Quorum-Sensing Mechanism in Rhizobium sp.: Revealing Complexity in a Molecular Dialogue

  • R. N. Amrutha
  • Pallaval Veera Bramhachari
  • R. S. Prakasham


Nitrogen fixation by a biological process is an important phenomenon for improving agricultural soil fertility by fixing atmospheric nitrogen in the form of ammonia, which is mediated by the symbiotic association between Rhizobium species and leguminous plants. During symbiosis bacteria aggregate to form biofilms and coordinate their behavior in response to environmental conditions by a process called Quorum sensing (QS). The mechanism of quorum sensing depends on the interaction between signal molecule and a sensor that helps bacteria to communicate and regulate gene expression related to nodulation, biofilm formation and symbiosis and nitrogen fixation. Rhizobium utilizes N- acyl homoserine lactones (AHLs) as signalling molecules to coordinate and regulates gene expression. In addition to this, host response to bacteria is important to combat pathogenic bacteria and attract beneficial ones. For this leguminous plants sense the presence of bacteria precisely and release chemical compounds like flavonoids to make appropriate responses to symbiosis. The review clearly emphasizes interkingdom chemical signaling governing molecular interactions between leguminous plants and Rhizobium species in the establishment of symbiosis and nitrogen fixation.


Quorum sensing Rhizobium Leguminous plants Symbiosis Nitrogen fixation 



The Corresponding author is thankful to Department of Science and Technology (DST), New Delhi for providing financial support (LS1246/2015).


  1. 1.
    Gage, D. J. (2004). Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiology and Molecular Biology Reviews, 68, 280–300.CrossRefGoogle Scholar
  2. 2.
    Jones, K. M., Kobayashi, H., Davies, B. W., Taga, M. E., & Walker, G. C. (2007). How rhizobial symbionts invade plants: The Sinorhizobium-Medicago model. Nature Reviews Microbiology, 5, 619–633.CrossRefGoogle Scholar
  3. 3.
    Rinaudi, L. V., & Giordano, W. (2010). An integrated view of biofilm formation in rhizobia. FEMS Microbiology Letters, 304, 1–11.CrossRefGoogle Scholar
  4. 4.
    Hartmann, A., Rothballer, M., Hense, B. A., & Schröder, P. (2014). Bacterial quorum sensing compounds are important modulators of microbe-plant interactions. Frontiers in Plant Science, 5, 131.CrossRefGoogle Scholar
  5. 5.
    Wisniewski-Dye, F., & Downie, J. A. (2002). Quorum-sensing in Rhizobium. Antonie Van Leeuwenhoek, 81, 397–407.CrossRefGoogle Scholar
  6. 6.
    Schumpp, O., & Deakin, W. J. (2010). How inefficient rhizobia prolong their existence within nodules. Trends in Plant Science, 15, 189–195.CrossRefGoogle Scholar
  7. 7.
    Downie, J. A. (2010). The roles of extracellular proteins, polysaccharides and signals in the interactions of rhizobia with legume roots. FEMS Microbiology Reviews, 34, 150–170.CrossRefGoogle Scholar
  8. 8.
    Long, S. R. (1996). Rhizobium symbiosis: Nod factors in perspective. Plant Cell, 8, 1885–1898.CrossRefGoogle Scholar
  9. 9.
    Ardourel, M., Demont, N., Debelle, F. D., et al. (1994). Rhizobium meliloti lipooligosaccharide nodulation factors – Different structural requirements for bacterial entry into target root hair cells and induction of plant symbiotic developmental responses. Plant Cell, 6, 1357–1374.CrossRefGoogle Scholar
  10. 10.
    D’Haeze, W., Mergaert, P., Prome, J. C., & Holsters, M. (2000). Nod factor requirements for efficient stem and root nodulation of the tropical legume Sesbania rostrata. The Journal of Biological Chemistry, 275, 15676–15684.CrossRefGoogle Scholar
  11. 11.
    Goormachtig, S., Capoen, W., & Holsters, M. (2004a). Rhizobium infection: Lessons from the versatile nodulation behaviour of water-tolerant legumes. Trends in Plant Science, 9, 518–522.CrossRefGoogle Scholar
  12. 12.
    Goormachtig, S., Capoen, W., James, E. K., & Holsters, M. (2004b). Switch from intracellular to intercellular invasion during water stress-tolerant legume nodulation. Proceedings of the National Academy of Sciences of the USA, 101, 6303–6308.CrossRefGoogle Scholar
  13. 13.
    Walker, S. A., & Downie, J. A. (2000). Entry of Rhizobium leguminosarum bv. Viciae into root hairs requires minimal nod factor specificity, but subsequent infection thread growth requires nodO or nodE. Molecular Plant-Microbe Interactions, 13, 754–762.CrossRefGoogle Scholar
  14. 14.
    Lerouge, P., Roche, P., Faucher, C., Maillet, F., Truchet, G., Prom’e, J. C., & D’enari’e, J. (1990). Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature, 344, 781–784.CrossRefGoogle Scholar
  15. 15.
    Jitacksorn, S., & Sadowsky, M. J. (2008). Nodulation gene regulation and quorum sensing control density-dependent suppression and restriction of nodulation in the Bradyrhizobium japonicum–soybean symbiosis. Applied and Environmental Microbiology, 74, 3749–3756.CrossRefGoogle Scholar
  16. 16.
    McIver, J., Djordjevic, M. A., Weinman, J. J., Bender, G. L., & Rolfe, B. G. (1989). Extension of host range of Rhizobium leguminosarum bv. trifolii caused by point mutations in nodD that result in alterations in regulatory function and recognition of inducer molecules. Molecular Plant-Microbe Interactions, 2, 97–106.CrossRefGoogle Scholar
  17. 17.
    Radutoiu, S., Madsen, L. H., Madsen, E. B., et al. (2003). Plant recognition of symbiotic bacteria requires two LysM receptorlike kinases. Nature, 425, 585–592.CrossRefGoogle Scholar
  18. 18.
    Oldroyd, G. E. D., & Downie, J. A. (2004). Calcium, kinases and nodulation signalling in legumes. Nature Reviews Molecular Cell Biology, 5, 566–576.CrossRefGoogle Scholar
  19. 19.
    Lohar, D. P., Sharopova, N., Endre, G., Peñuela, S., Samac, D., Town, C., et al. (2006). Transcript analysis of early nodulation events in Medicago truncatula. Plant Physiology, 140, 221–234.CrossRefGoogle Scholar
  20. 20.
    Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R., & Lappin-Scott, H. M. (1995). Microbial biofilms. Annual Review of Microbiology, 49, 711–745.CrossRefGoogle Scholar
  21. 21.
    Fraysse, N., Couderc, F., & Poinsot, V. (2003). Surface polysaccharide involvement in establishing the Rhizobium–legume symbiosis. European Journal of Biochemistry, 270, 1365–1380.CrossRefGoogle Scholar
  22. 22.
    Dazzo, F. B., Truchet, G. L., Sherwood, J. E., Hrabak, E. M., Abe, M., & Pankratz, S. H. (1984). Specific phases of root hair attachment in the Rhizobium trifolii–clover symbiosis. Applied and Environmental Microbiology, 48, 1140–1150.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Laus, M. C., Logman, T. J., Lamers, G. E., Van Brussel, A. A. N., Carlson, R. W., & Kijne, J. W. (2006). A novel polar surface polysaccharide from Rhizobium leguminosarum binds host plant lectin. Molecular Microbiology, 59, 1704–1713.CrossRefGoogle Scholar
  24. 24.
    Russo, D. M., Williams, A., Edwards, A., et al. (2006). Proteins exported via the PrsD-PrsE type I secretion system and the acidic exopolysaccharide are involved in biofilm formation by Rhizobium leguminosarum. Journal of Bacteriology, 188, 4474–4486.CrossRefGoogle Scholar
  25. 25.
    Williams, A., Wilkinson, A., Krehenbrink, M., Russo, D. M., Zorreguieta, A., & Downie, J. A. (2008). Glucomannan-mediated attachment of rhizobium leguminosarum to pea root hairs is required for competitive nodule infection. Journal of Bacteriology, 190, 4706–4715.CrossRefGoogle Scholar
  26. 26.
    Mongiardini, E. J., Ausmees, N., Perez-Gimenez, J., Althabegoiti, M. J., Quelas, J. I., Lopez-Garcia, S. L., & Lodeiro, A. R. (2008). The rhizobial adhesion protein RapA1 is involved in adsorption of rhizobia to plant roots but not in nodulation. FEMS Microbiology Ecology, 65, 279–288.CrossRefGoogle Scholar
  27. 27.
    Verstraeten, N., Braeken, K., Debkumari, B., Fauvart, M., Fransaer, J., Vermant, J., & Michiels, J. (2008). Living on a surface: Swarming and biofilm formation. Trends in Microbiology, 16(10), 496–506.CrossRefGoogle Scholar
  28. 28.
    Gonzalez, J. E., & Marketon, M. M. (2003). Quorum sensing in nitrogen-fixing rhizobia. Microbiology and Molecular Biology Reviews, 67, 574–592.CrossRefGoogle Scholar
  29. 29.
    Danino, V. E., Wilkinson, A., Edwards, A., & Downie, J. A. (2003). Recipient-induced transfer of the symbiotic plasmid pRL1JI in Rhizobium leguminosarum bv. Viciae is regulated by a quorum-sensing relay. Molecular Microbiology, 50, 511–525.CrossRefGoogle Scholar
  30. 30.
    Lithgow, J. K., Wilkinson, A., Hardman, A., Rodelas, B., Wisniewski Dye, F., Williams, P., & Downie, J. A. (2000). The regulatory locus cinRI in rhizobium leguminosarum controls a network of quorum-sensing loci. Molecular Microbiology, 37, 81–97.CrossRefGoogle Scholar
  31. 31.
    Rodelas, B., Lithgow, J. K., Wisniewski-Dyé, F., Hardman, A., Wilkinson, A., Economou, A., Williams, P., & Downie, J. A. (1999). Analysis of quorum-sensing-dependent control of rhizosphere-expressed (rhi) genes in Rhizobium leguminosarum bv. Viciae. Journal of Bacteriology, 181, 3816–3823.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Wisniewski-Dyé, F., & Allan Downie, J. (2002). Quorum sensing in Rhizobium. Antonie Van Leeuwenhoek, 81, 397–407. Scholar
  33. 33.
    Cubo, M. T., Economou, A., Murphy, G., Johnston, A. W., & Downie, J. A. (1992). Molecular characterization and regulation of the rhizosphere-expressed genes rhiABCR that can influence nodulation by Rhizobium leguminosarum biovar viciae. Journal of Bacteriology, 174, 4026–4035.CrossRefGoogle Scholar
  34. 34.
    Dibb, N. J., Downie, J. A., & Brewin, N. J. (1984). Identification of a rhizosphere protein encoded by the symbiotic plasmid of Rhizobium leguminosarum. Journal of Bacteriology, 158, 621–627.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Wilkinson, A., Danino, V., Wisniewski-Dye, F., Lithgow, J. K., & Downie, J. A. (2002a). N-acyl-homoserine lactone inhibition of rhizobial growth is mediated by two quorum-sensing genes that regulate plasmid transfer. Journal of Bacteriology, 184, 4510–4519.CrossRefGoogle Scholar
  36. 36.
    Edwards, A., Frederix, M., Wisniewski-Dye, F., Jones, J., Zorreguieta, A., & Downie, J. A. (2009). The cin and rai quorum-sensing regulatory systems in Rhizobium leguminosarum are coordinated by ExpR and CinS, a small regulatory protein coexpressed with CinI. Journal of Bacteriology, 191, 3059–3067.CrossRefGoogle Scholar
  37. 37.
    Zorreguieta, A., Finnie, C., & Downie, J. A. (2000). Extracellular glycanases of Rhizobium leguminosarum are activated on the cell surface by an exopolysaccharide-related component. Journal of Bacteriology, 182, 1304–1312.CrossRefGoogle Scholar
  38. 38.
    Sanchez-Canizares, C., & Palacios, J. (2013). Construction of a marker system for the evaluation of competitiveness for legume nodulation in Rhizobium strains. Journal of Microbiological Methods, 92. Scholar
  39. 39.
    Teplitski, M., Robinson, J. B., & Bauer, W. D. (2000). Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Molecular Plant-Microbe Interactions, 13, 637–648.CrossRefGoogle Scholar
  40. 40.
    Gao, M. S., Teplitski, M., Robinson, J. B., & Bauer, W. D. (2003). Production of substances by Medicago truncatula that affect bacterial quorum sensing. Molecular Plant-Microbe Interactions, 16, 827–834.CrossRefGoogle Scholar
  41. 41.
    Daniels, R., De Vos, D. E., Desair, J., et al. (2002). The cin quorum sensing locus of Rhizobium etli CNPAF512 affects growth and symbiotic nitrogen fixation. The Journal of Biological Chemistry, 277, 462–468.CrossRefGoogle Scholar
  42. 42.
    Deakin, W. J., & Broughton, W. J. (2009). Symbiotic use of pathogenic strategies: Rhizobial protein secretion systems. Nature Reviews Microbiology, 7, 312–321.CrossRefGoogle Scholar
  43. 43.
    Okazaki, S., Kaneko, T., Sato, S., & Saeki, K. (2013). Hijacking of leguminous nodulation signaling by the rhizobial type III secretion system. Proceedings of the National Academy of Sciences of the United States of America, 110, 17131–17136.CrossRefGoogle Scholar
  44. 44.
    Bozsoki, Z., Cheng, J., Feng, F., Gysel, K., Vinther, M., Andersen, K. R., et al. (2017). Receptor-mediated chitin perception in legume roots is functionally separable from Nod factor perception. Proceedings of the National Academy of Sciences of the United States of America, 114, 8118–8127.CrossRefGoogle Scholar
  45. 45.
    Zipfel, C., & Oldroyd, G. E. (2017). Plant signalling in symbiosis and immunity. Nature, 543, 328–336.CrossRefGoogle Scholar
  46. 46.
    Cao, Y., Halane, M. K., Gassmann, W., & Stacey, G. (2017). The role of plant innate immunity in the legume-Rhizobium symbiosis. Annual Review of Plant Biology, 68, 535–561. Scholar
  47. 47.
    Jones, K. M., Sharopova, N., Lohar, D. P., Zhang, J. Q., VandenBosch, K. A., & Walker, G. C. (2008). Differential response of the plant Medicago truncatula to its symbiont Sinorhizobium meliloti or an exopolysaccharide-deficient mutant. Proceedings of the National Academy of Sciences USA, 105, 704–709.CrossRefGoogle Scholar
  48. 48.
    Liang, Y., Cao, Y., Tanaka, K., Thibivilliers, S., Wan, J., Choi, J., et al. (2013). Nonlegumes respond to rhizobial Nod factors by suppressing the innate immune response. Science, 341, 1384–1387.CrossRefGoogle Scholar
  49. 49.
    Wang, Q., Liu, J., & Zhu, H. (2018). Genetic and molecular mechanisms underlying symbiotic specificity in legume-Rhizobium interactions. Frontiers in Plant Science, 9, 313.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • R. N. Amrutha
    • 1
  • Pallaval Veera Bramhachari
    • 2
  • R. S. Prakasham
    • 1
  1. 1.CSIR-Indian Institute of Chemical TechnologyHyderabadIndia
  2. 2.Department of BiotechnologyKrishna UniversityMachilipatnamIndia

Personalised recommendations