Advertisement

Quorum Sensing in Helicobacter pylori: Role of Biofilm and Its Implications for Antibiotic Resistance and Immune Evasion

  • Surekha Challa
  • Nageswara Rao Reddy Neelapu
Chapter

Abstract

Helicobacter pylori colonizes the host inducing gastritis, gastric ulcer and cancer. Successful infection in harsh environment requires a special mechanism to colonize the epithelial lining of the host stomach. Antibiotic resistance reports on H. pylori have driven the research to identify the factors contributing to antibiotic resistance. Many reports were there on the communities of microorganisms growing on different surfaces. Such communities of microorganisms growing on the surfaces like gastric mucosa are known as biofilms. The formation of biofilms by H. pylori on the surfaces of gastric mucosa can be one of the reasons for antibiotic resistance and successful infection in the harsh acidic environment. Several reports were also there on formation of biofilm and quorum sensing in H. pylori. The present chapter reviews formation of biofilm, quorum sensing and the advantages of H. pylori biofilm which are responsible for successful colonization.

Keywords

Helicobacter pylori Biofilm Immune evasion Antibiotic resistance 

Notes

Acknowledgements

CS and NNR are grateful to GITAM (Deemed to be University) for providing necessary facilities to carry out the research work and for extending constant support.

Authors Contribution

CS and NNR initiated the review, participated in writing and revised the manuscript.

Conflict of Interest Statement

The authors declare that there is no potential conflict of interest.

References

  1. 1.
    Neelapu, N. R. R., Nammi, D., Pasupuleti, A. C. M., & Surekha, C. (2014). Helicobacter pylori induced gastric inflammation, ulcer, and cancer: A pathogenesis perspective. Interdisciplinary Journal of Microinflammation, 1, 113.Google Scholar
  2. 2.
    Neelapu, R. R. (2018). Role and regulation of transcriptional factors in gastric cancer. In G. P. N. Pallaval & V. Bramhachari (Eds.), Role of transcription factors in Gastrointestinal malignancies (pp. 107–130). Hiedelberg. ISBN 978-981-10-6727-3: Springer.Google Scholar
  3. 3.
    Kurtaran, H., Uyar, M. E., Kasapoglu, B., Turkay, C., Yilmaz, T., Akcay, A., & Kanbay, M. (2008). Role of Helicobacter pylori in pathogenesis of upper respiratory system diseases. Journal of the National Medical Association, 100, 1224.CrossRefGoogle Scholar
  4. 4.
    Watson, C. L., Owen, R. J., Said, B., Lai, S., Lee, J. V., Surman‐Lee, S., & Nichols, G. (2004). Detection of Helicobacter pylori by PCR but not culture in water and biofilm samples from drinking water distribution systems in England. Journal of Applied Microbiology, 97, 690–698.CrossRefGoogle Scholar
  5. 5.
    Hegarty, J. P., Dowd, M. T., & Baker, K. H. (1999). Occurrence of Helicobacter pylori in surface water in the United States. Journal of Applied Microbiology, 87, 697–701.CrossRefGoogle Scholar
  6. 6.
    Horiuchi, T., Ohkusa, T., Watanabe, M., Kobayashi, D., Miwa, H., & Eishi, Y. (2001). Helicobacter pylori DNA in drinking water in Japan. Microbiology and Immunology, 45, 515–519.CrossRefGoogle Scholar
  7. 7.
    Imanishi, Y., Ogata, T., Matsuzuka, A., Tasaki, T., Fujioka, T., Akashi, M., Makino, Y., & Nishizono, A. (2003). Possibility for the presence of Helicobacter pylori in drinking well water. Kansenshogaku zasshi. The Journal of the Japanese Association for Infectious Diseases, 77, 18–23.PubMedGoogle Scholar
  8. 8.
    Lu, Y., Redlinger, T. E., Avitia, R., Galindo, A., & Goodman, K. (2002). Isolation and genotyping of Helicobacter pylori from untreated municipal wastewater. Applied and Environmental Microbiology, 68, 1436–1439.CrossRefGoogle Scholar
  9. 9.
    Moreno, Y., Botella, S., Alonso, J. L., Ferrús, M. A., Hernández, M., & Hernández, J. (2003). Specific detection of Arcobacter and Campylobacter strains in water and sewage by PCR and fluorescent in situ hybridization. Applied and Environmental Microbiology, 69, 1181–1186.CrossRefGoogle Scholar
  10. 10.
    Carron, M. A., Tran, V. R., Sugawa, C., & Coticchia, J. M. (2006). Identification of Helicobacter pylori biofilms in human gastric mucosa. Journal of Gastrointestinal Surgery, 10, 712–717.CrossRefGoogle Scholar
  11. 11.
    Coticchia, J. M., Sugawa, C., Tran, V. R., Gurrola, J., Kowalski, E., & Carron, M. A. (2006). Presence and density of Helicobacter pylori biofilms in human gastric mucosa in patients with peptic ulcer disease. Journal of Gastrointestinal Surgery, 10, 883–889.CrossRefGoogle Scholar
  12. 12.
    Cammarota, G., Branca, G., Ardito, F., Sanguinetti, M., Ianiro, G., Cianci, R., Torelli, R., Masala, G., Gasbarrini, A., Fadda, G., & Landolfi, R. (2010). Biofilm demolition and antibiotic treatment to eradicate resistant Helicobacter pylori: A clinical trial. Clinical Gastroenterology and Hepatology, 8, 817–820.CrossRefGoogle Scholar
  13. 13.
    Donlan, R. M., & Costerton, J. W. (2002). Biofilms: Survival mechanisms of clinically relevant microorganisms. Clinical Microbiology Reviews, 15(2), 167–193.CrossRefGoogle Scholar
  14. 14.
    Stoodley, H. L., Stoodley, P., Kathju, S., Hoiby, N., Moser, C., Costerton, J. W., Moter, A., & Bjarnsholt, T. (2012). Towards diagnostic guidelines for biofilm-associated infections. FEMS Immunology and Medical Microbiology, 65, 127–145.CrossRefGoogle Scholar
  15. 15.
    Stark, R. M., Gerwig, G. J., Pitman, R. S., Potts, L. F., Williams, N. A., Greenman, J., Weinzweig, I. P., Hirst, T. R., & Millar, M. R. (1999). Biofilm formation by Helicobacter pylori. Letters in Applied Microbiology, 28(2), 121–126.CrossRefGoogle Scholar
  16. 16.
    Cole, S. P., Harwood, J., Lee, R., She, R., & Guiney, D. G. (2004). Characterization of monospecies biofilm formation by Helicobacter pylori. Journal of Bacteriology, 186(10), 3124–3132.CrossRefGoogle Scholar
  17. 17.
    Yonezawa, H., Osaki, T., Kurata, S., Fukuda, M., Kawakami, H., Ochiai, K., Hanawa, T., & Kamiya, S. (2009). Outer membrane vesicles of Helicobacter pylori tk1402 are involved in biofilm formation. BMC Microbiology, 9, 197.CrossRefGoogle Scholar
  18. 18.
    Yonezawa, H., Osaki, T., Woo, T., Kurata, S., Zaman, C., Hojo, F., Hanawa, T., Kato, S., & Kamiya, S. (2011). Analysis of outer membrane vesicle protein involved in biofilm formation of Helicobacter pylori. Anaerobe, 17, 388–390.CrossRefGoogle Scholar
  19. 19.
    Grande, R., di Giulio, M., Bessa, L. J., Di Campli, E., Baffoni, M., Guarnieri, S., & Cellini, L. (2011). Extracellular DNA in helicobacter pylori biofilm: A backstairs rumour. Journal of Applied Microbiology, 110(2), 490–498.CrossRefGoogle Scholar
  20. 20.
    Grande, R., Di Campli, E., Di Bartolomeo, S., Verginelli, F., Di Giulio, M., Baffoni, M., Bessa, L. J., & Cellini, L. (2012). Helicobacter pylori biofilm: A protective environment for bacterial recombination. Journal of Applied Microbiology, 113(3), 669–676.CrossRefGoogle Scholar
  21. 21.
    Yang, F.-L., Hassanbhai, A. M., Chen, H.-Y., Huang, Z. Y., Lin, T. L., Wu, S. H., & Ho, B. (2011). Proteomannans in biofilm of Helicobacter pylori ATCC 43504. Helicobacter, 16(2), 89–98.CrossRefGoogle Scholar
  22. 22.
    Whiteley, M., Diggle, S. P., & Greenberg, E. P. (2017). Progress in and promise of bacterial quorum sensing research. Nature, 551, 313.CrossRefGoogle Scholar
  23. 23.
    Gohil, N., Ramírez-García, R., Panchasara, H., Patel, S., Bhattacharjee, G., & Singh, V. (2018). Book review: Quorum sensing vs. quorum quenching: A battle with no end insight. Frontiers in Cellular and Infection Microbiology, 8, 106.CrossRefGoogle Scholar
  24. 24.
    Sperandio, V., Torres, A. G., Jarvis, B., Nataro, J. P., & Kaper, J. B. (2003). Bacteria–host communication: The language of hormones. Proceedings of the National Academy of Sciences of the United States of America, 100, 8951–8956.CrossRefGoogle Scholar
  25. 25.
    Zhao, J., Quan, C., Jin, L., & Chen, M. (2018). Production, detection and application perspectives of quorum sensing autoinducer-2 in bacteria. Journal of Biotechnology.  https://doi.org/10.1016/j.jbiotec.2018.01.009.CrossRefGoogle Scholar
  26. 26.
    Fuqua, C., Parsek, M. R., & Greenberg, E. P. (2001). Regulation of gene expression by cell-to-cell communication: Acyl-homoserine lactone quorum sensing. Annual Review of Genetics, 35, 439–468.CrossRefGoogle Scholar
  27. 27.
    Zhou, L., Yu, Y., Chen, X., Diab, A. A., Ruan, L., He, J., Wang, H., & He, Y. W. (2015). The multiple DSF-family QS signals are synthesized from carbohydrate and branched-chain amino acids via the FAS elongation cycle. Scientific Reports, 5, 13294.CrossRefGoogle Scholar
  28. 28.
    Krzyżek, P., & Gościniak, G. (2018). A proposed role for diffusible signal factors in the biofilm formation and morphological transformation of Helicobacter pylori. The Turkish Journal of Gastroenterology, 29, 7–12.CrossRefGoogle Scholar
  29. 29.
    Forsyth, M. H., & Cover, T. L. (2000). Intercellular communication in Helicobacter pylori: luxS is essential for the production of an extracellular signaling molecule. Infection and Immunity, 68, 3193–3199.CrossRefGoogle Scholar
  30. 30.
    Joyce, E. A., Bassler, B. L., & Wright, A. (2000). Evidence for a signaling system in Helicobacter pylori: Detection of a luxS-encoded autoinducer. Journal of Bacteriology, 182, 3638–3643.CrossRefGoogle Scholar
  31. 31.
    Lee, W. K., Ogura, K., Loh, J. T., Cover, T. L., & Berg, D. E. (2006). Quantitative effect of luxS gene inactivation on the fitness of Helicobacter pylori. Applied and Environmental Microbiology, 72, 6615–6622.CrossRefGoogle Scholar
  32. 32.
    Doherty, N. C., Shen, F., Halliday, N. M., Barrett, D. A., Hardie, K. R., Winzer, K., & Atherton, J. C. (2010). In Helicobacter pylori, LuxS is a key enzyme in cysteine provision through a reverse transsulfuration pathway. Journal of Bacteriology, 192, 1184–1192.CrossRefGoogle Scholar
  33. 33.
    Mah, T.-F. C., & O’Toole, G. A. (2001). Mechanisms of biofilm resistance to antimicrobial agents. Trends in Microbiology, 9(1), 34–39.CrossRefGoogle Scholar
  34. 34.
    Prosser, B. L. T., Taylor, D., Dix, B. A., & Cleeland, R. (1987). Method of evaluating effects of antibiotics on bacterial biofilm. Antimicrobial Agents and Chemotherapy, 31(10), 1502–1506.CrossRefGoogle Scholar
  35. 35.
    Nickel, J. C., Ruseska, I., Wright, J. B., & Costerton, J. W. (1985). Tobramycin resistance of Pseudomonas aeruginosa cells growing as a biofilm on urinary catheter material. Antimicrobial Agents and Chemotherapy, 27(4), 619–624.CrossRefGoogle Scholar
  36. 36.
    Gristina, A. G., Hobgood, C. D., Webb, L. X., & Myrvik, Q. N. (1987). Adhesive colonization of biomaterials and antibiotic resistance. Biomaterials, 8(6), 423–426.CrossRefGoogle Scholar
  37. 37.
    Evans, R. C., & Holmes, C. J. (1987). Effect of vancomycin hydrochloride on Staphylococcus epidermidis biofilm associated with silicone elastomer. Antimicrobial Agents and Chemotherapy, 31(6), 889–894.CrossRefGoogle Scholar
  38. 38.
    Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R., & Lappin-Scott, H. M. (1995). Microbial biofilms. Annual Review of Microbiology, 49, 711–745.CrossRefGoogle Scholar
  39. 39.
    Adams, J. L., & McLean, R. J. C. (1999). Impact of rpoS deletion on Escherichia coli biofilms. Applied and Environmental Microbiology, 65(9), 4285–4287.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Anderl, J. N., Franklin, M. J., & Stewart, P. S. (2000). Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrobial Agents and Chemotherapy, 44(7), 1818–1824.CrossRefGoogle Scholar
  41. 41.
    Desai, M., Buhler, T. B., Weller, P. H., & Brown, M. R. W. (1998). Increasing resistance of planktonic and biofilm cultures of Burkholderia cepacia to ciprofloxacin and ceftazidime during exponential growth. The Journal of Antimicrobial Chemotherapy, 42(2), 153–160.CrossRefGoogle Scholar
  42. 42.
    Dunne, W. M., Jr., Mason, E. O., Jr., & Kaplan, S. L. (1993). Diffusion of rifampin and vancomycin through a Staphylococcus epidermidis biofilm. Antimicrobial Agents and Chemotherapy, 37(12), 2522–2526.CrossRefGoogle Scholar
  43. 43.
    Yonezawa, H., Osaki, T., & Kamiya, S. (2015). Biofilm formation by Helicobacter pylori and its involvement for antibiotic resistance. BioMed Research International, 2015, 914791.CrossRefGoogle Scholar
  44. 44.
    Johnson, K. S., & Ottemann, K. M. (2018). Colonization, localization, and inflammation: The roles of H. pylori chemotaxis invivo. Current Opinion in Microbiology, 41, 51–57.CrossRefGoogle Scholar
  45. 45.
    Leid, J. G. (2009). Bacterial biofilms resist key host defenses. Microbe, 4, 66e70.Google Scholar
  46. 46.
    Bridier, A., Briandet, R., Thomas, V., & Dubois-Brissonnet, F. (2011). Resistance of bacterial biofilms to disinfectants: A review. Biofouling, 27(9), 1017–1032.CrossRefGoogle Scholar
  47. 47.
    Neelapu, N. R. R., Srimath-Tirumala-Peddinti, R. C. P. K., Nammi, D., & Pasupuleti, A. C. M. (2013). New strategies and paradigm for drug target discovery: A special focus on infectious diseases tuberculosis, malaria, leishmaniasis, trypanosomiasis and gastritis. Infectious Disorders Drug Targets, 13(5), 352–364.CrossRefGoogle Scholar
  48. 48.
    Neelapu, N. R. R., & Pavani, T. (2013). Identification of novel drug targets in HpB38, HpP12, HpG27, Hpshi470, HpSJM180 strains of Helicobacter pylori: An in silico approach for therapeutic intervention. Current Drug Targets, 14, 601–611.CrossRefGoogle Scholar
  49. 49.
    Nammi, D., Srimath-Tirumala-Peddinti, R. C. P. K., & Neelapu, N. R. R. (2016). Identification of drug targets in Helicobacter pylori by in silico analysis: Possible therapeutic implications for gastric cancer. Current Cancer Drug Targets, 16, 79–98.CrossRefGoogle Scholar
  50. 50.
    Neelapu, N. R. R., Mutha, N. V. R., & Akula, S. (2015). Identification of potential drug targets in Helicobacter pylori strain HPAG1 by in silico genome analysis. Infectious Disorders Drug Targets, 15, 106–117.CrossRefGoogle Scholar
  51. 51.
    Neelapu, N. R. R., Nammi, D., Pasupuleti, A. M. C., & Challa, S. (2016). Targets against Helicobacter pylori and other tumor-producing bacteria. In New weapons to control bacterial growth (pp. 239–279). Cham: Springer.CrossRefGoogle Scholar
  52. 52.
    Nammi, D., Yarla, N. S., Chubarev, V. N., Tarasov, V. V., Barreto, G. E., Pasupulati, C. A. M., Aliev, G., & Neelapu, N. R. R. (2017). A systematic in-silico analysis of Helicobacter pylori pathogenic islands for identification of novel drug target candidates. Current Genomics, 18, 450–465.CrossRefGoogle Scholar
  53. 53.
    Pasupuleti, A. M. P., Nammi, D., & Neelapu, N. R. R. (2017). Screening and identification of drug targets and vaccine candidates for Helicobacter pylori strain Hp26695. International Journal of Recent Scientific Research, 8(4), 16384–16395.CrossRefGoogle Scholar
  54. 54.
    Marchese, A., Bozzolasco, M., Gualco, L., Debbia, E. A., Schito, G. C., & Schito, A. M. (2003). Effect of fosfomycin alone and in combination with N-acetylcysteine on E. coli biofilms. International Journal of Antimicrobial Agents, 22(2), S95–S100.CrossRefGoogle Scholar
  55. 55.
    Perez-Giraldo, C., Rodriguez-Benito, A., Moran, F. J., Hurtado, C., Blanco, M. T., & Gomez-Garcı, A. C. (1997). Influence of N-acetylcysteine on the formation of biofilm by Staphylococcus epidermidis. The Journal of Antimicrobial Chemotherapy, 39(5), 643–646.CrossRefGoogle Scholar
  56. 56.
    Schwandt, L. Q., van Weissenbruch, R., Stokroos, I., van der Mei, H. C., Busscher, H. J., & Albers, F. W. J. (2004). Prevention of biofilm formation by dairy products and N-acetylcysteine on voice prostheses in an artificial throat. Acta Oto-Laryngologica, 124(6), 726–731.CrossRefGoogle Scholar
  57. 57.
    Olofsson, A.-C., Hermansson, M., & Elwing, H. (2003). N-acetyll- cysteine affects growth, extracellular polysaccharide production, and bacterial biofilm formation on solid surfaces. Applied and Environmental Microbiology, 69(8), 4814–4822.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Surekha Challa
    • 1
  • Nageswara Rao Reddy Neelapu
    • 1
  1. 1.Department of Biochemistry and BioinformaticsGITAM Institute of Science, Gandhi Institute of Technology and Management (GITAM)VisakhapatnamIndia

Personalised recommendations