Microbial Social Interactions in Biofilm

  • Jin Zhou
  • Zhong-hua CaiEmail author


Biofilm is a kind of biological structure with high complexity and high-self-organizing characteristic. It consists of many kinds of microorganisms and biological matrixes (polysaccharide, protein, fatty acid, etc.), with special structure and ecological function. It plays an important role in microbial colonization, niche construction and environmental adaptation. Many microbial behaviors, such as adventitious infection, toxin production, drug resistance, biofouling, mesh blocking, etc., are related to biofilm. The generation of these events is inundated with diverse microbial behaviors, including signal communication, cooperation/competition, labor division, “bacterial intelligence” under stress condition, etc. These features show more and more sociological characteristics of the biofilm, which provides a new perspective to know biofilm better. Therefore, based on the structure of biofilm, we took the communication signals, collaboration, and intelligent resistance (responsed to the ecological stress, co-evolution) inside biofilm as the core to elaborate its social characteristics, in order to better understand the social interactions in bioflim.


Biofilm Social interactions Microbial signals 


  1. 1.
    Clevenger, K. D., & Fast, W. (2012). “Clicking” on the lights to reveal bacterial social networking. Chembiochem, 13, 508–510.PubMedCrossRefGoogle Scholar
  2. 2.
    Xin, B. C., Xu, Y. L., Li, Y. L., Liu, T. J., & Yang, D. Q. (2010). Communication and cooperation of different microorganisms within biofilms. Scientific Sinica Vitae (in chinese), 11, 1002–1013.Google Scholar
  3. 3.
    Stevens, A. M., Schuster, M., & Rumbaugh, K. P. (2012). Working together for the common good: Cell-cell communication in bacteria. Journal of Bacteriology, 194, 2131–2141.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Martin, M., Hölscher, T., Dragoš, A., et al. (2016). Laboratory evolution of microbial interactions in bacterial biofilms. Journal of Bacteriology, 198(19), 2564–2571.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Connell, J. L., Whiteley, M., & Shear, J. B. (2011). Sociomicrobiology in engineered landscapes. Nature Chemical Biology, 8(1), 10–13.PubMedCrossRefGoogle Scholar
  6. 6.
    Sun, J., Yuan, Q. G., & Liu, Z. (2009). The cooperation behaviour and social character in microbial communities. Foreign Medical Sciences (in Chinese), 36, 444–447.Google Scholar
  7. 7.
    Dragoš, A., & Kovács, Á. T. (2017). The peculiar functions of the bacterial extracellular matrix. Trends in Microbiology, 25, 257, pii: S0966-842X(16)30216-5.PubMedCrossRefGoogle Scholar
  8. 8.
    Mielichsüss, B., & Lopez, D. (2015). Molecular mechanisms involved in Bacillus subtilis biofilm formation. Environmental Microbiology, 17, 555–565.CrossRefGoogle Scholar
  9. 9.
    Cairns, L. S., Hobley, L., & Stanley-Wall, N. R. (2014). Biofilm formation by Bacillus subtilis: New insights into regulatory strategies and assembly mechanisms. Molecular Microbiology, 93, 587–598.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    O’Toole, G. A., & Kolter, R. (1998). Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Molecular Microbiology, 30, 295–304.PubMedCrossRefGoogle Scholar
  11. 11.
    Pratt, L. A., & Kolter, R. (1998). Genetic analysis of Escherichia coli biofilm formation: Roles of flagella, motility, chemotaxis and type i pili. Molecular Microbiology, 30, 285–293.PubMedCrossRefGoogle Scholar
  12. 12.
    Watnick, P. I., Fullner, K. J., & Kolter, R. (1999). A role for the mannose-sensitive hemagglutinin in biofilm formation by Vibrio cholerae EI Tor. Journal of Bacteriology, 181, 3606–3609.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Beyenal, H., Lewandowski, Z., & Harkin, G. (2004). Quantifying biofilm structure: Facts and fiction. Biofouling, 20, 1–23.PubMedCrossRefGoogle Scholar
  14. 14.
    Renner, L. D., & Weibel, D. B. (2011). Physicochemical regulation of biofilm formation. MRS Bulletin, 36, 347–355.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Bullitt, E., & Makowski, L. (1995). Structural polymorphism of bacterial adhesion pili. Nature, 373, 164–167.PubMedCrossRefGoogle Scholar
  16. 16.
    Thomas, W. E., Nilsson, L. M., Forero, M., et al. (2004). Shear-dependent ‘stick-and-roll’ adhesion of type 1 fimbriated Escherichia coli. Molecular Microbiology, 53, 1545–1557.PubMedCrossRefGoogle Scholar
  17. 17.
    Flemming, H. C., & Wingender, J. (2010). The biofilm matrix. Nature Reviews Microbiology, 8, 623–633.PubMedCrossRefGoogle Scholar
  18. 18.
    Borlee, B. R., Goldman, A. D., Murakami, K., et al. (2010). Pseudomonas aeruginosa uses acyclic-di-gmp-regulated adhesin to reinforce the biofilm extracellular matrix. Molecular Microbiology, 75, 827.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Schlafer, S., & Meyer, R. L. (2016). Confocal microscopy imaging of the biofilm matrix. Journal of Microbiological Methods. pii: S0167-7012(16)30036-7.Google Scholar
  20. 20.
    Sutherland, I. W. (2001). The biofilm matrix – an immobilized but dynamic microbial environment. Trends in Microbiology, 9, 222–227.PubMedCrossRefGoogle Scholar
  21. 21.
    Stewart, P. S. (2002). Mechanisms of antibiotic resistance in bacterial biofilms. International Journal of Medical Microbiology, 292, 107–113.PubMedCrossRefGoogle Scholar
  22. 22.
    Leck, C., & Bigg, E. K. (2005). Biogenic particles in the surface microlayer and overlaying atmosphere in the central arctic ocean during summer. Tellus Series B: Chemical and Physical Meteorology, 57, 305–316.CrossRefGoogle Scholar
  23. 23.
    Dunne, W. M., Jr., Mason, E. O., Jr., & Kaplan, S. L. (1993). Diffusion of rifampin and vancomycin through a Staphylococcus epidermidis biofilm. Antimicrobial Agents and Chemotherapy, 37(12), 2522–2526.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Epstein, A. K. (2011). Bacterial biofilm shows persistent resistance to liquid wetting and gas penetration. Proceedings of the National Academy of Sciences of the United States of America, 108, 995–1000.PubMedCrossRefGoogle Scholar
  25. 25.
    Guo, L., Hu, W., He, X., et al. (2013). Investigating acid production by streptococcus mutans with a surface-displayed pH-sensitive green fluorescent protein. PLoS One, 8, e57182.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Wang, S., Liu, X., Liu, H., et al. (2015). The exopolysaccharide psl-edna interaction enables the formation of a biofilm skeleton in pseudomonas aeruginosa. Environmental Microbiology Reports, 7, 330–340.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Payne, D. E., & Boles, B. R. (2016). Emerging interactions between matrix components during biofilm development. Current Genetics, 62, 137–141.PubMedCrossRefGoogle Scholar
  28. 28.
    Matsuyama, T., & Nakagawa, Y. (1996). Surface-active exolipids: Analysis of absolute chemical structures and biological functions. Journal of Microbiological Methods, 25, 165–175.CrossRefGoogle Scholar
  29. 29.
    Teschler, J. K., Zamoranosánchez, D., Utada, A. S., et al. (2015). Living in the matrix: Assembly and control of Vibrio cholerae biofilms. Nature Reviews Microbiology, 13, 255–268.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Harmsen, M., Yang, L., Pamp, S. J., et al. (2010). An update on Pseudomonas aeruginosa biofilm formation, tolerance, and dispersal. FEMS Immunology & Medical Microbiology, 59, 253–268.CrossRefGoogle Scholar
  31. 31.
    Velicer, G. J. (2003). Social strife in the microbial world. Trends in Microbiology, 11, 330–337.PubMedCrossRefGoogle Scholar
  32. 32.
    West, S. A., Griffin, A. S., Gardner, A., et al. (2006). Social evolution theory for microorganisms. Nature Reviews Microbiology, 4, 597–607.PubMedCrossRefGoogle Scholar
  33. 33.
    Foster, K. R., Parkinson, K., & Thompson, C. R. L. (2007). What can microbial genetics teach sociobiology? Trends in Genetics, 23, 74–80.PubMedCrossRefGoogle Scholar
  34. 34.
    Bassler, B. L., & Losick, R. (2006). Bacterially speaking. Cell, 125, 237–246.PubMedCrossRefGoogle Scholar
  35. 35.
    Davey, M. E., & O’Toole, G. A. (2000). Microbial biofilms: From ecology to molecular genetics. Microbiology and Molecular Biology Reviews, 64, 847–867.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Hallstoodley, L., Costerton, J. W., & Stoodley, P. (2004). Bacterial biofilms: From the natural environment to infectious diseases. Nature Reviews. Microbiology, 2, 95–108.CrossRefGoogle Scholar
  37. 37.
    Jr, D. W. (2002). Bacterial adhesion: Seen any good biofilms lately? Clinical Microbiology Reviews, 15, 155–166.CrossRefGoogle Scholar
  38. 38.
    Davies, D. G., Parsek, M. R., Pearson, J. P., et al. (1998). The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science, 280, 295–298.PubMedCrossRefGoogle Scholar
  39. 39.
    Hammer, B. K., & Bassler, B. L. (2004). Quorum sensing controls biofilm formation in Vibrio cholerae. Molecular Microbiology, 51, 101–104.CrossRefGoogle Scholar
  40. 40.
    Sakuragi, Y., & Kolter, R. (2007). Quorum-sensing regulation of the biofilm matrix genes (pel) of Pseudomonas aeruginosa. Journal of Bacteriology, 189, 5383–5386.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Talagrandreboul, E., Jumasbilak, E., & Lamy, B. (2017). The social life of Aeromonas through biofilm and quorum sensing systems. Frontiers in Microbiology, 8, 37.Google Scholar
  42. 42.
    Whiteley, M., Bangera, M. G., Bumgarner, R. E., et al. (2001). Gene expression in Pseudomonas aeruginosa biofilms. Nature, 413, 860–864.PubMedCrossRefGoogle Scholar
  43. 43.
    Wang, Y., Dai, Y., Zhang, Y., Hu, Y. B., Yang, B. Y., & Chen, S. Y. (2007). The effects of QS degrade geneson bioflim of PAO1. Science in China (Series C) (in Chinese), 37(2), 234–240.Google Scholar
  44. 44.
    Tan, C. H., Kai, S. K., Xie, C., et al. (2015). Community quorum sensing signalling and quenching: Microbial granular biofilm assembly. Npj Biofilms & Microbiomes, 1, 15006.CrossRefGoogle Scholar
  45. 45.
    Heithoff, D. M., & Mahan, M. J. (2004). Vibrio cholerae biofilms: Stuck between a rock and a hard place. Journal of Bacteriology, 186, 4835–4837.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Zhu, J., & Mekalanos, J. J. (2003). Quorum sensing-dependent biofilms enhance colonization in Vibrio cholerae. Developmental Cell, 5, 647–656.PubMedCrossRefGoogle Scholar
  47. 47.
    Kim, S. M., Park, J. H., Lee, H. S., et al. (2013). Luxr homologue smcr is essential for Vibrio vulnificus pathogenesis and biofilm detachment, and its expression is induced by host cells. Infection and Immunity, 81, 3721–3730.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Rice, S. A., Koh, K. S., Queck, S. Y., et al. (2005). Biofilm formation and sloughing in Serratia marcescens are controlled by quorum sensing and nutrient cues. Journal of Bacteriology, 187, 3477–3485.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Puskas, A., Greenberg, E. P., Kaplan, S., et al. (1998). A quorum-sensing system in the free-living photosynthetic bacterium Rhodobacter sphaeroides. Journal of Bacteriology, 179, 7530–7537.CrossRefGoogle Scholar
  50. 50.
    Majerczyk, C., Schneider, E., & Greenberg, E. P. (2016). Quorum sensing control of type vi secretion factors restricts the proliferation of quorum-sensing mutants. eLife, e14712.Google Scholar
  51. 51.
    Davies, D. G., & Marques, C. N. H. (2009). A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. Journal of Bacteriology, 191, 1393–1403.PubMedCrossRefGoogle Scholar
  52. 52.
    D’Argenio, D. A., & Miller, S. I. (2004). Cyclic di-GMP as a bacterial second messenger. Microbiology, 150(8), 2497–2502.PubMedCrossRefGoogle Scholar
  53. 53.
    Sondermann, H., Shikuma, N. J., & Yildiz, F. H. (2012). You’ve come a long way: C-di-gmp signaling. Current Opinion in Microbiology, 15, 140–146.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Römling, U., Galperin, M. Y., & Gomelsky, M. (2013). Cyclic di-gmp: The first 25 years of a universal bacterial second messenger. Microbiology and Molecular Biology Reviews, 77, 1–52.PubMedCrossRefGoogle Scholar
  55. 55.
    Tal, R., Wong, H. C., Calhoon, R., et al. (1998). Three cdg operons control cellular turnover of cyclic di-GMP in Acetobacter xylinum: Genetic organization and occurrence of conserved domains in isoenzymes. Journal of Bacteriology, 180(17), 4416–4425.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Michael, Y. G., Anastasia, N. N., & Eugene, V. K. (2001). Novel domains of the prokaryotic two component signal transduction systems. FEMS Microbiology Letters, 203(1), 11–21.CrossRefGoogle Scholar
  57. 57.
    Souichiro Kato, K. H., & Watanabe, K. (2013). Iron-oxide minerals affect extracellular electron-transfer paths of geobacter spp. Microbes and Environments, 28, 141–148.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Pfeffer, C., Larsen, S., Song, J., et al. (2012). Filamentous bacteria transport electrons over centimetre distances. Nature, 491, 218–221.PubMedCrossRefGoogle Scholar
  59. 59.
    Masi, E., Ciszak, M., Santopolo, L., et al. (2015). Electrical spiking in bacterial biofilms. Journal of the Royal Society Interface, 12, 20141036–20141036.PubMedCentralCrossRefPubMedGoogle Scholar
  60. 60.
    Liu, J., Prindle, A., Humphries, J., et al. (2015). Metabolic codependence gives rise to collective oscillations within biofilms. Nature, 523, 550–554.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Humphries, J., Xiong, L., Liu, J., et al. (2017). Species-independent attraction to biofilms through electrical signaling. Cell, 168, 200–209.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Madsen, J. S., Røder, H. L., Russel, J., et al. (2016). Co-existence facilitates interspecific biofilm formation in complex microbial communities. Environmental Microbiology, 18, 2565–2574.PubMedCrossRefGoogle Scholar
  63. 63.
    Burmølle, M., Hansen, L. H., & Sørensen, S. J. (2007). Establishment and early succession of a multispecies biofilm composed of soil bacteria. Microbial Ecology, 54, 352–362.PubMedCrossRefGoogle Scholar
  64. 64.
    Andersson, S. (2008). Biofilm formation and interactions of bacterial strains found in wastewater treatment systems. FEMS Microbiology Letters, 283, 83–90.PubMedCrossRefGoogle Scholar
  65. 65.
    Ren, D., Madsen, J. S., Sørensen, S. J., et al. (2015). High prevalence of biofilm synergy among bacterial soil isolates in cocultures indicates bacterial interspecific cooperation. The ISME Journal, 9(1), 81–89.PubMedCrossRefGoogle Scholar
  66. 66.
    Mcglynn, S. E. (2015). Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature, 526, 531–535.PubMedCrossRefGoogle Scholar
  67. 67.
    Flemming, H. C., Wingender, J., Szewzyk, U., et al. (2016). Biofilms: An emergent form of bacterial life. Nature Reviews Microbiology, 14, 563–575.PubMedCrossRefGoogle Scholar
  68. 68.
    Auguet, O., Pijuan, M., Batista, J., et al. (2015). Changes in microbial biofilm communities during colonization of sewer systems. Applied and Environmental Microbiology, 81, 7271–7280.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Nadell, C., Ricaurte, D., Yan, J., et al. (2016). Flow environment and matrix structure interact to determine spatial competition in pseudomonas aeruginosa biofilms. eLife, e21855.Google Scholar
  70. 70.
    Nadell, C. D., Drescher, K., & Foster, K. R. (2016). Spatial structure, cooperation and competition in biofilms. National Reviews Microbiology, 14, 589–600.CrossRefGoogle Scholar
  71. 71.
    Basler, M., Ho, B. T., & Mekalanos, J. J. (2013). Tit-for-tat: Type vi secretion system counterattack during bacterial cell-cell interactions. Cell, 152, 884–894.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Raaijmakers, J. M., & Mazzola, M. (2012). Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annual Review of Phytopathology, 50, 403–424.PubMedCrossRefGoogle Scholar
  73. 73.
    Sun, X. J., Gao, C. H., & Huang, Q. Y. (2017). Multispecies biofilms in natural environments: An overview of research methods and bacterialsocial interactions. Journal of Agriculture: Resource and Environment (in Chinese), 34, 6–14.Google Scholar
  74. 74.
    Burmølle, M., Ren, D., Bjarnsholt, T., et al. (2014). Interactions in multispecies biofilms: Do they actually matter? Trends in Microbiology, 22, 84–91.PubMedCrossRefGoogle Scholar
  75. 75.
    Mitri, S., & Foster, K. R. (2013). The genotypic view of social interactions in microbial communities. Annual Review of Genetics, 47, 247–273.PubMedCrossRefGoogle Scholar
  76. 76.
    Zelezniak, A., Andrejev, S., Ponomarova, O., et al. (2015). Metabolic dependencies drive species co-occurrence in diverse microbial communities. Proceedings of the National Academy of Sciences of the United States of America, 112, 6449–6454.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Gjermansen, M., Nilsson, M., Yang, L., et al. (2005). Characterization of starvation-induced dispersion in Pseudomonas putida biofilms: Genetic elements and molecular mechanisms. Molecular Microbiology, 7, 894–906.Google Scholar
  78. 78.
    Newell, P. D., Boyd, C. D., Sondermann, H., et al. (2011). A c-di-gmp effector system controls cell adhesion by inside-out signaling and surface protein cleavage. PLoS Biology, 9, e1000587.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Kai, M. T., Saville, R. M., Shukla, S., et al. (2005). Induction of rapid detachment in Shewanella oneidensis mr-1 biofilms. Journal of Bacteriology, 187, 1014–1021.CrossRefGoogle Scholar
  80. 80.
    An, S., Wu, J., & Zhang, L. H. (2010). Modulation of Pseudomonas aeruginosa biofilm dispersal by a cyclic-di-gmp phosphodiesterase with a putative hypoxia-sensing domain. Applied and Environmental Microbiology, 76, 8160–8173.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Saville, R. M., Rakshe, S., Haagensen, J. A. J., et al. (2011). Energy-dependent stability of Shewanella oneidensis mr-1 biofilms. Journal of Bacteriology, 193, 3257–3264.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Hagai, E., Dvora, R., Havkinblank, T., et al. (2013). Surface-motility induction, attraction and hitchhiking between bacterial species promote dispersal on solid surfaces. The ISME Journal, 8, 1147–1151.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Bolhuis, H., Cretoiu, M. S., & Stal, L. J. (2014). Molecular ecology of microbial mats. FEMS Microbiology Ecology, 90, 335–350.PubMedGoogle Scholar
  84. 84.
    Wong, H. L., Ahmed-Cox, A., & Burns, B. P. (2016). Molecular ecology of hypersaline microbial mats: Current insights and new directions. Microorganisms, 4: pii, E6.Google Scholar
  85. 85.
    Abrudan, M. I., Smakman, F., Grimbergen, A. J., et al. (2015). Socially mediated induction and suppression of antibiosis during bacterial coexistence. Proceedings of the National Academy of Sciences of the United States of America, 112, 11054–11059.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Pollak, S. (2016). Facultative cheating supports the coexistence of diverse quorum-sensing alleles. Proceedings of the National Academy of Sciences of the United States of America, 113, 2152–2157.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Hughes, G., & Webber, M. A. (2017). Novel approaches to the treatment of bacterial biofilm infections[J]. British Journal of Pharmacology, 174(14), 2237–2246.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Król, J. E., Nguyen, H. D., Rogers, L. M., et al. (2011). Increased transfer of a multidrug resistance plasmid in Escherichia coli biofilms at the air-liquid interface. Applied and Environmental Microbiology, 77, 5079–5088.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Koraimann, G., & Wagner, M. A. (2014). Social behavior and decision making in bacterial conjugation. Frontiers in Cellular and Infection Microbiology, 4, 54.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Chen, Y., Liu, S., Liang, Z., et al. (2016). Quorum sensing and microbial drug resistance. Hereditas, 38(10), 881–893.PubMedGoogle Scholar
  91. 91.
    Gambino, M., & Cappitelli, F. (2016). Mini-review: Biofilm responses to oxidative stress. Biofouling, 32, 167–178.PubMedCrossRefGoogle Scholar
  92. 92.
    Tarnita, C. E. (2017). The ecology and evolution of social behavior in microbes. The Journal of Experimental Biology, 220(Pt 1), 18–24.PubMedCrossRefGoogle Scholar
  93. 93.
    Saintruf, C., Garfatraoré, M., Collin, V., et al. (2014). Massive diversification in aging colonies of Escherichia coli. Journal of Bacteriology, 196, 3059–3073.CrossRefGoogle Scholar
  94. 94.
    Depas, W. H., Hufnagel, D. A., Lee, J. S., et al. (2013). Iron induces bimodal population development by Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 110, 2629–2634.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Painter, K. L., Strange, E., Parkhill, J., et al. (2015). Staphylococcus aureus adapts to oxidative stress by producing H2O2-resistant small colony variants via the SOS response. Infection and Immunity, 83, 1830–1844.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Garde, C., Welch, M., Ferkinghoffborg, J., et al. (2015). Microbial biofilm as a smart material. Sensors, 15, 4229–4241.PubMedCrossRefGoogle Scholar
  97. 97.
    Piludu, M., Lantini, M. S., Cossu, M., et al. (2006). Salivary histatins in human deep posterior lingual glands (of von ebner). Archives of Oral Biology, 51, 967–973.PubMedCrossRefGoogle Scholar
  98. 98.
    Brissette, C. A., & Lukehart, S. A. (2007). Mechanisms of decreased susceptibility to β-defensins by Treponema denticola. Infection and Immunity, 75, 2307–2315.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Wickström, C., Herzberg, M. C., Beighton, D., et al. (2009). Proteolytic degradation of human salivary MUC5B by dental biofilms. Microbiology, 155, 2866–2872.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Wickström, C., & Svensäter, G. (2008). Salivary gel-forming mucin MUC5B – a nutrient for dental plaque bacteria. Oral Microbiology and Immunology, 23, 177–182.PubMedCrossRefGoogle Scholar
  101. 101.
    Webb, J. S., Givskov, M., & Kjelleberg, S. (2003). Bacterial biofilms: Prokaryotic adventures in multicellularity. Current Opinion in Microbiology, 6, 578–585.PubMedCrossRefGoogle Scholar
  102. 102.
    Ehrlich, P. R., & Raven, P. H. (1964). Butterflies and plants: A study in coevolution. Evolution, 18, 586–608.CrossRefGoogle Scholar
  103. 103.
    Boots, M., & Mealor, M. (2007). Local interactions select for lower pathogen infectivity. Science, 315, 1284–1286.PubMedCrossRefGoogle Scholar
  104. 104.
    Wild, G., Gardner, A., & West, S. A. (2009). Adaptation and the evolution of parasite virulence in a connected world. Nature, 459, 983–986.PubMedCrossRefGoogle Scholar
  105. 105.
    Gyllenberg, M., Parvinen, K., & Dieckmann, U. (2002). Evolutionary suicide and evolution of dispersal in structured metapopulations. Journal of Mathematical Biology, 45, 79–105.PubMedCrossRefGoogle Scholar
  106. 106.
    Høiby, N., Bjarnsholt, T., Givskov, M., et al. (2010). Antibiotic resistance of bacterial biofilms. International Journal of Antimicrobial Agents, 35, 322–332.PubMedCrossRefGoogle Scholar
  107. 107.
    Roberts, A. P., & Mullany, P. (2014). Oral biofilms: A reservoir of transferable, bacterial, antimicrobial resistance. Expert Review of Anti Infective Therapy, 8, 1441–1450.CrossRefGoogle Scholar
  108. 108.
    Besemer, K., Singer, G., Hödl, I., et al. (2009). Bacterial community composition of stream biofilms in spatially variable-flow environments. Applied and Environmental Microbiology, 75, 7189–7195.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Asfahl, K. L., & Schuster, M. (2016). Social interactions in bacterial cell-cell signaling. FEMS Microbiology Reviews, 41(1), 92–107.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Graduate School at ShenzhenTsinghua UniversityShenzhenChina

Personalised recommendations