Advertisement

Novel Insights on the Bacillus Quorum Sensing Mechanism: Its Role in Competence, Virulence, Sporulation and Biofilm Formation

  • S. Anju
  • Y. Aparna
  • Bhukya Bhima
  • J. Sarada
Chapter

Abstract

A large number of Bacillus sps are ubiquitous and can modulate in diverse environments. The QS response in Bacillus sp. involves expression of adaptive extracellular factors like food-degrading enzymes, virulence factors, antibiotics, or biosurfactants. They produce QS signals as small peptide molecules i.e. autoinducer peptides (AIP) processed from their oligopeptide precursors. Members of the Rap-Phr family of QS systems in Bacillus subtilis are involved in regulation of competence, sporulation and biofilm formation. Moreover they possess a typical Com QXPA QS system which controls the expression of nearly 200 genes, including both extracellular and intracellular factors. However in B. thuringenesis, the virulence expression, sporulation and nectotropism are strongly regulated by NprR/NprX signal regulators which belong to RNPP family. NprR/NprX QS system was identified to regulate the expression of pathogenesis in B.anthracis, which causes fatal pulmonary infection. Two established QS systems PlcR/PapR and NprR/NprX for virulence regulation were found in different species of Bacillus. Current review emphasizes on the comparative study of different QS systems in Bacilli which control the pathogenesis and development processes. Despite the fundamental biological importance in medicine and industry, Bacillus QS molecules can serve as potential biomarkers.

Keywords

Quorum sensing Bacillus Com QXPA QS PlcR/PapR NprR/NprX 

Notes

Acknowledgement

We acknowledge the opportunity given by the editor Dr. P. Veera Bramha Chari for writing this book chapter. We thank our Management and Principal of Bhavans Vivekananda College, Sainikpuri for their constant support and encouragement. We declare we do not have any conflict of interest.

References

  1. 1.
    Agaisse, H., Gominet, M., Økstad, O. A., Kolstø, A. B., & Lereclus, D. (1999). PlcR is a pleiotropic regulator of extracellular virulence factor gene expression in Bacillus thuringiensis. Molecular Microbiology, 32(5), 1043–1053.CrossRefGoogle Scholar
  2. 2.
    Ansaldi, M., Marolt, D., Stebe, T., Mandic-Mulec, I., & Dubnau, D. (2002). Specific activation of the Bacillus quorum-sensing systems by isoprenylated pheromone variants. Molecular Microbiology, 44(6), 1561–1573.CrossRefGoogle Scholar
  3. 3.
    Anne Shank, E., & Kolter, R. (2011). Extracellular signaling and multicellularity in Bacillus subtilis. Current Opinion in Microbiology, 14(6), 741–747.  https://doi.org/10.1016/j.mib.2011.09.016.CrossRefPubMedCentralGoogle Scholar
  4. 4.
    Bareia, T., Pollak, S., & Eldar, A. (2018). Self-sensing in Bacillus subtilis quorum-sensing systems. Nature Microbiology, 3(1), 83.CrossRefGoogle Scholar
  5. 5.
    Bendori, S. O., Pollak, S., Hizi, D., & Eldar, A. (2015). The RapP-PhrP quorum-sensing system of Bacillus subtilis strain NCIB3610 affects biofilm formation through multiple targets, due to an atypical signal-insensitive allele of RapP. Journal of Bacteriology, 197(3), 592–602.CrossRefGoogle Scholar
  6. 6.
    Borriss, R., Danchin, A., Harwood, C. R., Médigue, C., Rocha, E. P., Sekowska, A., & Vallenet, D. (2018). Bacillus subtilis, the model gram-positive bacterium: 20 years of annotation refinement. Microbial Biotechnology, 11(1), 3–17.CrossRefGoogle Scholar
  7. 7.
    Bottone, E. J. (2010). Bacillus cereus, a volatile human pathogen. Clinical Microbiology Reviews, 23(2), 382–398.CrossRefGoogle Scholar
  8. 8.
    Bouillaut, L., Perchat, S., Arold, S., Zorrilla, S., Slamti, L., Henry, C., ... & Lereclus, D. (2008). Molecular basis for group-specific activation of the virulence regulator PlcR by PapR heptapeptides. Nucleic Acids Research, 36(11), 3791–3801.CrossRefGoogle Scholar
  9. 9.
    Brillard, J., Susanna, K., Michaud, C., Dargaignaratz, C., Gohar, M., Nielsen-Leroux, C., & Broussolle, V. (2008). The YvfTU two-component system is involved in plcR expression in Bacillus cereus. BMC Microbiology, 8(1), 183.CrossRefGoogle Scholar
  10. 10.
    Cairns, L. S., Hobley, L., & Stanley-Wall, N. R. (2014). Biofilm formation by Bacillus subtilis: New insights into regulatory strategies and assembly mechanisms. Molecular Microbiology, 93(4), 587–598.CrossRefGoogle Scholar
  11. 11.
    Comella, N., & Grossman, A. D. (2005). Conservation of genes and processes controlled by the quorum response in bacteria: Characterization of genes controlled by the quorum-sensing transcription factor ComA in Bacillus subtilis. Molecular Microbiology, 57(4), 1159–1174.CrossRefGoogle Scholar
  12. 12.
    Declerck, N., Bouillaut, L., Chaix, D., Rugani, N., Slamti, L., Hoh, F., et al. (2007). Structure of PlcR: Insights into virulence regulation and evolution of quorum sensing in Gram-positive bacteria. Proceedings of the National Academy of Sciences, 104(47), 18490–18495.CrossRefGoogle Scholar
  13. 13.
    Dogsa, I., Choudhary, K. S., Marsetic, Z., Hudaiberdiev, S., Vera, R., Pongor, S., & Mandic-Mulec, I. (2014). ComQXPA quorum sensing systems may not be unique to Bacillus subtilis: A census in prokaryotic genomes. PloS One, 9(5), e96122.CrossRefGoogle Scholar
  14. 14.
    Dong, Y. H., Gusti, A. R., Zhang, Q., Xu, J. L., & Zhang, L. H. (2002). Identification of quorum-quenching N-acyl homoserine lactonases from Bacillus species. Applied and Environmental Microbiology, 68(4), 1754–1759.CrossRefGoogle Scholar
  15. 15.
    Duanis-Assaf, D., Steinberg, D., Chai, Y., & Shemesh, M. (2016). The LuxS based quorum sensing governs lactose induced biofilm formation by Bacillus subtilis. Frontiers in Microbiology, 6, 1517.Google Scholar
  16. 16.
    Dubois, T., Faegri, K., Gélis-Jeanvoine, S., Perchat, S., Lemy, C., Buisson, C., & Slamti, L. (2016). Correction: Necrotrophism is a quorum-sensing-regulated lifestyle in Bacillus thuringiensis. PLoS Pathogens, 12(11), e1006049.CrossRefGoogle Scholar
  17. 17.
    Ehling-Schulz, M., Frenzel, E., & Gohar, M. (2015). Food–bacteria interplay: Pathometabolism of emetic Bacillus cereus. Frontiers in Microbiology, 6, 704.Google Scholar
  18. 18.
    Esmaeilishirazifard, E., De Vizio, D., Moschos, S. A., & Keshavarz, T. (2017). Genomic and molecular characterization of a novel quorum sensing molecule in Bacillus licheniformis. AMB Express, 7(1), 78.CrossRefGoogle Scholar
  19. 19.
    Fujiya, M., Musch, M. W., Nakagawa, Y., Hu, S., Alverdy, J., Kohgo, Y., & Chang, E. B. (2007). The Bacillus subtilis quorum-sensing molecule CSF contributes to intestinal homeostasis via OCTN2, a host cell membrane transporter. Cell Host & Microbe, 1(4), 299–308.CrossRefGoogle Scholar
  20. 20.
    Gohar, M., Gilois, N., Graveline, R., Garreau, C., Sanchis, V., & Lereclus, D. (2005). A comparative study of Bacillus cereus, Bacillus thuringiensis and Bacillus anthracis extracellular proteomes. Proteomics, 5(14), 3696–3711.CrossRefGoogle Scholar
  21. 21.
    Gohar, M., Faegri, K., Perchat, S., Ravnum, S., Økstad, O. A., Gominet, M., et al. (2008). The PlcR virulence regulon of Bacillus cereus. PLoS One, 3(7), e2793.CrossRefGoogle Scholar
  22. 22.
    Gominet, M., Slamti, L., Gilois, N., Rose, M., & Lereclus, D. (2001). Oligopeptide permease is required for expression of the Bacillus thuringiensis plcR regulon and for virulence. Molecular Microbiology, 40(4), 963–975.CrossRefGoogle Scholar
  23. 23.
    Hamoen, L. W., Venema, G., & Kuipers, O. P. (2003). Controlling competence in Bacillus subtilis: Shared use of regulators. Microbiology, 149(1), 9–17.CrossRefGoogle Scholar
  24. 24.
    Hawver, L. A., Jung, S. A., & Ng, W. L. (2016). Specificity and complexity in bacterial quorum-sensing systems. FEMS Microbiology Reviews, 40(5), 738–752.CrossRefGoogle Scholar
  25. 25.
    Hayashi, S., Usami, S., Nakamura, Y., Ozaki, K., & Okada, M. (2015). Identification of a quorum sensing pheromone posttranslationally farnesylated at the internal tryptophan residue from Bacillus subtilis subsp. natto. Bioscience, Biotechnology, and Biochemistry, 79(10), 1567–1569.CrossRefGoogle Scholar
  26. 26.
    Hsueh, Y. H., Lin, K. S., Ke, W. J., Hsieh, C. T., Chiang, C. L., Tzou, D. Y., & Liu, S. T. (2015). The antimicrobial properties of silver nanoparticles in Bacillus subtilis are mediated by released Ag+ ions. PloS One, 10(12), e0144306.CrossRefGoogle Scholar
  27. 27.
    Huillet, E., Tempelaars, M. H., André-Leroux, G., Wanapaisan, P., Bridoux, L., Makhzami, S., et al. (2012). PlcRa, a new quorum-sensing regulator from Bacillus cereus, plays a role in oxidative stress responses and cysteine metabolism in stationary phase. PloS one, 7(12), e51047.CrossRefGoogle Scholar
  28. 28.
    Jiang, M., Shao, W., Perego, M., & Hoch, J. A. (2000a). Multiple histidine kinases regulate entry into stationary phase and sporulation in Bacillus subtilis. Molecular Microbiology, 38, 535–542.CrossRefGoogle Scholar
  29. 29.
    Johnson, D. I. (2018). Bacillus spp. bacterial pathogens and their virulence factors (pp 41–50).Google Scholar
  30. 30.
    Jones, M. B., & Blaser, M. J. (2003). Detection of a luxS-signaling molecule in Bacillus anthracis. Infection and Immunity, 71(7), 3914–3919.CrossRefGoogle Scholar
  31. 31.
    Jones, M. B., Peterson, S. N., Benn, R., Braisted, J. C., Jarrahi, B., Shatzkes, K., et al. (2010). Role of luxS in Bacillus anthracis growth and virulence factor expression. Virulence, 1(2), 72–83.CrossRefGoogle Scholar
  32. 32.
    Lereclus, D., Agaisse, H., Grandvalet, C., Salamitou, S., & Gominet, M. (2000). Regulation of toxin and virulence gene transcription in Bacillus thuringiensis. International Journal of Medical Microbiology, 290(4–5), 295–299.CrossRefGoogle Scholar
  33. 33.
    Meima, R., Eschevins, C., Fillinger, S., Bolhuis, A., Hamoen, L. W., Dorenbos, R., et al. (2002). The bdbDC operon of Bacillus subtilisencodes thiol-disulfide oxidoreductases required for competence development. Journal of Biological Chemistry, 277(9), 6994–7001.CrossRefGoogle Scholar
  34. 34.
    Mielich-Süss, B., & Lopez, D. (2015). Molecular mechanisms involved in Bacillus subtilis biofilm formation. Environmental Microbiology, 17(3), 555–565.CrossRefGoogle Scholar
  35. 35.
    Miller, M. B., & Bassler, B. L. (2001). Quorum sensing in bacteria. Annual Reviews in Microbiology, 55(1), 165–199.CrossRefGoogle Scholar
  36. 36.
    Monnet, V., & Gardan, R. (2015). Quorum-sensing regulators in gram-positive bacteria: ‘Cherchez le peptide’. Molecular Microbiology, 97(2), 181–184.CrossRefGoogle Scholar
  37. 37.
    Okada, M., Sato, I., Cho, S. J., Iwata, H., Nishio, T., Dubnau, D., & Sakagami, Y. (2005). Structure of the Bacillus subtilis quorum-sensing peptide pheromone ComX. Nature Chemical Biology, 1(1), 23–24.CrossRefGoogle Scholar
  38. 38.
    Økstad, O. A., Gominet, M., Purnelle, B., Rose, M., Lereclus, D., & Kolstø, A. B. (1999). Sequence analysis of three Bacillus cereus loci carrying PlcR-regulated genes encoding degradative enzymes and enterotoxin. Microbiology, 145(11), 3129–3138.CrossRefGoogle Scholar
  39. 39.
    Oslizlo, A., Stefanic, P., Vatovec, S., Beigot Glaser, S., Rupnik, M., & Mandic-Mulec, I. (2015). Exploring ComQXPA quorum-sensing diversity and biocontrol potential of Bacillus spp. isolates from tomato rhizoplane. Microbial Biotechnology, 8(3), 527–540.CrossRefGoogle Scholar
  40. 40.
    Pawar, S., & Lahiri, C. (2018). Quorum sensing: An imperative longevity weapon in bacteria. African Journal of Microbiology Research, 12(4), 96–104.CrossRefGoogle Scholar
  41. 41.
    Perchat, S., Talagas, A., Poncet, S., Lazar, N., de La Sierra-Gallay, I. L., Gohar, M., et al. (2016a). How quorum sensing connects sporulation to necrotrophism in Bacillus thuringiensis. PLoS Pathogens, 12(8), e1005779.CrossRefGoogle Scholar
  42. 42.
    Peypoux, F., Bonmatin, J. M., & Wallach, J. (1999). Recent trends in the biochemistry of surfactin. Applied Microbiology and Biotechnology, 51(5), 553–563.CrossRefGoogle Scholar
  43. 43.
    Pollak, S., Bendori, S. O., & Eldar, A. (2015). A complex path for domestication of B. subtilis sociality. Current Genetics, 61(4), 493–496.CrossRefGoogle Scholar
  44. 44.
    Pomerantsev, A. P., Camp, A., & Leppla, S. H. (2009). A new minimal replicon of Bacillus anthracis plasmid pXO1. Journal of Bacteriology, 191(16), 5134–5146.CrossRefGoogle Scholar
  45. 45.
    Redfield, R. J. (2002). Is quorum sensing a side effect of diffusion sensing? Trends in Microbiology, 10(8), 365–370.CrossRefGoogle Scholar
  46. 46.
    Rocha-Estrada, J., Aceves-Diez, A. E., Guarneros, G., & de la Torre, M. (2010). The RNPP family of quorumsensing proteins in gram-positive bacteria. Applied Microbiology and Biotechnology, 87(3), 913–923.CrossRefGoogle Scholar
  47. 47.
    Rutherford, S. T., & Bassler, B. L. (2012). Bacterial quorum sensing: Its role in virulence and possibilities for its control. Cold Spring Harbor Perspectives in Medicine, 2(11), a012427.CrossRefGoogle Scholar
  48. 48.
    Ruzheinikov, S. N., Das, S. K., Sedelnikova, S. E., Hartley, A., Foster, S. J., Horsburgh, M. J., et al. (2001). The 1.2 Å structure of a novel quorum-sensing protein, Bacillus subtilis LuxS1. Journal of Molecular Biology, 313(1), 111–122.CrossRefGoogle Scholar
  49. 49.
    Slamti, L., & Lereclus, D. (2002). A cell–cell signaling peptide activates the PlcR virulence regulon in bacteria of the Bacillus cereus group. The EMBO Journal, 21(17), 4550–4559.CrossRefGoogle Scholar
  50. 50.
    Slamti, L., & Lereclus, D. (2005). Specificity and polymorphism of the PlcR-PapR quorum-sensing system in the Bacillus cereus group. Journal of Bacteriology, 187(3), 1182–1187.CrossRefGoogle Scholar
  51. 51.
    Špacapan, M., Danevcic, T., & Mandic-Mulec, I. (2018). ComX-induced exoproteases degrade ComX in Bacillus subtilis PS 216. Frontiers in Microbiology, 9, 105.CrossRefGoogle Scholar
  52. 52.
    Verplaetse, E., Slamti, L., Gohar, M., & Lereclus, D. (2017). Two distinct pathways lead Bacillus thuringiensis to commit to sporulation in biofilm. Research in Microbiology, 168(4), 388–393.CrossRefGoogle Scholar
  53. 53.
    Vlamakis, H., Chai, Y., Beauregard, P., Losick, R., & Kolter, R. (2013). Sticking together: Building a biofilm the Bacillus subtilis way. Nature Reviews Microbiology, 11(3), 157.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • S. Anju
    • 1
  • Y. Aparna
    • 1
  • Bhukya Bhima
    • 2
  • J. Sarada
    • 1
  1. 1.Department of MicrobiologyBhavan’s Vivekananda College of Science, Humanities & CommerceSecunderabadIndia
  2. 2.Department of MicrobiologyOsmania UniversityHyderabadIndia

Personalised recommendations