Advertisement

Microbes Living Together: Exploiting the Art for Making Biosurfactants and Biofilms

  • Humera Quadriya
  • S. Adeeb Mujtaba Ali
  • J. Parameshwar
  • M. Manasa
  • M. Yahya Khan
  • Bee Hameeda
Chapter

Abstract

Quorum sensing (QS), the way bacteria interact, where in accumulation of threshold autoinducer concentration due to increased bacterial number, switches on signal transduction cascade to regulate gene expression. Bacteria possess signaling and receptor molecules, such as enzymes or proteins, mostly AHLs (acyl homoserine lactone) in Gram negative bacteria, oligopeptides in Gram positive bacteria. Microbes interact inter as well as intra specially (i.e., crosstalks) through QS and participate in controlling activities, like motility, biofilm synthesis, biosurfactant production, virulence, cell differentiation, nutrient flux etc. that has considerable impact on human health, agriculture, marine and other ecosystems. To provide beneficial effects to the plants, microorganisms colonize the rhizosphere and release QS molecules that regulate the production of exopolysaccharides essential for biofilm formation. In addition, to this biosurfactants (rhamnolipids) synthesized by Pseudomonas spp. regulate the course of quorum sensing. Biosurfactants are reported to affect the motility, participate in signaling and biofilm formation. The present chapter will be focusing on how the social behavior of microorganisms and their signaling molecules promote biosurfactant production and biofilm formation.

Keywords

Quorum sensing Acylhomoserine lactones Gene expression Biosurfactant Biofilm Quorum sensing and swarming migration in bacteria 

Notes

Acknowledgements

The authors acknowledge the financial support from UGC-MJRP-42-481/2013(SR).

References

  1. 1.
    Ahmer, B. M. (2004). Cell-to-cell signalling in Escherichia coli and Salmonella enterica. Molecular Microbiology, 52(4), 933–945.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Andersen, J. B., Koch, B., Nielsen, T. H., Sorensen, D., Hansen, M., Nybroe, O., Christophersen, C., Sorensen, J., Molin, S., & Givskov, M. (2003). Surface motility in Pseudomonas sp. DSS73 is required for efficient biological containment of the root pathogenic microfungi Rhizoctonia solani and Pythium ultimum. Microbiology, 149(1), 37–46.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Anderson, G. G., Palermo, J. J., Schilling, J. D., Roth, R., Heuser, J., & Hultgren, S. J. (2003). Intracellular bacterial biofilm-like pods in urinary tract infections. Science, 301, 105–107.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Atkinson, S., Sockett, R. E., Camara, M., & Williams, P. (2006). Quorum sensing and the lifestyle of Yersinia. Current Issues in Molecular Biology, 8(1), 1–10.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Atkinson, S., & Williams, P. (2009). Quorum sensing and social networking in the microbial world. Journal of the Royal Society Interface, 6(40), 959–978.PubMedCentralCrossRefGoogle Scholar
  6. 6.
    Azeredo, J., Azevedo, N. F., Briandet, R., Cerca, N., Coenye, T., Costa, A. R., Desvaux, M., Di Bonaventura, G., Hebraud, M., Jaglic, Z., Kacaniova, M., Knochel, S., Lourenco, A., Mergulhao, F., Meyer, R. L., Nychas, G., Simoes, M., Tresse, O., Sternberg, C., et al. (2016). Critical review on biofilm methods. Critical Reviews in Microbiology, 43(3), 313–351.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S., & Vivanco, J. M. (2006). The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology, 57, 233–266.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Besson, F., & Michel, G. (1992). Biosynthesis of iturin and surfactin synthesis by Bacillus subtilis: Evidence for amino acid activating enzymes. Biotechnology Letters, 14(11), 1013–1018.CrossRefGoogle Scholar
  9. 9.
    Daniels, R., Reynaert, S., Hoekstra, H., Verreth, C., Janssens, J., Braeken, K., Fauvart, M., Beullens, S., Heusdens, C., Lambrichts, I., De Vos, D. E., Vanderleyden, J., Vermant, J., & Michiels, J. (2006). Quorum signal molecules as biosurfactants affecting swarming in Rhizobium etli. Proceedings of the National Academy of Sciences of the United States of America, 103(40), 14965–14970.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Daniels, R., Vanderleyden, J., & Michiels, J. (2004). Quorum sensing and swarming migration in bacteria. FEMS Microbiology Reviews, 28(3), 261–289.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Davis-Hanna, A., Piispanen, A. E., Stateva, L. I., & Hogan, D. A. (2008). Farnesol and dodecanol effects on the Candida albicans Ras1-cAMP signalling pathway and the regulation of morphogenesis. Molecular Microbiology, 67(1), 47–62.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    de Brujin, I., de Kock, M. J., de Waard, P., van Beek, T. A., & Raaijmakers, J. M. (2008). Massetolide A biosynthesis in Pseudomonas fluorescens. Journal of Bacteriology, 190(8), 2777–2789.CrossRefGoogle Scholar
  13. 13.
    de Brujin, I., de Kock, M. J., Yang, M., de Waard, P., van Beek, T. A., & Raaijmakers, J. M. (2006). Genome-based discovery, structure prediction and functional analysis of cyclic lipopeptide antibiotics in Pseudomonas species. Molecular Microbiology, 63(2), 417–428.CrossRefGoogle Scholar
  14. 14.
    de Kievit, T. R. (2009). Quorum sensing in Pseudomonas aeruginosa biofilms. Environmental Microbiology, 11(2), 279–288.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    de Kievit, T. R., & Iglewski, B. H. (2000). Bacterial quorum sensing in pathogenic relationships. Infection and Immunity, 68(9), 4839–4849.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Deep, A., Uma, C., & Varsha, G. (2011). Quorum sensing and bacterial pathogenicity: From molecules to diseases. Journal of Laboratory Physicians, 3(1), 4–11.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Desai, J. D., & Banat, I. M. (1997). Microbial production of surfactants and their commercial potential. Microbiology and Molecular Biology Reviews, 61(1), 47–64.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Deveau, A., Piispanen, A. E., Jackson, A. A., & Hogan, D. A. (2010). Farnesol induces hydrogen peroxide resistance in Candida albicans yeast by inhibiting the Ras-cyclic AMP signaling pathway. Eukaryotic Cell, 9(4), 569–577.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Dong, Y. H., Wang, L. H., Xu, J. L., Zhang, H. B., Zhang, X. F., & Zhang, L. H. (2001). Quenching quorum-sensing dependent bacterial infection by an N-acyl homoserine lactonase. Nature, 411(6839), 813–817.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Donlan, R. M. (2002). Biofilms: Microbial life on surfaces. Emerging Infectious Diseases, 8, 881–890.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Dubern, J. F., Lugtenberg, B. J., & Bloemberg, G. V. (2006). The ppuI-rsaL-ppuR quorum-sensing system regulates biofilm formation of Pseudomonas putida PCL1445 by controlling biosynthesis of the cyclic lipopeptides putisolvin I and II. Journal of Bacteriology, 188(8), 2898–2906.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Dusane, D. H., Zinjarde, S. S., Venugopalan, V. P., McClean, R. J., Weber, M. M., & Rahman, P. K. (2010). Quorum sensing implications on rhamnolipid biosurfactant production. Biotechnology and Genetic Engineering Reviews, 27, 159–184.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Eberhard, A., Burlingame, A. L., Eberhard, C., Kenyon, G. L., Nealson, K. H., & Oppenheimer, N. J. (1981). Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry, 20(9), 2444–2449.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Eberl, L., Winson, M. K., Sternberg, C., Stewart, G. S. A., Christiansen, G., Chhabra, S. R., Bycroft, B., Williams, P., Molin, S., & Givskov, M. (1996). Involvement of N-acyl-L-homoserine lactone autoinducers in controlling the multicellular behavior of Serratia liquefaciens. Molecular Microbiology, 20(1), 127–136.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Engebrecht, J., Nealson, K., & Silverman, M. (1983). Bacterial bioluminescence: Isolation and genetic analysis of functions from Vibriofischeri. Cell, 32(3), 773–781.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Fatima, U., & Muthappa, S. K. (2015). Plant and pathogen nutrient acquisition strategies. Frontiers in Plant Science, 6, 750.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Gambello, M. J., Kaye, S., & Iglewski, B. H. (1993). LasR of Pseudomonas aeruginosa is a transcriptional activator of the alkaline protease gene (apr) and an enhancer of exotoxin A expression. Infection and Immunity, 61(4), 1180–1184.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Gantner, S., Schmid, M., Durr, C., Schuhegger, R., Steidle, A., Hutzler, P., Langebartels, C., Eberl, L., Hartmann, A., & Dazzo, F. B. (2006). In situ quantitation of the spatial scale of calling distances and population density-independent N-acylhomoserine lactone-mediated communication by rhizobacteria colonized on plant roots. FEMS Microbiology Ecology, 56(2), 188–194.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Gardan, R., Besset, C., Guillot, A., Christophe, G., & Monnet, V. (2009). The oligopeptide transport system is essential for the development of natural competence in Streptococcus thermophilus strain LMD-9. Journal of Bacteriology, 191(14), 4647–4655.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Gonzalez, J. E., & Keshavan, N. D. (2006). Messing with bacterial quorum sensing. Microbiology and Molecular Biology Reviews, 70(4), 859–875.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Greenberg, E. P. (1997). Quorum sensing in gram-negative bacteria. American Society for Microbiology News, 63, 371–377.Google Scholar
  32. 32.
    Hall, R. A., Turner, K. J., Chaloupka, J., Cottier, F., De Sordi, L., Sanglard, D., Levin, L. R., Buck, J., & Muhlschlegel, F. A. (2011). The quorum-sensing molecules farnesol/homoserine lactone and dodecanol operate via distinct modes of action in Candida albicans. Eukaryotic Cell, 10(8), 1034–1042.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Hall, R. A., Cottier, F., & Muhlschlegel, F. A. (2009). Molecular networks in the dungal pathogen Candida albicans. Advances in Applied Microbiology, 67, 191–212.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Hall-Stoodley, L., Hu, F. Z., Gieseke, A., Nistico, L., Nguyen, D., Hayes, J., Forbes, M., Greenberg, D. P., Dice, B., Burrows, A., Wackym, P. A., Stoodley, P., Post, J. C., Ehrlich, G. D., & Kerschner, J. E. (2006). Direct detection of bacterial biofilms on the middle-ear mucosa of children with chronic otitis media. The Journal of American Medical Association, 296(2), 202–211.CrossRefGoogle Scholar
  35. 35.
    Hense, B. A., Kuttler, C., Muller, J., Rothballer, M., Hartmann, A., & Kreft, J. U. (2007). Does efficiency sensing unify diffusion and quorum sensing? Nature Reviews. Microbiology, 5(3), 230–239.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Hogan, D. A., Vik, A., & Kolter, R. (2004). A Pseudomonas aeruginosa quorum-sensing molecule influences Candida albicans morphology. Molecular Microbiology, 54(5), 1212–1223.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Huber, B., Riedel, K., Hentzer, M., Heydorn, A., Gotschlich, A., Givskov, M., Molin, S., & Eberl, L. (2001). The cep quorum-sensing system of Burkholderia cepacia H111 controls biofilm formation and swarming motility. Microbiology, 147, 2517–2528.PubMedCrossRefGoogle Scholar
  38. 38.
    Hussain, M. B., Zhang, H. B., Xu, J. L., Liu, Q., Jiang, Z., & Zhang, L. H. (2008). The acyl-homoserine lactone-type quorum-sensing system modulates cell motility and virulence of Erwinia chrysanthemi pv. zeae. Journal of Bacteriology, 190(3), 1045–1053.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Jae, H. A., Eunhye, G., Hongsup, K., Young-Su, S., & Ingyu, H. (2014). Bacterial quorum sensing and metabolic slowing in a cooperative population. Proceedings of the National Academy of Sciences of the United States of America, 111(41), 14912–14917.CrossRefGoogle Scholar
  40. 40.
    Jang, Y. J., Choi, Y. J., Lee, S. H., Jun, H. K., & Choi, B. K. (2013). Autoinducer2 of Fusobacterium nucleatum as a target molecule to inhibit formation of periodontopathogens. Archives of Oral Biology, 58(1), 17–27.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Jimenez, P. N., Koch, G., Thompson, J. A., Xavier, K. B., Cool, R. H., & Quax, W. J. (2012). The multiple signaling systems regulating virulence in Pseudomonas aeruginosa. Microbiology and Molecular Biology Reviews, 76, 46–65.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Kebara, B. W., Langford, M. L., Navarathna, D. H., Dumitru, R., Nickerson, K. W., & Atkin, A. L. (2008). Candida albicans Tup1 is involved in farnesol-mediated inhibition of filamentous-growth induction. Eukaryotic Cell, 7(6), 980–987.CrossRefGoogle Scholar
  43. 43.
    Keshavan, N. D., Chowdhary, P. K., Haines, D. C., & Gonzalez, J. E. (2005). L-canavanine made by Medicao sativa interferes with quorum sensing in Sinorhizobium meliloti. Journal of Bacteriology, 187, 8427–8436.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Kluge, B., Vater, J., Sainikow, J., & Eckart, K. (1989). Studies on the biosynthesis of surfactin a lipopeptide antibiotic from Bacillus subtilis ATCC 21332. FEBS Letters, 23(1), 107–110.CrossRefGoogle Scholar
  45. 45.
    Kruppa, M., Krom, B. P., Chauhan, N., Bambach, A. V., Cihlar, R. L., & Calderone, R. A. (2004). The two-component signal transduction protein Chk1p regulates quorum sensing in Candida albicans. Eukaryotic Cell, 3(4), 1062–1065.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Kuiper, I., Lagendijk, E. L., Bloemberg, G. V., & Lugtenberg, B. J. (2004). Rhizoremediation: A beneficial plant-microbe interaction. Molecular Plant-Microbe Interactions, 17(1), 6–15.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Kumar, J. S., Umesha, S., Prasad, K. S., & Niranjana, P. (2016). Detection of quorum sensing molecules and biofilm formation in Ralstonia solanscearum. Current Microbiology, 72(3), 297–305.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Li, Z., & Nair, S. K. (2012). Quorum sensing: How bacteria can coordinate activity and synchronize their response to external signals? Protein Science, 21(10), 1403–1417.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Lindum, P. W., Anthoni, U., Christopherson, C., Eberl, L., Molin, S., & Giskov, M. (1998). N-acyl-L-homoserine lactone autoinducers control production of an extracellular lipopeptide biosurfactant required for swarming motility of Serratia liquefaciens MG1. Journal of Bacteriology, 180(23), 6384–6388.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Lithgow, J. K., Wilkinson, A., Hardman, A., Rodelas, B., Wisniewski-Dye, F., Williams, P., & Downie, J. A. (2000). The regulatory locus cinRI in Rhizobium leguminosarum controls a network of quorum-sensing loci. Molecular Microbiology, 37(1), 81–97.PubMedCrossRefGoogle Scholar
  51. 51.
    Lynch, A. S., & Gregory, T. R. (2008). Bacterial and fungal biofilm infections. Annual Review of Medicine, 59(1), 415–428.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Maria, J. S., Alejandra, I., Marco, V., Apolinaria, G., Haruki, K., & Julio, V. (2016). Biofilm forming Lactobacillus: New challenges for the development of probiotics. Microorganisms, 4(3), 35.CrossRefGoogle Scholar
  53. 53.
    Mathesius, U., Mulders, S., Gao, M., Teplitski, M., Caetano-Anolles, G., Rolfe, B. G., & Bauer, W. D. (2003). Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals. Proceedings of the National Academy of Sciences of the United States of America, 100(3), 1444–1449.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Morohoshi, T., Shiono, T., Takidouchi, K., Kato, M., Kato, N., Kato, J., & Ikeda, T. (2007). Inhibition of quorum sensing in Serratia marcescens AS-1 by synthetic analogs of N-acylhomoserine lactone. Applied and Environmental Microbiology, 73(20), 6339–6344.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Murray, T. S., Egan, M., & Kazmierczak, B. I. (2007). Pseudomonas aeruginosa chronic colonization in cystic fibrosis patients. Current Opinion in Pediatrics, 1, 83–88.CrossRefGoogle Scholar
  56. 56.
    Naves, P., Prado, D. G., Huelves, L., Rodriguez, C. V., Ruiz, V., Ponte, M. C., & Soriano, F. (2010). Effects of human serum albumin, ibuprofen and N-acetyl-l-cysteine against biofilm formation by pathogenic Escherichia coli strains. Journal of Hospital Infection, 76, 165–170.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Nealson, K., Platt, H., & Hastings, J. W. (1970). Cellular control of the synthesis and activity of the bacterial luminescent system. Journal of Bacteriology, 104(1), 313–322.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Neelam, M., Supriya, K., & Surajit, D. (2016). Bacterial biofilms and quorum sensing: Fidelity in bioremediation technology. Biotechnology and Genetic Engineering Reviews, 32(1–2), 43–73.Google Scholar
  59. 59.
    Nielsen, L. (2010). Novel components of Pseudomonas putida biofilm exopolymeric matrix and a transcriptome analysis of the effects of osmotic and matric stress (Graduate thesis and dissertations). Retrieved from Lowa State University digital repository. (Accession No. ISBN-10:1244752118).Google Scholar
  60. 60.
    O’Toole, G., Kaplan, H. B., & Kolter, R. (2000). Biofilm formation as microbial development. Annual Review of Microbiology, 54, 49–79.CrossRefGoogle Scholar
  61. 61.
    O’Toole, G. A., & Kolter, R. (1998). Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Molecular Microbiology, 30(2), 295–304.PubMedCrossRefGoogle Scholar
  62. 62.
    Pesci, E. C., Milbank, J. B., Pearson, J. P., McKnight, S., Kende, A. S., Greenberg, E. P., & Iglewski, B. H. (1999). Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences of the United States of America, 96(20), 11229–11234.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Pierson, E. A., Wood, D. W., Cannon, J. A., Blachere, F. M., & Pierson, L. S. (1998). Interpopulation signaling via N-acyl homoserine lactones among bacteria in the wheat rhizosphere. Molecular Plant-Microbe Interactions, 11, 1078–1084.CrossRefGoogle Scholar
  64. 64.
    Raaijmakers, J. M., De Brujin, I., Nybroe Le, N., & Marc, O. (2010). Natural functions of lipopeptides from Bacillus and Pseudomonas more than surfactant and antibiotics. FEMS Microbiology Reviews, 34, 1037–1062.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Rasmussen, T. B., Bjarnsholt, T., Skindersoe, M. E., Hentzer, M., Kristoffersen, P., Kote, M., Nielsen, J., Eberl, L., & Givskov, M. (2005). Screening for the quorum-sensing inhibitors (QSI) by use of a novel genetic system, the QSI sector. Journal of Bacteriology, 187(5), 1799–1814.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Redfield, R. J. (2002). Is quorum sensing a side effect of diffusion sensing? Trends in Microbiology, 10(8), 365–370.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Reis, R. S., Lucia, G. S., da Rochaa, A., Chapeaurouge, D. A., Domont, G. B., Santa Annac, L. L. M., Freirea, D. M. G., & Perales, J. (2010). Effect of carbon sources on the proteome of Pseudomonas aeruginosa PA1 during rhamnolipid production. Process Biochemistry, 45(9), 1504–1510.CrossRefGoogle Scholar
  68. 68.
    Ryan, R. P., & Maxwell, J. D. (2008). Diffusible signals and interspecies communication in bacteria. Microbiology, 154(7), 1845–1858.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Santos, A. S., Sampaio, A. P. W., Vasquez, G. S., Lidia, M. S. A., Nei, P., & Denise, M. G. F. (2002). Evaluation of different carbon and nitrogen sources in production of rhamnolipids by a strain of Pseudomonas aeruginosa. Applied Biochemistry and Biotechnology, 98(2), 1025–1035.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Sara, R. M., Maria, L., Celia, M., Maitane, A. Z., Daniel, P., Jorge, C., Francesc, M., Luis, M., Manuel, J. I., Otero, A., & Jose, R. (2015). Biofilm formation and quorum-sensing-molecule production by clinical isolates of Serretia liquefaciens. Applied and Environmental Microbiology, 81(10), 3306–3315.CrossRefGoogle Scholar
  71. 71.
    Scott, R. A., Weil, J., Le, P. T., Williams, P., Fray, R. G., van Bodman, S. B., & Savka, M. A. (2006). Long- and short-chain plant-produced bacterial N-acyl-homoserine lactones become components of phyllosphere, rhizosphere, and soil. Molecular Plant-Microbe Interactions, 19(3), 227–239.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Shrout, J. D., Chopp, D. L., Just, C. L., Hentzer, M., Givskov, M., & Parsek, M. R. (2006). The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional. Molecular Microbiology, 62(5), 1264–1267.CrossRefGoogle Scholar
  73. 73.
    Sinumvayo, J. P., & Ishimwe, N. (2015). Agriculture and food applications of rhamnolipids and its production by Pseudomonas aeruginosa. Journal of Chemical Engineering and Process Technology, 6, 223.CrossRefGoogle Scholar
  74. 74.
    Steven, S., Branda, F., Frances, C., Daniel, B., Kearns, Richard, L., & Roberto, K. (2005). A major protein component of the Bacillus subtilis biofilm matrix. Molecular Microbiology, 59(4), 1229–1238.Google Scholar
  75. 75.
    Swarnita, D., Ramesh, C. D., Dinesh, K. M., Prahlad, K. S., & Vivek, K. B. (2017). Roles of quorum sensing molecules from Rhizobium etli RT1 in bacterial motility and biofilm formation. Brazilian Journal of Microbiology, 48(4), 815–821.CrossRefGoogle Scholar
  76. 76.
    Swift, S., Karlyshev, A. V., Fish, L., Durant, E. L., Winson, M. K., Chhabra, S. R., Williams, P., Macintyre, S., & Stewart, G. S. A. B. (1997). Quorum sensing in Aeromonas hydrophila and Aeromonas salmonicida: Identification of the LuxRI homologs AhyRI and AsaRI and their cognate N-acylhomoserine lactone signal molecules. Journal of Bacteriology, 179(17), 5271–5281.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Tanvir, H., Kamruzzaman, M., Zahin, T. C., Hamida, N. M., Nurun Nabi, A. H. M.,& Ismail, M. H. (2017). Application of the subtractive genomics and molecular docking analysis for the identification of novel putative drug targets. Biomed Research International. 3783714.Google Scholar
  78. 78.
    Tatsuki, S., Watanabe, T., Mikami, T., & Matsumoto, T. (2004). Farnesol, a morphogenetic autoregulatory substance in the dimorphic fungus Candida albicans, inhibits hyphae growth through suppression of a mitogen-activated protein kinase cascade. Biological and Pharmaceutical Bulletin, 5, 751–752.Google Scholar
  79. 79.
    Teplitski, M., Chen, H., Rajamani, S., Gao, M., Merighi, M., Sayre, R. T., Robinson, J. B., Rolfe, B. G., & Bauer, W. D. (2004). Chlamydomonas reinhardtii secretes compounds that mimic bacterial signals and interfere with quorum sensing regulation in bacteria. Plant Physiology, 134(1), 137–146.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Teplitski, M., Robinson, J. B., & Bauer, W. D. (2000). Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Molecular Plant-Microbe Interactions, 13(6), 637–648.PubMedCrossRefGoogle Scholar
  81. 81.
    Thoendel, M., & Horswill, A. R. (2010). Biosynthesis of peptide signals in gram positive bacteria. Advances in Applied Microbiology, 71, 91–112.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Toth, I. K., Newton, J. A., Hyman, L. J., Lees, A. K., Daykin, M., Ortori, C., Williams, P., & Fray, R. G. (2004). Potato plants genetically modified to produce N-acylhomoserine lactones increase susceptibility to soft rot erwiniae. Molecular Plant-Microbe Interactions, 17(8), 880–887.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Tsiry, R., Quentin, L., Pierre, D., & Mondher, E. J. (2015). The formation of biofilms by Pseudomonas aeruginosa: A review of the natural and synthetic compounds interfering with control mechanisms. BioMed Research International, 2015, 1–17.Google Scholar
  84. 84.
    Ullrich, C., Kluge, B., Palacz, Z., & Vater, J. (1991). Cell free biosynthesis of surfactin, a cyclic lipopeptide produced by Bacillus subtilis. Biochemistry, 30, 6503–6508.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Vadyvaloo, V., & Otto, M. (2005). Molecular genetics of Staphylococcus epidermidis biofilms on indwelling medical devices. The International Journal of Artificial Organs, 28(11), 1069–1078.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Van Acker, H., Sass, A., Bazzini, S., Roy, D. K., Udine, C., Messiaen, T., Riccardi, G., Boon, N., Nelis, H. J., Mahenthiralingam, E., & Coenye, T. (2013). Biofilm-grown Burkholderia cepacia complex cells survive antibiotic treatment by avoiding production of reactive oxygen species. PLoS One, 8(3), e58943.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Van Gestel, J., Hera, V., & Kolter, R. (2015). From cell differentiation to cell collectives: Bacillus subtilis uses division of labor to migrate. PLoS Biology, 13(4), e1002141.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Vasil, M. L. (2003). DNA microarrays in analysis of quorum sensing: Strengths and limitations. Journal of Bacteriology, 185(7), 2061–2065.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Wai-Leung, N., & Bassler, B. L. (2009). Bacterial quorum-sensing network architectures. Annual Review of Genetics, 43, 197–222.CrossRefGoogle Scholar
  90. 90.
    Walker, T. S., Bais, H. P., Deziel, E., Schweizer, H. P., Rahme, L. G., Fall, R., & Vivan, J. M. (2004). Pseudomonas aeruginosa-plant root interactions. Pathogenicity, biofilm formation, and root exudation. Plant Physiology, 134(4), 320–331.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Wei, Y., Lai, H. C., Chen, S. Y., Yeh, M. S., & Chang, J. S. (2004). Biosurfactant production by Serratia marcescens SS-I and its isogenic strain SMdeltaR defective in SpnR, a quorum-sensing Lux R family protein. Biotechnology Letters, 26, 799–802.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Williams, P. (2007). Quorum sensing, communication and cross-kingdom signalling in the bacterial world. Microbiology, 153, 3923–3938.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Wisniewski-Dye, F., Jones, J., Chhabra, S. R., & Downie, J. A. (2002). raiIR genes are part of a quorum-sensing network controlled by cinI and cinR in Rhizobium leguminosarum. Journal of Bacteriology, 184, 1597–1606.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Winson, M. K., Camara, M., Latifi, A., Foglino, M., Chhabra, S. R., Daykin, M., Bally, M., Chapon, V., Salmond, G. P. C., Bycroft, B. W., Lazdunski, A., Stewart, G. S. A. B., & Williams, P. (1995). Multiple N-acyl-L-homoserine lactone signal molecules regulate production of virulence determinants and secondary metabolites in Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences of the United States of America, 92, 9427–9431.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Winzer, K., Falconer, C., Garber, N. C., Diggle, S. P., Camara, M., & Williams, P. (2000). The Pseudomonas aeruginosa lectins PA-IL and PA-IIL are controlled by quorum sensing and by RpoS. Journal of Bacteriology, 182(22), 6401–6411.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Winzer, K., Hardie, K. R., Burgess, N., Doherty, N., Kirke, D., Holden, M. T., Linforth, R., Cornell, K. A., Taylor, A. J., Hill, P. J., & Williams, P. (2002). LuxS: Its role in central metabolism and the in vitro synthesis of 4-hydroxy-5-methyl-3(2H)-furanone. Microbiology, 148(4), 909–922.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Yang, Q., & Defoirdt, T. (2015). Quorum sensing positively regulates flagellar motility in pathogenic Vibrio harveyi. Environmental Microbiology, 17(4), 960–968.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Yoon, H. S., Muller, K. M., Sheath, R. G., Ott, F. D., & Bhattacharya, D. (2006). Defining the major lineages of red algae (Rhodophyta). Journal of Phycology, 42, 482–492.CrossRefGoogle Scholar
  99. 99.
    Yoshida, A., & Kuramitsu, H. K. (2002). Streptococcus mutans biofilm formation: Utilization of a gtfB promoter-green fluorescent protein (PgtfB::gfp) construct to monitor development. Microbiology, 148, 3385–3394.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Yumiko, S., & Kolter, R. (2007). Quorum-sensing regulation of the biofilm matrix genes (peI) of Pseudomonas aeruginosa. Journal of Bacteriology, 189(14), 5383–5386.CrossRefGoogle Scholar
  101. 101.
    Yung, H. L., & Tian, X. (2012). Quorum sensing and bacterial social interactions in biofilms. Sensors, 12, 2519–2538.CrossRefGoogle Scholar
  102. 102.
    Zhaobin, X., Sabina, I., Thomas, K. W., & Zuyi, H. (2015). An integrated modeling and experimental approach to study the influence of environmental nutrients on biofilm formation of Pseudomonas aeruginosa. BioMed Research International, 1–12.Google Scholar
  103. 103.
    Zhu, J., Beaber, W. J., Margret, I. M., Fuqua, C., Eberhard, A., & Stephen, C. W. (1998). Analogs of the autoinducer-3-oxooctonyl-homoserine lactone strongly inhibit activity of the TraR protein of Agrobacterium tumefaciens. Journal of Bacteriology, 180(20), 5398–5405.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Humera Quadriya
    • 1
  • S. Adeeb Mujtaba Ali
    • 1
  • J. Parameshwar
    • 1
  • M. Manasa
    • 1
  • M. Yahya Khan
    • 2
  • Bee Hameeda
    • 1
  1. 1.Department of MicrobiologyOsmania UniversityHyderabadIndia
  2. 2.Kalam Biotech Private LimitedHyderabadIndia

Personalised recommendations