Advertisement

Quorum Sensing in Microbes and their Function in Modulating Antibiotic Synthesis

  • K. Varsha Mohan
  • Parul Sahu
Chapter

Abstract

The intercellular communication, commonly called as Quorum Sensing (QS) or auto induction, has been attributed for various coordinative and community phenomena in Gram positive and Gram negative bacteria. The signalling is facilitated by diffusible signal, auto inducers, in response to population of neighbouring bacteria. Consequently, QS influences bacterial phenotype such as the production of antibiotics. Current understanding of how bacteria mediate antibiotic synthesis in the natural environment is limited to classical quorum sensing receptors and ‘orphan’ quorum sensing receptors. The genetic studies and biochemical investigation of carbapenem synthesis in Serratia and Erwinia carotovora have acknowledged a group of nine genes complex in the assembly namely carRABCDEFGH which are responsible for antibiotic assembly. N-(3oxohexanoyl)-L-homoserine lactone (OHHL) is produced as a product of the independent carI gene activates CarR transcription factor. This OHHL reliant transcriptional activation permits the cells to synchronise expression of carbapenem with cell density. An orphan quorum-sensing receptor, discovered as the soil bacterium Burkholderia thailandensis, differs from classical quorum sensing as this receptor does not respond to characteristic quorum sensing signalling partners. The orphan receptor however responds to antibiotics, such as trimethoprim and sulfamethoxazole. Consequently, eliciting the expression of the genes malA-M which is involved in synthesis of the cytotoxic antibiotic malleilactone. This controlling pathway might be vital to sense and compete in mixed communities. The synthesis of antibiotic is very expensive for the bacteria therefore the induction and modus of induction is tightly regulated. This work is an understanding of the current view of quorum sensing and their function in modulating antibiotics synthesis.

Keywords

Quorum sensing Auto induction Antibiotic synthesis Orphan receptors 

References

  1. 1.
    Bassler, B. L. (1999). How bacteria talk to each other: regulation of gene expression by quorum sensing. Current Opinion in Microbiology, 2(6), 582–587.  https://doi.org/10.1016/S1369-5274(99)00025-9.CrossRefPubMedGoogle Scholar
  2. 2.
    Cha, C., Gao, P., Chen, Y.-C., Shaw, P. D., & Farrand, S. K. (1998). Production of acyl-homoserine lactone quorum-sensing signals by gram-negative plant-associated bacteria. Molecular Plant-Microbe Interactions, 11(11), 1119–1129.  https://doi.org/10.1094/MPMI.1998.11.11.1119.CrossRefPubMedGoogle Scholar
  3. 3.
    Fuqua, W. C., & Winans, S. C. (1994). Peter Greenberg2 AE. MINIREVIEW quorum sensing in bacteria: The luxR-luxI family of cell density-responsive transcriptional regulatorst. Journal of Bacteriology, 176(2), 269–275. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC205046/pdf/jbacter00020-0013.pdf. Accessed 1 Jan 2018.CrossRefGoogle Scholar
  4. 4.
    Cha, C., Gao, P., Chen, Y.-C., Shaw, P. D., & Farrand, S. K. (1998). Production of acyl-homoserine lactone quorum-sensing signals by gram-negative plant-associated bacteria. Molecular Plant-Microbe Interactions, 11(11), 1119–1129. https://apsjournals.apsnet.org/doi/pdf/10.1094/MPMI.1998.11.11.1119. Accessed 1 Jan 2018.CrossRefGoogle Scholar
  5. 5.
    Raffa, R. B., Iannuzzo, J. R., Levine, D. R., et al. (2005). Bacterial communication (‘quorum sensing’) via ligands and receptors: A novel pharmacologic target for the design of antibiotic drugs. The Journal of Pharmacology and Experimental Therapeutics, 312(2), 417–423.  https://doi.org/10.1124/jpet.104.075150.CrossRefPubMedGoogle Scholar
  6. 6.
    Oinuma, K., & Greenberg, E. P. (2011). Acyl-homoserine lactone binding to and stability of the orphan pseudomonas aeruginosa quorum-sensing signal receptor QscR. Journal of Bacteriology, 193(2), 421–428.  https://doi.org/10.1128/JB.01041-10.CrossRefPubMedGoogle Scholar
  7. 7.
    Dietrich, L. E. P., Price-whelan, A., Petersen, A., Whiteley, M., & Newman, D. K. (2006). The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa. Molecular Microbiology, 61(5), 1308–1321.  https://doi.org/10.1111/j.1365-2958.2006.05306.x.CrossRefPubMedGoogle Scholar
  8. 8.
    Welch, M., Todd, D. E., Whitehead, N. A., Mcgowan, S. J., Bycroft, B. W., & Salmond, G. P. C. (2000). N -acyl homoserine lactone binding to the CarR receptor determines quorum-sensing specificity in Erwinia. EMBO Journal, 19(4), 631–641.CrossRefGoogle Scholar
  9. 9.
    Thomson, N. R., Crow, M. A., Mcgowan, S. J., Cox, A., & Salmond, G. P. C. (2000). Biosynthesis of carbapenem antibiotic and prodigiosin pigment in Serratia is under quorum sensing control. Molecular Microbiology, 36, 539–556.CrossRefGoogle Scholar
  10. 10.
    Truong, T. T., Seyedsayamdost, M., Greenberg, E. P., & Chandler, J. R. (2015). A Burkholderia thailandensis acyl-homoserine lactone-independent orphan luxR homolog that activates production of the cytotoxin. Journal of Bacteriology, 197(21), 3456–3462.  https://doi.org/10.1128/JB.00425-15.Editor.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Zhang, Z., & Pierson, L. S., III. (2001). A second quorum-sensing system regulates cell surface properties but not phenazine antibiotic production in Pseudomonas aureofaciens. Applied and Environmental Microbiology, 67(9), 4305–4315.  https://doi.org/10.1128/AEM.67.9.4305.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Schaefer, A. M. Y. L., Hanzelka, B. L., & Eberhard, A. (1996). Quorum sensing in Vibrio fischeri: Probing autoinducer-luxR interactions with autoinducer analogs. Journal of Bacteriology, 178(10), 2897–2901. Downloaded from http://jb.asm.org/ on January 31, 2018 by NATIONAL INSTITUTE OF IMMUNOLOGY (NII).CrossRefGoogle Scholar
  13. 13.
    Vendeville, A., Winzer, K., Heurlier, K., Tang. C. M., & Hardie, K. R. (2005). Making “sense ” of metabolism: Autoinducer ≡ 2, LuxS and pathogenic bacteria. Nature Reviews Microbiology, 3(5):383–396.  https://doi.org/10.1038/nrmicro1146.CrossRefGoogle Scholar
  14. 14.
    Schaefer, A. M. Y. L., Hanzelka, B. L., & Cronan, J. E. (1996). Generation of cell-to-cell signals in quorum sensing: Acyl homoserine lactone synthase activity of a purified Vibrio fischeri LuxI protein. Proceedings of the National Academy of Sciences of the United States of America, 93(18), 9505–9509.CrossRefGoogle Scholar
  15. 15.
    McGowan, S., Sebaihia, M., Jones, S., et al. (1995). Carbapenem antibiotic production in Erwinia carotovora is regulated by CarR, a homologue of the LuxR transcriptional activator. Microbiology, 141(3), 541–550.  https://doi.org/10.1099/13500872-141-3-541.CrossRefPubMedGoogle Scholar
  16. 16.
    Williams, P. (2007). SGM special lecture quorum sensing, communication and cross-kingdom signalling in the bacterial world. Microbiology 2018:3923–3938.  https://doi.org/10.1099/mic.0.2007/012856-0.CrossRefGoogle Scholar
  17. 17.
    Gristwood, T., Fineran, P. C., Everson, L., Williamson, N. R., & Salmond, G. P. (2009). The PhoBR two-component system regulates antibiotic biosynthesis in Serratia in response to phosphate. BMC Microbiology, 9, 112.  https://doi.org/10.1186/1471-2180-9-112.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Thomson, N. R., Crow, M. A., McGowan, S. J., Cox, A., & Salmond, G. P. C. (2002). Biosynthesis of carbapenem antibiotic and prodigiosin pigment in Serratia is under quorum sensing control. Molecular Microbiology, 36(3), 539–556.  https://doi.org/10.1046/j.1365-2958.2000.01872.x.CrossRefGoogle Scholar
  19. 19.
    Veselova, M. A., Klein, S., Bass, I. A., et al. (2008). Quorum sensing systems of regulation, synthesis of phenazine antibiotics, and antifungal activity in rhizospheric bacterium pseudomonas chlororaphis 449. Russian Journal of Genetics, 44(12), 1400–1408.  https://doi.org/10.1134/S102279540812003X.CrossRefGoogle Scholar
  20. 20.
    Duerkop, B. A., Varga, J., Chandler, J. R., et al. (2009). Quorum-sensing control of antibiotic synthesis in Burkholderia thailandensis. Journal of Bacteriology, 191(12), 3909–3918.  https://doi.org/10.1128/JB.00200-09.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Truong, T. T., Seyedsayamdost, M., Greenberg, E. P., & Chandler, J. R. (2015). A Burkholderia thailandensis acyl-homoserine lactone-independent orphan luxR homolog that activates production of the cytotoxin malleilactone. Journal of Bacteriology, 197(21), 3456–3462.  https://doi.org/10.1128/JB.00425-15.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    de Kievit, T. R., & Iglewski, B. H. (2000). Bacterial quorum sensing in pathogenic relationships. Infection and Immunity, 68(9), 4839–4849.  https://doi.org/10.1128/IAI.68.9.4839-4849.2000.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Duerkop, B. A., Varga, J., Chandler, J. R., et al. (2009). Quorum-sensing control of antibiotic synthesis in Burkholderia thailandensis. Journal of Bacteriology, 191(12), 3909–3918.  https://doi.org/10.1128/JB.00200-09.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • K. Varsha Mohan
    • 1
  • Parul Sahu
    • 1
  1. 1.National Institute of ImmunologyNew DelhiIndia

Personalised recommendations