. (1991). Exotoxin profiles of clinical isolates of Aeromonas hydrophila. Journal of Medical Microbiology, 34(6), 363–367.CrossRefGoogle Scholar
  63. 63.
    Waters, C. M., & Bassler, B. L. (2005). Quorum sensing: Cell-to-cell communication in bacteria. Annual Review of Cell and Developmental Biology, 21, 319–346.CrossRefGoogle Scholar
  64. 64.
    Wuster, A., & Babu, M. M. (2008). Conservation and evolutionary dynamics of the agr cell-to-cell communication system across firmicutes. Journal of Bacteriology, 190(2), 743–746.CrossRefGoogle Scholar
  65. 65.
    Zhang, H. B., Wang, L. H., & Zhang, L. H. (2002). Genetic control of quorum-sensing signal turnover in Agrobacterium tumefaciens. Proceedings of the National Academy of Sciences, 99(7), 4638–4643.CrossRefGoogle Scholar
  66. 66.
    Zhang, L. H. (2003). Quorum quenching and proactive host defense. Trends in Plant Science, 8(5), 238–244.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • K. V. Deepika
    • 1
  • Pallaval Veera Bramhachari
    • 1
  1. 1.Department of BiotechnologyKrishna UniversityMachilipatnamIndia

Personalised recommendations