Quorum Sensing Regulated Swarming Motility and Migratory Behavior in Bacteria

  • Pallaval Veera Bramhachari
  • N. M. Yugandhar
  • A. M. V. N. Prathyusha
  • G. Mohana Sheela
  • Jalaja Naravula
  • Nagam Venkateswarlu


Bacteria produce and sense chemical signal molecules, communicate with closet neighbors. Chemical signals are diverse and comprise cyclic and linear peptides, short and long chain γ-quinolones, N-acyl-homoserine lactones (AHL) and unsaturated fatty acids. These signaling molecules are collectively called autoinducers. Certain signals are readily diffusible small molecules, while others are hydrophobic and can be vesicle or membrane -associated. Several chemical signals are vastly genus or species specific, while LuxS gene product furanosyl borate diester, a more universally synthesized and recognized molecule. It is assumed that bacteria use these auto inducer molecules not only to identify their neighbors and cell density, but also to govern some aspects of their environment, such as confinement and diffusion. In a broad sense, quorum sensing allows harmonization of cell density wide activities, together with virulence factor production, biofilm dynamics, bioluminescence and swarming motility on surfaces. Swarming motility is a flagella-driven movement of bacterial cells through it can spread as a biofilm over a surface. Different chemical signals produced either by bacteria (AHL) may persuade the QS regulated swarming activities in bacteria. This review emphasizes the role of AHL and other low-molecular-mass signal molecules involvement of in swarming motility of bacteria.


Quorum sensing AHL Swarming motility Quorum-sensing controlled gene expression systems 



PVBC is grateful to Krishna University for providing necessary facilities to carry out the research work and for extending constant support.

Conflict of Interest

The author declares that there is no conflict of interest.


  1. 1.
    Abdel-Mawgoud, A. M., Hausmann, R., Lépine, F., Müller, M. M., & Déziel, E. (2011). Rhamnolipids: Detection, analysis, biosynthesis, genetic regulation, and bioengineering of production. In Biosurfactants (pp. 13–55). Berlin: Springer.Google Scholar
  2. 2.
    Atkinson, S., Chang, C. Y., Sockett, R. E., Cámara, M., & Williams, P. (2006). Quorum sensing in Yersinia enterocolitica controls swimming and swarming motility. Journal of Bacteriology, 188(4), 1451–1461.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Baker, A. E., Diepold, A., Kuchma, S. L., Scott, J. E., Ha, D. G., Orazi, G., …, O’Toole, G. A. (2016). PilZ domain protein FlgZ mediates cyclic di-GMP-dependent swarming motility control in Pseudomonas aeruginosa. Journal of bacteriology, 198(13), 1837–1846.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Banerjee, M., Moulick, S., Bhattacharya, K. K., Parai, D., Chattopadhyay, S., & Mukherjee, S. K. (2017). Attenuation of Pseudomonas aeruginosa quorum sensing, virulence and biofilm formation by extracts of Andrographis paniculata. Microbial Pathogenesis, 113, 85–93.PubMedCrossRefGoogle Scholar
  5. 5.
    Bassler, B., & Vogel, J. (2013). Bacterial regulatory mechanisms: the gene and beyond. Current Opinion in Microbiology, 16(2), 109.PubMedCrossRefGoogle Scholar
  6. 6.
    Belas, R., & Suvanasuthi, R. (2005). The ability of Proteus mirabilis to sense surfaces and regulate virulence gene expression involves FliL, a flagellar basal body protein. Journal of bacteriology, 187(19), 6789–6803.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Boles, B. R., Thoendel, M., & Singh, P. K. (2005). Rhamnolipids mediate detachment of Pseudomonas aeruginosa from biofilms. Molecular Microbiology, 57(5), 1210–1223.PubMedCrossRefGoogle Scholar
  8. 8.
    Caiazza, N. C., Shanks, R. M., & O’toole, G. A. (2005). Rhamnolipids modulate swarming motility patterns of Pseudomonas aeruginosa. Journal of Bacteriology, 187(21), 7351–7361.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Chatterjee, M., D’Morris, S., Paul, V., Warrier, S., Vasudevan, A. K., Vanuopadath, M., …, Biswas, R. (2017). Mechanistic understanding of Phenyllactic acid mediated inhibition of quorum sensing and biofilm development in Pseudomonas aeruginosa. Applied Microbiology and Biotechnology, 101(22), 8223–8236.PubMedCrossRefGoogle Scholar
  10. 10.
    Costa, S. G. V. A. O., Déziel, E., & Lépine, F. (2011). Characterization of rhamnolipid production by Burkholderia glumae. Letters in Applied Microbiology, 53(6), 620–627.PubMedCrossRefGoogle Scholar
  11. 11.
    Daniels, R., Reynaert, S., Hoekstra, H., Verreth, C., Janssens, J., Braeken, K., …, De Vos, D. E. (2006). Quorum signal molecules as biosurfactants affecting swarming in Rhizobium etli. Proceedings of the National Academy of Sciences, 103(40), 14965–14970.CrossRefGoogle Scholar
  12. 12.
    Daniels, R., Vanderleyden, J., & Michiels, J. (2004). Quorum sensing and swarming migration in bacteria. FEMS Microbiology Reviews, 28(3), 261–289.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    de la Fuente-Núñez, C., Korolik, V., Bains, M., Nguyen, U., Breidenstein, E. B., Horsman, S., …, Hancock, R. E. (2012). Inhibition of bacterial biofilm formation and swarming motility by a small synthetic cationic peptide. Antimicrobial Agents and Chemotherapy, 56(5), 2696–2704.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Deng, Y., Schmid, N., Wang, C., Wang, J., Pessi, G., Wu, D., …, Song, H. (2012). Cis-2-dodecenoic acid receptor RpfR links quorum-sensing signal perception with regulation of virulence through cyclic dimeric guanosine monophosphate turnover. Proceedings of the National Academy of Sciences, 109(38), 15479–15484.CrossRefGoogle Scholar
  15. 15.
    Deziel, E., Lepine, F., Milot, S., & Villemur, R. (2003). rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroxyalkanoyloxy) alkanoic acids (HAAs), the precursors of rhamnolipids. Microbiology, 149(8), 2005–2013.PubMedCrossRefGoogle Scholar
  16. 16.
    Dubeau, D., Déziel, E., Woods, D. E., & Lépine, F. (2009). Burkholderia thailandensis harbors two identical rhl gene clusters responsible for the biosynthesis of rhamnolipids. BMC Microbiology, 9(1), 263.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Dusane, D. H., Zinjarde, S. S., Venugopalan, V. P., Mclean, R. J., Weber, M. M., & Rahman, P. K. (2010). Quorum sensing: Implications on rhamnolipid biosurfactant production. Biotechnology and Genetic Engineering Reviews, 27(1), 159–184.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Eberl, L., Christiansen, G., Molin, S., & Givskov, M. (1996). Differentiation of Serratia liquefaciens into swarm cells is controlled by the expression of the flhD master operon. Journal of Bacteriology, 178(2), 554–559.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Enos-Berlage, J. L., & McCarter, L. L. (2000). Relation of capsular polysaccharide production and colonial cell organization to colony morphology in Vibrio parahaemolyticus. Journal of Bacteriology, 182(19), 5513–5520.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Enos-Berlage, J. L., Guvener, Z. T., Keenan, C. E., & McCarter, L. L. (2005). Genetic determinants of biofilm development of opaque and translucent Vibrio parahaemolyticus. Molecular Microbiology, 55(4), 1160–1182.PubMedCrossRefGoogle Scholar
  21. 21.
    Falcone, M., Ferrara, S., Rossi, E., Johansen, H. K., Molin, S., & Bertoni, G. (2018). The small RNA ersA of Pseudomonas aeruginosa contributes to biofilm development and motility through post-transcriptional modulation of AmrZ. Frontiers in Microbiology, 9, 238.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Fraser, G. M., & Hughes, C. (1999). Swarming motility. Current Opinion in Microbiology, 2(6), 630–635.PubMedCrossRefGoogle Scholar
  23. 23.
    Fraser, G. M., Claret, L., Furness, R., Gupta, S., & Hughes, C. (2002). Swarming-coupled expression of the Proteus mirabilis hpmBA haemolysin operona. Microbiology, 148(7), 2191–2201.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Fukami, J., Abrantes, J. L. F., del Cerro, P., Nogueira, M. A., Ollero, F. J., Megías, M., & Hungria, M. (2018). Revealing strategies of quorum sensing in Azospirillum brasilense strains Ab-V5 and Ab-V6. Archives of Microbiology, 200(1), 47–56.PubMedCrossRefGoogle Scholar
  25. 25.
    Fuqua, W. C., Winans, S. C., & Greenberg, E. P. (1994). Quorum sensing in bacteria: The LuxR-LuxI family of cell density-responsive transcriptional regulators. Journal of Bacteriology, 176(2), 269.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Goodman, A. L., Kulasekara, B., Rietsch, A., Boyd, D., Smith, R. S., & Lory, S. (2004). A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa. Developmental Cell, 7(5), 745–754.PubMedCrossRefGoogle Scholar
  27. 27.
    Güvener, Z. T., & McCarter, L. L. (2003). Multiple regulators control capsular polysaccharide production in Vibrio parahaemolyticus. Journal of Bacteriology, 185(18), 5431–5441.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Hall, A. N., Subramanian, S., Oshiro, R. T., Canzoneri, A. K., & Kearns, D. B. (2018). SwrD (YlzI) promotes swarming in Bacillus subtilis by increasing power to flagellar motors. Journal of Bacteriology, 200(2), e00529–e00517.PubMedGoogle Scholar
  29. 29.
    Harshey, R. M. (2003). Bacterial motility on a surface: Many ways to a common goal. Annual Reviews in Microbiology, 57(1), 249–273.CrossRefGoogle Scholar
  30. 30.
    Häuβler, S., Rohde, M., Von Neuhoff, N., Nimtz, M., & Steinmetz, I. (2003). Structural and functional cellular changes induced by Burkholderia pseudomallei rhamnolipid. Infection and Immunity, 71(5), 2970–2975.PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Hejazi, A., & Falkiner, F. R. (1997). Serratia marcescens. Journal of Medical Microbiology, 46(11), 903–912.PubMedCrossRefGoogle Scholar
  32. 32.
    Henke, J. M., & Bassler, B. L. (2004). Quorum sensing regulates type III secretion in Vibrio harveyi and Vibrio parahaemolyticus. Journal of Bacteriology, 186(12), 3794–3805.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Huber, B., Riedel, K., Hentzer, M., Heydorn, A., Gotschlich, A., Givskov, M., …, Eberl, L. (2001). The cep quorum-sensing system of Burkholderia cepacia H111 controls biofilm formation and swarming motility. Microbiology, 147(9), 2517–2528.PubMedCrossRefGoogle Scholar
  34. 34.
    Husain, F. M., Ahmad, I., Al-thubiani, A. S., Abulreesh, H. H., AlHazza, I. M., & Aqil, F. (2017). Leaf Extracts of Mangifera indica L. Inhibit quorum sensing–regulated production of virulence factors and biofilm in test bacteria. Frontiers in Microbiology, 8, 727.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Inoue, T., Shingaki, R., & Fukui, K. (2008). Inhibition of swarming motility of Pseudomonas aeruginosa by branched-chain fatty acids. FEMS Microbiology Letters, 281(1), 81–86.PubMedCrossRefGoogle Scholar
  36. 36.
    Jaques, S., & McCarter, L. L. (2006). Three new regulators of swarming in Vibrio parahaemolyticus. Journal of Bacteriology, 188(7), 2625–2635.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Jensen, P. Ø., Bjarnsholt, T., Phipps, R., Rasmussen, T. B., Calum, H., Christoffersen, L., ... & Høiby, N. (2007). Rapid necrotic killing of polymorphonuclear leukocytes is caused by quorum-sensing-controlled production of rhamnolipid by Pseudomonas aeruginosa. Microbiology, 153(5), 1329–1338.PubMedCrossRefGoogle Scholar
  38. 38.
    Kearns, D. B., Chu, F., Rudner, R., & Losick, R. (2004). Genes governing swarming in Bacillus subtilisand evidence for a phase variation mechanism controlling surface motility. Molecular Microbiology, 52, 357–369.PubMedCrossRefGoogle Scholar
  39. 39.
    Kearns, D. B. (2010). A field guide to bacterial swarming motility. Nature Reviews Microbiology, 8(9), 634.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Kim, W., & Surette, M. G. (2004). Metabolic differentiation in actively swarming Salmonella. Molecular Microbiology, 54(3), 702–714.PubMedCrossRefGoogle Scholar
  41. 41.
    Klausen, M., Aaes-Jørgensen, A., Molin, S., & Tolker-Nielsen, T. (2003). Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms. Molecular Microbiology, 50(1), 61–68.PubMedCrossRefGoogle Scholar
  42. 42.
    Köhler, T., Curty, L. K., Barja, F., Van Delden, C., & Pechère, J. C. (2000). Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. Journal of Bacteriology, 182(21), 5990–5996.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Kuchma, S. L., Brothers, K. M., Merritt, J. H., Liberati, N. T., Ausubel, F. M., & O’Toole, G. A. (2007). BifA, a cyclic-Di-GMP phosphodiesterase, inversely regulates biofilm formation and swarming motility by Pseudomonas aeruginosa PA14. Journal of Bacteriology, 189(22), 8165–8178.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Kuchma, S. L., Delalez, N. J., Filkins, L. M., Snavely, E. A., Armitage, J. P., & O’Toole, G. A. (2015). Cyclic di-GMP-mediated repression of swarming motility by Pseudomonas aeruginosa PA14 requires the MotAB stator. Journal of Bacteriology, 197(3), 420–430.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Kumar, L., Chhibber, S., Kumar, R., Kumar, M., & Harjai, K. (2015). Zingerone silences quorum sensing and attenuates virulence of Pseudomonas aeruginosa. Fitoterapia, 102, 84–95.PubMedCrossRefGoogle Scholar
  46. 46.
    Lai, H. C., Soo, P. C., Wei, J. R., Yi, W. C., Liaw, S. J., Horng, Y. T., …, Williams, P. (2005). The RssAB two-component signal transduction system in Serratia marcescens regulates swarming motility and cell envelope architecture in response to exogenous saturated fatty acids. Journal of bacteriology, 187(10), 3407–3414.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Lapouge, K., Schubert, M., Allain, F. H. T., & Haas, D. (2008). Gac/Rsm signal transduction pathway of γ-proteobacteria: From RNA recognition to regulation of social behaviour. Molecular Microbiology, 67(2), 241–253.PubMedCrossRefGoogle Scholar
  48. 48.
    Liaw, S. J., Lai, H. C., & Wang, W. B. (2004). Modulation of swarming and virulence by fatty acids through the RsbA protein in Proteus mirabilis. Infection and Immunity, 72(12), 6836–6845.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Liaw, S. J., Lai, H. C., Ho, S. W., Luh, K. T., & Wang, W. B. (2003). Role of RsmA in the regulation of swarming motility and virulence factor expression in Proteus mirabilis. Journal of Medical Microbiology, 52(1), 19–28.PubMedCrossRefGoogle Scholar
  50. 50.
    Little, K., Tipping, M. J., & Gibbs, K. A. (2018). Swarmer cell development of the bacterium Proteus mirabilis requires the conserved ECA biosynthesis gene, rffG. bioRxiv, 198622.Google Scholar
  51. 51.
    Liu, Y., Lardi, M., Pedrioli, A., Eberl, L., & Pessi, G. (2017). NtrC-dependent control of exopolysaccharide synthesis and motility in Burkholderia cenocepacia H111. PLoS One, 12(6), e0180362.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Masduki, A., Nakamura, J., Ohga, T., Umezaki, R., Kato, J., & Ohtake, H. (1995). Isolation and characterization of chemotaxis mutants and genes of Pseudomonas aeruginosa. Journal of Bacteriology, 177(4), 948–952.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Mattingly, A. E., Kamatkar, N. G., Borlee, B. R., & Shrout, J. D. (2018). Multiple environmental factors influence the importance of the phosphodiesterase DipA upon Pseudomonas aeruginosa swarming. Applied and Environmental Microbiology, 84(7), e02847–e02817.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Merritt, J. H., Brothers, K. M., Kuchma, S. L., & O’toole, G. A. (2007). SadC reciprocally influences biofilm formation and swarming motility via modulation of exopolysaccharide production and flagellar function. Journal of Bacteriology, 189(22), 8154–8164.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Michaels, B., & Tisa, L. S. (2011). Swarming motility by Photorhabdus temperata is influenced by environmental conditions and uses the same flagella as that used in swimming motility. Canadian Journal of Microbiology, 57(3), 196–203.PubMedCrossRefGoogle Scholar
  56. 56.
    Milton, D. L. (2006). Quorum sensing in vibrios: Complexity for diversification. International Journal of Medical Microbiology, 296(2–3), 61–71.CrossRefGoogle Scholar
  57. 57.
    Mukherjee, A., Cui, Y., Liu, Y., Dumenyo, C. K., & Chatterjee, A. K. (1996). Global regulation in Erwinia species by Erwinia carotovora rsmA, a homologue of Escherichia coli csrA: Repression of secondary metabolites, pathogenicity and hypersensitive reaction. Microbiology, 142(2), 427–434.PubMedCrossRefGoogle Scholar
  58. 58.
    Ng, W. L., & Bassler, B. L. (2009). Bacterial quorum-sensing network architectures. Annual Review of Genetics, 43, 197–222.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Ng, W. L., Perez, L. J., Wei, Y., Kraml, C., Semmelhack, M. F., & Bassler, B. L. (2011). Signal production and detection specificity in Vibrio CqsA/CqsS quorum-sensing systems. Molecular Microbiology, 79(6), 1407–1417.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Nickzad, A., & Déziel, E. (2016). Adaptive significance of quorum sensing-dependent regulation of rhamnolipids by integration of growth rate in Burkholderia glumae: A trade-off between survival and efficiency. Frontiers in Microbiology, 7, 1215.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Nickzad, A., Lépine, F., & Déziel, E. (2015). Quorum sensing controls swarming motility of Burkholderia glumae through regulation of rhamnolipids. PLoS One, 10(6), e0128509.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Oliveira, B. D. A., Rodrigues, A. C., Bertoldi, M. C., Taylor, J. G., & Pinto, U. M. (2017). Microbial control and quorum sensing inhibition by phenolic compounds of acerola (Malpighia emarginata). International Food Research Journal, 24(5), 2228–2237.Google Scholar
  63. 63.
    O’May, C., & Tufenkji, N. (2011). The swarming motility of Pseudomonas aeruginosa is blocked by cranberry proanthocyanidins and other tannin-containing materials. Applied and Environmental Microbiology, 77(9), 3061–3067.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Overhage, J., Bains, M., Brazas, M. D., & Hancock, R. E. (2008). Swarming of Pseudomonas aeruginosa is a complex adaptation leading to increased production of virulence factors and antibiotic resistance. Journal of Bacteriology, 190(8), 2671–2679.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Overhage, J., Lewenza, S., Marr, A. K., & Hancock, R. E. (2007). Identification of genes involved in swarming motility using a Pseudomonas aeruginosa PAO1 mini-Tn5-lux mutant library. Journal of Bacteriology, 189(5), 2164–2169.PubMedCrossRefGoogle Scholar
  66. 66.
    Patrick, J. E., & Kearns, D. B. (2012). Swarming motility and the control of master regulators of flagellar biosynthesis. Molecular Microbiology, 83(1), 14–23.PubMedCrossRefGoogle Scholar
  67. 67.
    Rahman, M. R. T., Lou, Z., Yu, F., Wang, P., & Wang, H. (2017). Anti-quorum sensing and anti-biofilm activity of Amomum tsaoko (Amommum tsao-ko Crevost et Lemarie) on foodborne pathogens. Saudi Journal of Biological Sciences, 24(2), 324–330.PubMedCrossRefGoogle Scholar
  68. 68.
    Ramanathan, S., Ravindran, D., Arunachalam, K., & Arumugam, V. R. (2018). Inhibition of quorum sensing-dependent biofilm and virulence genes expression in environmental pathogen Serratia marcescens by petroselinic acid. Antonie Van Leeuwenhoek, 111(4), 501–515.PubMedCrossRefGoogle Scholar
  69. 69.
    Rashid, M. H., & Kornberg, A. (2000). Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences, 97(9), 4885–4890.CrossRefGoogle Scholar
  70. 70.
    Sha, J., Rosenzweig, J. A., Kozlova, E. V., Wang, S., Erova, T. E., Kirtley, M. L., …, Chopra, A. K. (2013). Evaluation of the roles played by Hcp and VgrG type 6 secretion system effectors in Aeromonas hydrophila SSU pathogenesis. Microbiology, 159(6), 1120–1135.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Sheng, J. Y., Chen, T. T., Tan, X. J., Chen, T., & Jia, A. Q. (2015). The quorum-sensing inhibiting effects of stilbenoids and their potential structure–activity relationship. Bioorganic & Medicinal Chemistry Letters, 25(22), 5217–5220.CrossRefGoogle Scholar
  72. 72.
    Shrout, J. D., Chopp, D. L., Just, C. L., Hentzer, M., Givskov, M., & Parsek, M. R. (2006). The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional. Molecular Microbiology, 62(5), 1264–1277.Google Scholar
  73. 73.
    Singh, V. K., Mishra, A., & Jha, B. (2017). Anti-quorum sensing and anti-biofilm activity of Delftia tsuruhatensis extract by attenuating the quorum sensing-controlled virulence factor production in Pseudomonas aeruginosa. Frontiers in Cellular and Infection Microbiology, 7, 337.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Swift, S., Downie, J. A., Whitehead, N. A., Barnard, A. M., Salmond, G. P., & Williams, P. (2001). Quorum sensing as a population-density-dependent determinant of bacterial physiology. Microbiology, 151, 2829–2839.Google Scholar
  75. 75.
    Tans-Kersten, J., Huang, H., & Allen, C. (2001). Ralstonia solanacearum needs motility for invasive virulence on tomato. Journal of Bacteriology, 183(12), 3597–3605.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Tremblay, J., & Déziel, E. (2010). Gene expression in Pseudomonas aeruginosa swarming motility. BMC Genomics, 11(1), 587.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Tremblay, J., Richardson, A. P., Lépine, F., & Déziel, E. (2007). Self-produced extracellular stimuli modulate the Pseudomonas aeruginosa swarming motility behaviour. Environmental Microbiology, 9(10), 2622–2630.PubMedCrossRefGoogle Scholar
  78. 78.
    Vahedi-Shahandashti, R., Kasra-Kermanshahi, R., Shokouhfard, M., Ghadam, P., Feizabadi, M. M., & Teimourian, S. (2017). Antagonistic activities of some probiotic lactobacilli culture supernatant on Serratia marcescens swarming motility and antibiotic resistance. Iranian Journal of Microbiology, 9(6), 348.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Van Houdt, R., Givskov, M., & Michiels, C. W. (2007). Quorum sensing in Serratia. FEMS Microbiology Reviews, 31(4), 407–424.PubMedCrossRefGoogle Scholar
  80. 80.
    Ventre, I., Goodman, A. L., Vallet-Gely, I., Vasseur, P., Soscia, C., Molin, S., …, Filloux, A. (2006). Multiple sensors control reciprocal expression of Pseudomonas aeruginosa regulatory RNA and virulence genes. Proceedings of the National Academy of Sciences of the United States of America, 103(1), 171–176.CrossRefGoogle Scholar
  81. 81.
    Verstraeten, N., Braeken, K., Debkumari, B., Fauvart, M., Fransaer, J., Vermant, J., & Michiels, J. (2008). Living on a surface: Swarming and biofilm formation. Trends in Microbiology, 16(10), 496–506.PubMedCrossRefGoogle Scholar
  82. 82.
    Wang, Q., Frye, J. G., McClelland, M., & Harshey, R. M. (2004). Gene expression patterns during swarming in Salmonella typhimurium: Genes specific to surface growth and putative new motility and pathogenicity genes. Molecular Microbiology, 52(1), 169–187.PubMedCrossRefGoogle Scholar
  83. 83.
    Wang, S., Yu, S., Zhang, Z., Wei, Q., Yan, L., Ai, G., …, Ma, L. Z. (2014). Coordination of swarming motility, biosurfactant synthesis, and biofilm matrix exopolysaccharide production in Pseudomonas aeruginosa. Applied and Environmental Microbiology, 80(21), 6724–6732.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Wei, B. L., Brun-Zinkernagel, A. M., Simecka, J. W., Prüß, B. M., Babitzke, P., & Romeo, T. (2001). Positive regulation of motility and flhDC expression by the RNA-binding protein CsrA of Escherichia coli. Molecular Microbiology, 40(1), 245–256.PubMedCrossRefGoogle Scholar
  85. 85.
    Wei, C. F., Tsai, Y. H., Tsai, S. H., Lin, C. S., Chang, C. J., Lu, C. C., …, Lai, H. C. (2017). Cross-talk between bacterial two-component systems drives stepwise regulation of flagellar biosynthesis in swarming development. Biochemical and Biophysical Research Communications, 489(1), 70–75.PubMedCrossRefGoogle Scholar
  86. 86.
    Williams, P., & Cámara, M. (2009). Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: A tale of regulatory networks and multifunctional signal molecules. Current Opinion in Microbiology, 12(2), 182–191.PubMedCrossRefGoogle Scholar
  87. 87.
    Wuichet, K., & Zhulin, I. B. (2010). Origins and diversification of a complex signal transduction system in prokaryotes. Science Signaling, 3(128), ra50–ra50.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Xavier, J. B., Kim, W., & Foster, K. R. (2011). A molecular mechanism that stabilizes cooperative secretions in Pseudomonas aeruginosa. Molecular Microbiology, 79(1), 166–179.PubMedCrossRefGoogle Scholar
  89. 89.
    Zhang, L., Gao, H., Li, Y., & Lee, J. K. (2016). Interaction of Pseudostellaria heterophylla with quorum sensing and quorum quenching bacteria mediated by root exudates in a consecutive monoculture systems. Journal of Microbiology and Biotechnology, 26(12), 2159–2170.PubMedCrossRefGoogle Scholar
  90. 90.
    Zhang, X., Wu, D., Guo, T., Ran, T., Wang, W., & Xu, D. (2018). Differential roles for ArcA and ArcB homologues in swarming motility in Serratia marcescens FS14. Antonie Van Leeuwenhoek, 111(4), 609–617.PubMedCrossRefGoogle Scholar
  91. 91.
    Zulianello, L., Canard, C., Köhler, T., Caille, D., Lacroix, J. S., & Meda, P. (2006). Rhamnolipids are virulence factors that promote early infiltration of primary human airway epithelia by Pseudomonas aeruginosa. Infection and Immunity, 74(6), 3134–3147.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Pallaval Veera Bramhachari
    • 1
  • N. M. Yugandhar
    • 2
  • A. M. V. N. Prathyusha
    • 1
  • G. Mohana Sheela
    • 3
  • Jalaja Naravula
    • 3
  • Nagam Venkateswarlu
    • 4
  1. 1.Department of BiotechnologyKrishna UniversityMachilipatnamIndia
  2. 2.Department of Chemical EngineeringAndhra UniversityVisakhapatnamIndia
  3. 3.Department of BiotechnologyVignan UniversityGunturIndia
  4. 4.Department of BotanySri Venkateswara UniversityTirupatiIndia

Personalised recommendations