Soil Remediation Through Microbes

  • Bhupendra Koul
  • Pooja Taak


The use of microbes including bacteria and fungi for treatment of polluted soils is also a method of soil remediation. Microbes are adapted to survive under various unfavorable conditions, such as high temperature, alkalinity, and acidity, and can easily develop biological resistance against the toxic substances because of their jumping genes. Under favorable conditions of growth and adequate supply of the nutrients, the microbes can biotransform or biodegrade complex organic materials into harmless or less toxic smaller molecules. With the addition of micronutrients into the microbial consortia the degradation rate of pollutants can be enhanced as the added nutrients stimulate soil microbes which eventually expedite the rate of biodegradation. Mycoremediation is fungal-mediated bioremediation of polluted soils containing organic and inorganic pollutants. Fungal mycelia can spread similarly as that of plant roots and accumulate heavy metals in their cytosol. Environmentalists regard microorganisms as ‘eco-friendly nano-factories’ for treating the polluted soils. However, natural pollutants can be degraded by the naturally occurring microbes while for degradation of manmade chemicals or pollutants, genetically transformed microbes should be developed for efficient soil remediation. Microbe-mediated remediation can take place via three methods i.e. bioventing, bioleaching, bioaugmentation. In the last few years, several reports covering the success stories of microbe-mediated soil remediation have come up.


Microbial remediation Bioventing Bioleaching Bioreactors Bioaugmentation 


  1. Abbasian F, Lockington R, Mallavarapu M, Naidu R (2015) A comprehensive review of aliphatic hydrocarbon biodegradation by bacteria. Appl Biochem Biotechnol. Springer, New York, pp 1−30PubMedCrossRefGoogle Scholar
  2. Abou-Shanab RAI, Angle JS, Chaney RL (2006) Bacterial inoculants affecting nickel uptake by Alyssum murale from low, moderate and high Ni soils. Soil Biol Biochem 38:2882–2889CrossRefGoogle Scholar
  3. Abou-Shanab RA, Ghanem K, Ghanem N, Al-Kolaibe A (2008) The role of bacteria on heavy-metal extraction and uptake by plants growing on multi-metal-contaminated soils. World J Microbiol Biotechnol 24:253–262CrossRefGoogle Scholar
  4. Achakzai AKK, Liasu MO, Popoola OJ (2012) Effect of mycorrhizal inoculation on the growth and phytoextraction of heavy metals by maize grown in oil contaminated soil. Pak J Bot 44(1):221–230Google Scholar
  5. Achal V, Pan X, Zhang D (2011) Remediation of copper-contaminated soil by Kocuria flava CR1, based on microbially induced calcite precipitation. Ecol Eng 37:1601–1605CrossRefGoogle Scholar
  6. Adams GO, Fufeyin PT, Okoro SF, Ehinomen I (2015) Bioremediation, biostimulation and bioaugmention, a review. Int J Environ Bioremed Biodegrad 3(1):28–39Google Scholar
  7. Adediran GA, Ngwenya BT, Mosselmans JFW, Heal KV, Harvie BA (2015) Mechanism behind bacteria induced plant growth promotion and Zn accumulation in Brassica juncea. J Hazard Mater 283:490–499PubMedCrossRefGoogle Scholar
  8. Ahmady-Asbchin S, Safari M, Tabaraki R (2015) Biosorption of Zn (II) by Pseudomonas aeruginosa isolated from a site contaminated with petroleum. Desalin Water Treat 54:3372–3379CrossRefGoogle Scholar
  9. Akintunde TA, Abioye OP, Oyeleke SB, Boboye BE, Ijah UJJ (2015) Remediation of iron using rhamnolipid-surfactant produced by Pseudomonas aeruginosa. Res J Environ Sci 9:169–177CrossRefGoogle Scholar
  10. Akinyele JB, Fakoya S, Adetuyi CF (2012) Anti-growth factors associated with Pleurotus ostreatus in a submerged liquid fermentation. Malay J Microbiol 8:135–140Google Scholar
  11. Amund OO, Nwokoye N (1993) Hydrocarbon potentials of yeast isolates from a polluted Lagoon. J Sci Res Dev 1:65–68Google Scholar
  12. Andrade SA, Gratão PL, Schiavinato MA, Silveira AP, Azevedo RA, Mazzafera P (2009) Zn uptake, physiological response and stress attenuation in mycorrhizal jack bean growing in soil with increasing Zn concentrations. Chemosphere 75(10):1363–1370PubMedCrossRefPubMedCentralGoogle Scholar
  13. Antizar-Ladislao B (2010) Bioremediation: working with bacteria. Elements 6(6):389–394CrossRefGoogle Scholar
  14. Arbanah M, Miradatul Najwa MR, Ku Halim KH (2012) Biosorption of Cr(III), Fe(II), Cu(II), Zn(II) ions from liquid laboratory chemical waste by Pleurotus ostreatus. Int J Biotechnol Wellness Ind 1:152–162Google Scholar
  15. Arbanah M, Miradatul Najwa MR, Ku Halim KH (2013) Utilization of Pleurotus ostreatus in the removal of Cr (VI) from chemical laboratory waste. Int Refreed J Eng Sci 2(4):29–39Google Scholar
  16. Arvay J, Tomas J, Hauptvogl M, Kovacik A, Bajcan D, Massanyi P (2014) Contamination of wild-grown edible mushrooms by heavy metals in a former mercury-mining area. J Environ Sci Health B 49:815–827PubMedCrossRefPubMedCentralGoogle Scholar
  17. Atlas RM (1981) Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiol Rev 45(1):180–209PubMedPubMedCentralGoogle Scholar
  18. Azubuike CC, Chikere CB, Okpokwasili GC (2016) Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects. World J Microbial Biotechnol 32(11):180CrossRefGoogle Scholar
  19. Babu AG, Kim JD, Oh BT (2013) Enhancement of heavy metal phytoremediation by Alnus firma with endophytic Bacillus thuringiensis GDB-1. J Hazard Mater 250:477–483PubMedCrossRefPubMedCentralGoogle Scholar
  20. Bamforth SM, Singleton I (2005) Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. J Chem Technol Biotechnol 80(7):723–736CrossRefGoogle Scholar
  21. Banerjee G, Pandey S, Ray AK, Kumar R (2015) Bioremediation of heavy metals by a novel bacterial strain Enterobacter cloaca and its antioxidant enzyme activity, flocculant production, and protein expression in presence of lead, cadmium, and nickel. Water Air Soil Pollut 226:1–9CrossRefGoogle Scholar
  22. Belimov AA, Kunakova AM, Safronova VI, Stepanok VV, Yudkin LY, Alekseev YV, Kozhemyakov AP (2004) Employment of rhizobacteria for the inoculation of barley plants cultivated in soil contaminated with lead and cadmium. Microbiology 73:99–106CrossRefGoogle Scholar
  23. Beolchini F, Pagnanelli F, Toro L, Veglio F (2006) Ionic strength effect on copper biosorption by Sphaerotilus natans: equilibrium study and dynamic modelling in membrane reactor. Water Res 40:144–152PubMedCrossRefPubMedCentralGoogle Scholar
  24. Bestawy EE, Helmy S, Hussien H, Fahmy M, Amer R (2010) Bioremediation of heavy metal-contaminated effluent using optimized activated sludge bacteria. Appl Water Sci 3:181–192CrossRefGoogle Scholar
  25. Bheemareddy VS, Lakshman HC (2011) Effect of salt and acid stress on Triticum aestivum inoculated with Glomus fasciculatum. Int J Agric Technol 7:945–956Google Scholar
  26. Boonchan S, Britz ML, Stanley GA (2000) Degradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal bacterial cocultures. Appl Environ Microbiol 66(3):1007–1019PubMedPubMedCentralCrossRefGoogle Scholar
  27. Bradley PM (2003) History and ecology of chloroethene biodegradation: a review. Bioremed J 7(2):81–109CrossRefGoogle Scholar
  28. Brundrett M (2004) Diversity and classification of mycorrhizal associations. Biol Rev 79(3):473–495PubMedCrossRefPubMedCentralGoogle Scholar
  29. Cabuk A, Akar T, Tunali S, Tabak O (2006) Biosorption characteristics of Bacillus sp. ATS-2 immobilized in silica gel for removal of Pb. J Hazard Mater 136:317–323PubMedCrossRefPubMedCentralGoogle Scholar
  30. Cai M, Xun L (2002) Organization and regulation of pentachlorophenol degrading genes in Sphingobium chlorophenolicum ATCC 39723. J Bacteriol 184(17):4672–4680PubMedPubMedCentralCrossRefGoogle Scholar
  31. Castiglione MR, Giorgetti L, Becarelli S, Siracusa G, Lorenzi R, Di Gregorio S (2016) Polycyclic aromatic hydrocarbon-contaminated soils: bioaugmentation of autochthonous bacteria and toxicological assessment of the bioremediation process by means of Vicia faba L. Environ Sci Pollut Res 23:7930–7941CrossRefGoogle Scholar
  32. Cayır A, Coskun M, Coskun M (2010) The heavy metal content of wild edible mushroom samples collected in Canakkale Province, Turkey. Biol Trace Elem Res 134:212–219PubMedCrossRefGoogle Scholar
  33. Chandra S, Sharma R, Singh K, Sharma A (2013) Application of bioremediation technology in the environment contaminated with petroleum hydrocarbon. Ann Microbiol 63:417–431CrossRefGoogle Scholar
  34. Chen B, Zhou D, Zhu L (2008a) Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environ Sci Technol 42:5137–5143PubMedCrossRefPubMedCentralGoogle Scholar
  35. Chen WM, Wu CH, James EK, Chang JS (2008b) Metal biosorption capability of Cupriavidus taiwanensis and its effects on heavy metal removal by nodulated Mimosa pudica. J Hazard Mater 151:364–371PubMedCrossRefPubMedCentralGoogle Scholar
  36. Chen L, Luo S, Li X, Wan Y, Chen J, Liu C (2014) Interaction of Cd hyperaccumulator Solanum nigrum L. and functional endophyte Pseudomonas sp. Lk9 on soil heavy metals uptake. Soil Biol Biochem 68:300–308CrossRefGoogle Scholar
  37. Chen F, Tan M, Ma J, Zhang S, Li G, Qu J (2016) Efficient remediation of PAH-metal co-contaminated soil using microbial-plant combination: a greenhouse study. J Hazard Mater 302:250–261PubMedCrossRefGoogle Scholar
  38. Chen X, Liu X, Zhang X, Cao L, Hu X (2017) Phytoremediation effect of Scirpus triqueter inoculated plant-growth-promoting bacteria (PGPB) on different fractions of pyrene and Ni in co-contaminated soils. J Hazard Mater 325:319–326PubMedCrossRefGoogle Scholar
  39. Chi XQ, Zhang JJ, Zhao S, Zhou NY (2013) Bioaugmentation with a consortium of bacterial nitrophenol-degraders for remediation of soil contaminated with three nitrophenol isomers. Environ Poll 172:33–41CrossRefGoogle Scholar
  40. Chibuike GU (2013) Use of mycorrhiza in soil remediation: a review. Sci Res Essays 8(35):679–1687CrossRefGoogle Scholar
  41. Choi SB, Yun YS (2004) Lead biosorption by waste biomass of Corynebacterium glutamicum generated from lysine fermentation process. Biotechnol Lett 26:331–336PubMedCrossRefGoogle Scholar
  42. Cocchi L, Vescovi L, Petrini LE, Petrini O (2006) Heavy metals in edible mushrooms in Italy. Food Chem 98:277–284CrossRefGoogle Scholar
  43. Colwell RR, Walker JD, Cooney JJ (1977) Ecological aspects of microbial degradation of petroleum in the marine environment. Crit Rev Microbiol 5(4):423–445CrossRefGoogle Scholar
  44. Cullen WR (1989) The metabolism of methylarsine oxide and sulfide. Appl Organomet Chem 3:71–78CrossRefGoogle Scholar
  45. Cycoń M, Mrozik A, Piotrowska-Seget Z (2017) Bioaugmentation as a strategy for the remediation of pesticide-polluted soil: a review. Chemosphere 172:52–71PubMedCrossRefGoogle Scholar
  46. Da Luz JMR, Paes SA, Nunes MD, da Silva MCS, Kasuya MCM (2013) Degradation of oxo-biodegradable plastic by Pleurotus ostreatus. PLoS ONE 8(8):69386CrossRefGoogle Scholar
  47. Dams RI, Paton GI, Killham K (2007) Rhizoremediation of pentachlorophenol by Sphingobium chlorophenolicum ATCC 39723. Chem 68(5):864–870Google Scholar
  48. Das N, Charumathi D, Vimala R (2007) Effect of pretreatment on Cd2+ biosorption by mycelia biomass of Pleurotus florida. Afr J Biotechnol 6:2555–2558CrossRefGoogle Scholar
  49. de Almeida LK, Burgess JE (2013) Biosorption and bioaccumulation of copper and lead by Phanerochaete and Pleurotus ostreatus Google Scholar
  50. de-Bashan LE, Hernandez JP, Bashan Y (2012) The potential contribution of plant growth-promoting bacteria to reduce environmental degradation-a comprehensive evaluation. Appl Soil Ecol 61:171–189CrossRefGoogle Scholar
  51. Dell’Amico E, Cavalca L, Andreoni V (2008) Improvement of Brassica napus growth under cadmium stress by cadmium-resistant rhizobacteria. Soil Biol Biochem 40:74–84CrossRefGoogle Scholar
  52. Demirbas A (2001) Heavy metal bioaccumulation by mushrooms from artificially fortified soils. Food Chem 74:293–301CrossRefGoogle Scholar
  53. Demirbas A (2002) Metal ion uptake by mushrooms from natural and artificially enriched soils. Food Chem 78:89–93CrossRefGoogle Scholar
  54. Dhal B, Thatoi HN, Das NN, Pandey BD (2010) Reduction of hexavalent chromium by Bacillus sp. isolated from chromite mine soils and characterization of reduced product. J Chem Technol Biotechnol 85:1471–1479Google Scholar
  55. Dimkpa CO, Merten D, Svatoš A, Büchel G, Kothe E (2009) Siderophores mediate reduced and increased uptake of cadmium by Streptomyces tendae F4 and sunflower (Helianthus annuus), respectively. J Appl Microbiol 107:1687–1696PubMedCrossRefGoogle Scholar
  56. Dogan HH, Sanda MA, Uyanoz R, Ozturk C, Cetin U (2006) Contents of metals in some wild mushrooms: its impact in human health. Biol Trace Elem Res 110:79–94PubMedCrossRefGoogle Scholar
  57. Downey D, Miller R, Dragoo T (2004) Procedures for conducting bioventing pilot tests and long-term monitoring of bioventing systems. Parsons Denver Co, DenverCrossRefGoogle Scholar
  58. Dulay RMR, De Castro MAEG, Coloma NB, Bernardo AP, Cruz AGD, Tiniola RC, Kalaw SP, Reyes RG (2015) Effects and myco-remediation of lead (Pb) in five Pleurotus mushrooms. Int J Biol Pharm Allied Sci 4(3):1664–1677Google Scholar
  59. Eibes G, Cajthaml T, Moreira MT, Feijoo G, Lema JM (2006) Enzymatic degradation of anthracene, dibenzothiophene and pyrene by manganese peroxidase in media containing acetone. Chemos 64(3):408–414CrossRefGoogle Scholar
  60. Eskander SB, Abd El-Aziz SM, El-Sayaad H, Saleh HM (2012) Cementation of bioproducts generated from biodegradation of radioactive cellulosic-based waste simulates by mushroom. ISRN Chemical EngineeringGoogle Scholar
  61. Falandysz J, Brzostowski A, Kawano M, Kannan K, Puzyn T, Lipka K (2003) Concentrations of mercury in wild growing higher fungi and underlying substrate near lake Wdzydze. Poland Water Air Soil Pollut 148:127–137CrossRefGoogle Scholar
  62. Falandysz J, Kojta AK, Jarzy´nska G, Drewnowska M, Dry-za lowska A, Wydma´nska D, Kowalewska I, Wacko A, Szlosowska M, Kannan K, Szefer P (2012) Mercury in bay bolete (Xerocomus badius): bioconcentration by fungus and assessment of element intake by humans eating fruiting bodies. Food Addit Contam 29:951–961CrossRefGoogle Scholar
  63. Farhadian M, Vachelard C, Duchez D, Larroche C (2008) In situ bioremediation of monoaromatic pollutants in groundwater: a review. Bioresour Technol 99(13):5296–5308PubMedCrossRefGoogle Scholar
  64. Favero N, Bressa G, Costa P (1990a) Response of Pleurotus ostreatus to cadmium exposure. Ecotoxicol Environ Safe 20(1):1–6CrossRefGoogle Scholar
  65. Favero N, Costa P, Paolo Rocco G (1990b) Role of copper in cadmium metabolism in the basidiomycetes Pleurotus ostreatus. Comp Biochem Physiol Part C Comp Pharmacol 97(2):297–303CrossRefGoogle Scholar
  66. Floodgate G (1984) The fate of petroleum in marine ecosystems. In: Atlas RM (ed) Petroleum microbiology. Macmillion, New York, pp 355–398Google Scholar
  67. Foght JM (2008) Anaerobic biodegradation of aromatic hydrocarbons: pathways and prospects. J Mol Micobiol Biotechnol 15:93–120CrossRefGoogle Scholar
  68. Fu H, Cwiertny DM, Carmichael GR, Scherer MM, Grassian VH (2010) Photoreductive dissolution of Fe-containing mineral dust particles in acidic media. J Geophys Res Atmos 115(D11)Google Scholar
  69. Gabriel J, Svec K, Kolihova D, Tlustos P, Szakova J (2016) Translocation of mercury from substrate to fruit bodies of Panellus stipticus, Psilocybe cubensis, Schizophyllum commune and Stropharia rugosoannulata on oat flakes. Ecotoxicol Environ Safe 125:184–189CrossRefGoogle Scholar
  70. Ganesan V (2008) Rhizoremediation of cadmium soil using a cadmium-resistant plant growth-promoting rhizopseudomonad. Curr Microbiol 56(4):403–407PubMedCrossRefGoogle Scholar
  71. Gao Y, Miao C, Mao L, Zhou P, Jin Z, Shi W (2010) Improvement of phytoextraction and antioxidative defense in Solanum nigrum L. under cadmium stress by application of cadmium-resistant strain and citric acid. J Hazard Mater 181:771–777PubMedCrossRefGoogle Scholar
  72. Garcıa MA, Alonso J, Melgar MJ (2009) Lead in edible mushrooms: levels and bioaccumulation factors. J Hazard Mater 167:777–783PubMedCrossRefGoogle Scholar
  73. Garon D, Sage L, Wouessidjewe D, Seigle-Murandi F (2004) Enhanced degradation of fluorene in soil slurry by Absidia cylindrospora and maltosyl-cyclodextrin. Chemosphere 56(2):159–166PubMedCrossRefGoogle Scholar
  74. Gihring TM, Druschel GK, McCleskey RB, Hamers RJ, Banfield JF (2001) Rapid arsenite oxidation by Thermus aquaticus and Thermus thermophilus: field and laboratory investigations. Environ Sci Technol 35:3857–3862PubMedCrossRefGoogle Scholar
  75. Hadi F, Bano A (2010) Effect of diazotrophs (Rhizobium and Azobactor) on growth of maize (Zea mays L.) and accumulation of Lead (Pb) in different plant parts. Pak J Bot 42:4363–4370Google Scholar
  76. Harrier LA, Watson CA (2004) The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soil-borne pathogens in organic and/or other sustainable farming systems. Pest Manag Sci 60:149–157PubMedCrossRefGoogle Scholar
  77. He LY, Chen ZJ, Ren GD, Zhang YF, Qian M, Sheng XF (2009) Increased cadmium and lead uptake of a cadmium hyperaccumulator tomato by cadmium-resistant bacteria. Ecotoxicol Environ Saf 72:1343–1348PubMedCrossRefGoogle Scholar
  78. He CQ, Tan GE, Liang X, Du W, Chen YL, Zhi GY, Zhu Y (2010) Effect of Zn tolerant bacterial strains on growth and Zn accumulation in Orychophragmus violaceus. Appl Soil Ecol 44:1–5CrossRefGoogle Scholar
  79. He H, Ye Z, Yang D, Yan J, Xiao L, Zhong T, Yuan M, Cai X, Fang Z, Jing Y (2013) Characterization of endophytic Rahnella sp. JN6 from Polygonum pubescens and its potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus. Chemosphere 90:1960–1965PubMedCrossRefGoogle Scholar
  80. Hellekson D (1999) Bioventing principles, applications and potential. Restor Reclam Rev 5(2):1–9Google Scholar
  81. Herndon RC, Moerlins JE, Kuperberg JM, Richter PI, Biczó IL (2013) Clean-up of former soviet military installations: identification and selection of environmental technologies for use in central and eastern Europe (Vol. 1). SpringerGoogle Scholar
  82. Hollaway SL, Faw GM, Sizemore RK (1980) The bacterial community composition of an active oil field in the Northwestern Gulf of Mexico. Mar Poll Bull 11(6):153–156CrossRefGoogle Scholar
  83. Hong Q, Zhang ZH, Hong YF, Li S (2007) A microcosm study on bioremediation of fenitrothion-contaminated soil using Burkholderia sp. FDS-1. Int Biodeterior Biodegrad 59(1):55–61CrossRefGoogle Scholar
  84. Incharoensakdi A, Kitjaharn P (2002) Zinc biosorption from aqueous solution by a halotolerant cyanobacterium Aphanothece halophytica. Curr Microbiol 45(4):261–264PubMedCrossRefGoogle Scholar
  85. Isaac P, Bourguignon N, Maizel D, Ferrero MA (2016) Indigenous PAH-degrading bacteria in oil-polluted marine sediments from Patagonia: diversity and biotechnological properties. In: Biology and biotechnology of Patagonian microorganisms. Springer, Cham, pp 31–42CrossRefGoogle Scholar
  86. Ita BN, Essien JP, Ebong GA (2006) Heavy metal levels in fruiting bodies of edible and non-edible mushrooms from the Niger delta region of Nigeria. J Agric Soc Sci 2:84–87Google Scholar
  87. Jacques RJS, Okeke BC, Bento FM, Teixeira AS, Peralba MCR, Camargo FAO (2008) Microbial consortium bioaugmentation of a polycyclic aromatic hydrocarbons contaminated soil. Bioresour Technol 99(7):2637–2643PubMedCrossRefGoogle Scholar
  88. Jaekel U, Musat N, Adam B, Kuypers M, Grundmann O, Musat F (2013) Anaerobic degradation of propane and butane by sulfate-reducing bacteria enriched from marine hydrocarbon cold seeps. ISME J 7(5):885–895PubMedCrossRefGoogle Scholar
  89. Jain RK, Dreisbach JH, Spain JC (1994) Biodegradation of p-nitrophenol via 1,2,4-benzenetriol by an Arthrobacter sp. Appl Environ Microbiol 60(8):3030–3032PubMedPubMedCentralGoogle Scholar
  90. Jang KY, Cho SM, Seok SJ, Kong WS, Kim GH, Sung JM (2009) Screening of biodegradable function of indigenous ligno-degrading mushroom using dyes. Mycobiol 37:53–61CrossRefGoogle Scholar
  91. Javaid A, Bajwa R (2007) Biosorption of Cr(III) ions from tannery wastewater by Pleurotus ostreatus. Mycopathologia 5:71–79Google Scholar
  92. Javaid A, Bajwa R (2008) Biosorption of electroplating heavy metals by some basiodiomycetes. Mycopathologia 6:1–6Google Scholar
  93. Javaid A, Bajwa R, Shafique U, Anwar J (2011) Removal of heavy metals by adsorption on Pleurotus ostreatus. Biomass Bioenergy 35:1675–1682CrossRefGoogle Scholar
  94. Jernberg C, Jansson JK (2002) Impact of 4-chlorophenol contamination and/or inoculation with the 4-chlorophenol-degrading strain, Arthrobacter chlorophenolicus A6L, on soil bacterial community structure. FEMS Microbiol Ecol 42(3):387–397PubMedCrossRefGoogle Scholar
  95. Jiang C, Sheng X, Qian M, Wang Q (2008) Isolation and characterization of a heavy metal resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere 72:157–164PubMedCrossRefPubMedCentralGoogle Scholar
  96. Jibran AK, Milsee Mol JP (2011) Pleurotus sajor-caju protein: a potential biosorptive agent. Adv Bio Tech 11:25–27Google Scholar
  97. Jing YX, Yan JL, He HD, Yang DJ, Xiao L, Zhong T, Yuan M, Cai XD, Li SB (2014) Characterization of bacteria in the rhizosphere soils of Polygonum pubescens and their potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus. Int J Phytoremed 16:321–333CrossRefGoogle Scholar
  98. Jones J, Knight M, Byron JA (1970) Effect of gross population by kerosene hydrocarbons on the microflora of a moorland soil. Nature 227:1166PubMedCrossRefPubMedCentralGoogle Scholar
  99. Kadiyala V, Spain JC (1998) A two-component monooxygenase catalyzes both the hydroxylation of p-nitrophenol and the oxidative release of nitrite from 4-nitrocatechol in Bacillus sphaericus JS905. App Environ Microbiol 64(7):2479–2484Google Scholar
  100. Kaksonen AH, Lavonen L, Kuusenaho MK, Kolli A, Närhi HM, Vestola EA, Puhakka JA, Tuovinen OH (2011) Bioleaching and recovery of metals from final slag waste of the copper smelting industry. Miner Eng 24:1113–1121CrossRefGoogle Scholar
  101. Kalac P, Svoboda L (2000) A review of trace element concentrations in edible mushrooms. Food Chem 69:273–281CrossRefGoogle Scholar
  102. Khan AR, Ullah I, Khan AL, Park G, Waqas MS, Hong BK, Jung Y, Kwak Y, Lee I, Shin J (2015) Improvement in phytoremediation potential of Solanum nigrum under cadmium contamination through endophytic-assisted Serratia sp RSC-14 inoculation. Environ Sci Pollut Res 22:14032–11404CrossRefGoogle Scholar
  103. Konuk M, Afyon A, Yagız D (2007) Minor element and heavy metal contents of wild growing and edible mushrooms from Western Black Sea region of Turkey. Fresen Environ Bull 16:1359–1362Google Scholar
  104. Kuffner M, Puschenreiter M, Wieshammer G, Gorfer M, Sessitsch A (2008) Rhizosphere bacteria affect growth and metal uptake of heavy metal accumulating willows. Plant Soil 304:35–44CrossRefGoogle Scholar
  105. Kuforiji OO, Fasidi IO (2008) Enzyme activities of Pleurotus tuber-regium (Fries) Singer, cultivated on selected agricultural wastes. Bioresource Technol 99:4275–4278CrossRefGoogle Scholar
  106. Kulshreshtha S, Mathur N, Bhatnagar P (2013) Mycoremediation of paper, pulp and cardboard industrial wastes and pollutants. In: Goltapeh EM, Danesh YR, Varma A (eds) Fungi as bioremediators: soil biology. Springer, Berlin/Heidelberg, pp 77–116CrossRefGoogle Scholar
  107. Kulshreshtha S, Mathur N, Bhatnagar P (2014) Mushroom as a product and their role in mycoremediation. AMB Express 4:1–7CrossRefGoogle Scholar
  108. Kumar KV, Singh N, Behl HM, Srivastava S (2008) Influence of plant growth promoting bacteria and its mutant on heavy metal toxicity in Brassica juncea grown in fly ash amended soil. Chemosphere 72:678–683PubMedCrossRefGoogle Scholar
  109. Kumar KV, Srivastava S, Singh N, Behl HM (2009) Role of metal resistant plant growth promoting bacteria in ameliorating fly ash to the growth of Brassica juncea. J Hazard Mater 170:51–57PubMedCrossRefGoogle Scholar
  110. Kumar CG, Mamidyala SK, Sujitha P, Muluka H, Akkenapally S (2012) Evaluation of critical nutritional parameters and their significance in the production of rhamnolipid biosurfactants from Pseudomonas aeruginosa BS-161R. Biotechnol Progr 28:1507–1516CrossRefGoogle Scholar
  111. Kumhomkul T, Panich-pat T (2013) Lead accumulation in the straw mushroom, Volvariella volvacea, from lead contaminated rice straw and stubble. Bull Environ. Contam Toxicol 91:231–234PubMedPubMedCentralCrossRefGoogle Scholar
  112. Kuppusamy S, Thavamani P, Megharaj M, Venkateswarlu K, Lee YB, Naidu R (2016) Pyrosequencing analysis of bacterial diversity in soils contaminated long term with PAHs and heavy metals: implications to bioremediation. J Hazard Mater 317:169–179PubMedCrossRefPubMedCentralGoogle Scholar
  113. Labana S, Pandey G, Paul D, Sharma NK, Basu A, Jain RK (2005) Pot and field studies on bioremediation of p-nitrophenol contaminated soil using Arthrobacter protophormiae RKJ100. Environ Sci Technol 39(9):3330–3337PubMedCrossRefPubMedCentralGoogle Scholar
  114. Lal B, Khanna S (1996) Degradation of crude oil by Acinetobacter calcoaceticus and Alcaligenes odorans. J Appl Bacteriol 81(4):355–362PubMedPubMedCentralGoogle Scholar
  115. Lamrood PY, Ralegankar SD (2013) Biosorption of Cu, Zn, Fe, Cd, Pb and Ni by non-treated biomass of some edible mushrooms. Asian J Exp Biol Sci 4:190–195Google Scholar
  116. Leahy JH, Colwell R (1990) Microbial degradation of hydrocarbons in the environment. Microbiol Rev 54(3):305–315PubMedPubMedCentralGoogle Scholar
  117. Lenoir I, Lounes-Hadj Sahraoui A, Fontaine J (2016) Arbuscular mycorrhizal fungal-assisted phytoremediation of soil contaminated with persistent organic pollutants: a review. Eur J Soil Sci 67(5):624–640CrossRefGoogle Scholar
  118. Li WC, Ye ZH, Wong MH (2007) Effects of bacteria on enhanced metal uptake of the Cd/Zn-hyperaccumulating plant, Sedumal fredii. J Exp Bot 58:4173–4182PubMedCrossRefPubMedCentralGoogle Scholar
  119. Li X, Wang X, Weng L, Zhou Q, Li Y (2016) Microbial fuel cell for organic contaminated soil remedial application. A Rev Energy Technol 5:1156–1164CrossRefGoogle Scholar
  120. Liang X, He CQ, Ni G, Tang GE, Chen XP, Lei YR (2014) Growth and Cd accumulation of Orychophragmus violaceus as affected by inoculation of Cd-tolerant bacterial strains. Pedosphere 24:322–329CrossRefGoogle Scholar
  121. Liew HH, Tay CC, Yong SK, Surif S, Abdul Talib S (2010) Biosorption characteristics of lead [Pb(II)] by Pleurotus ostreatus biomass. In: Abstracts of the proceedings of international conference on science and social research (CSSR), Kuala LumpurGoogle Scholar
  122. Lin Z, Zhao L, Dong Y (2015) Quantitative characterization of hydroxyl radical generation in a goethite-catalyzed Fenton-like reaction. Chemosphere 141:7–12PubMedCrossRefPubMedCentralGoogle Scholar
  123. Liu HL, Chen BY, Lan YW, Cheng YC (2004) Biosorption of Zn(II) and Cu(II) by the indigenous Thiobacillus thiooxidans. Chem Eng J 97:195–201CrossRefGoogle Scholar
  124. Liu H, Zhang JJ, Wang SJ, Zhang XE, Zhou NY (2005) Plasmid-borne catabolism of methyl parathion and p-nitrophenol in Pseudomonas sp. strain WBC-3. Biochem Biophys Res Commun 334(4):1107–1114PubMedCrossRefGoogle Scholar
  125. Liu W, Wang Q, Wang B, Hou J, Luo Y, Tang C, Franks AE (2015) Plant growth-promoting rhizobacteria enhance the growth and Cd uptake of Sedum plumbizincicola in a Cd-contaminated soil. J Soil Sediment 15(5):1191–1199CrossRefGoogle Scholar
  126. Long XX, Chen XM, Wong JWC, Wei ZB, Wu QT (2013) Feasibility of enhanced phytoextraction of Zn contaminated soil with Zn mobilizing and plant growth promoting endophytic bacteria. Trans Nonferrous Metals Soc China 23:2389–2396CrossRefGoogle Scholar
  127. Luo D, Yf X, Tan ZL, Li XD (2013) Removal of Cu2+ ions from aqueous solution by the abandoned mushroom compost of Flammulina velutipes. J Environ Biol 34:359–365PubMedGoogle Scholar
  128. Ma YF, Wu JF, Wang SY, Jiang CY, Zhang Y, Qi SW, Liu L, Zhao GP, Liu SJ (2007) Nucleotide sequence of plasmid pCNB1 from Comamonas strain CNB-1 reveals novel genetic organization and evolution for 4-chloronitrobenzene degradation. Appl Environ Microbiol 73(14):4477–4483PubMedPubMedCentralCrossRefGoogle Scholar
  129. Ma Y, Rajkumar M, Freitas H (2009a) Inoculation of plant growth promoting bacterium Achromobacter xylosoxidans strain Ax10 for the improvement of copper phytoextraction by Brassica juncea. J Environ Manag 90:831–837CrossRefGoogle Scholar
  130. Ma Y, Rajkumar M, Freitas H (2009b) Improvement of plant growth and nickel uptake by nickel resistant-plant growth promoting bacteria. J Hazard Mater 166:1154–1161PubMedCrossRefGoogle Scholar
  131. Ma Y, Rajkumar M, Freitas H (2009c) Isolation and characterization of Ni mobilizing PGPB from serpentine soils and their potential in promoting plant growth and Ni accumulation by Brassica spp. Chemosphere 75:719–725PubMedCrossRefGoogle Scholar
  132. Ma Y, Rajkumar M, Luo Y, Freitas H (2011) Inoculation of endophytic bacteria on host and non-host plants-effects on plant growth and Ni uptake. J Hazard Mater 195:230–237PubMedCrossRefGoogle Scholar
  133. Ma Y, Rajkumar M, Luo Y, Freitas H (2013) Phytoextraction of heavy metal polluted soils using Sedum plumbizincicola inoculated with metal mobilizing Phyllobacterium myrsinacearum RC 6b. Chemosphere 93:1386–1392PubMedCrossRefGoogle Scholar
  134. Ma Y, Oliviera RS, Nai F, Rajkumar M, Luo Y, Rocha I, Freitas H (2015) The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil. J Environ Manag 156:62–69CrossRefGoogle Scholar
  135. MacRae JD, Lavine IN, McCaffery KA, Ricupero K (2007) Isolation and characterization of NP4, an arsenate-reducing Sulfurospirillum from groundwater in Northport. Mar J Environ Eng 131:81–88CrossRefGoogle Scholar
  136. Mai C, Schormann W, Majcherczyk A, Huttermann A (2004) Degradation of acrylic copolymers by white-rot fungi. Appl Microbiol Biotechnol 65:479–487PubMedCrossRefGoogle Scholar
  137. Malekzadeh E, Alikhani HA, Savaghebi-Firoozabadi GR, Zarei M (2012) Bioremediation of cadmium-contaminated soil through cultivation of maize inoculated with plant growth-promoting rhizobacteria. Bioremed J 16:204–211CrossRefGoogle Scholar
  138. Mameri N, Boudries N, Addour L, Belhocine D, Lounici H, Grib H (1999) Batch zinc biosorption by a bacterial nonliving Streptomyces rimosus biomass. Water Res 33:1347–1354CrossRefGoogle Scholar
  139. Mandal TK, Baldrian P, Gabriel J, Nerud F, Zadrazil F (1998) Effect of mercury on the growth of wood-rotting basidiomycetes Pleurotus ostreatus, Pycnoporus cinnabarinus and Serpula lacrymans. Chemosphere 36(3):435–440CrossRefGoogle Scholar
  140. McBride BC, Wolfe RS (1971) Biosynthesis of dimethylasrine by a methanobacterium. Biochem 10:4312–4317CrossRefGoogle Scholar
  141. McDonald IR, Miguez CB, Rogge G, Bourque D, Wendlandt KD, Groleau D, Murrell JC (2006) Diversity of solublemethane monooxygenase-containing methanotrophs isolated from polluted environments. FEMS Microbiol Let 255(2):225–232CrossRefGoogle Scholar
  142. Meckenstock RU, Boll M, Mouttaki H, Koelschbach JS, Tarouco PC, Weyrauch P, Dong X, Himmelberg AM (2016) Anaerobic degradation of benzene and polycyclic aromatic hydrocarbons. J Mol Microbiol Biotechnol 26:92–118PubMedCrossRefGoogle Scholar
  143. Michalke K, Wickenheiser EB, Mehring M, Hirner AV, Hensel R (2000) Production of volatile derivatives of metal(loid)s by microflora involved in anaerobic digestion of sewage sludge. Appl Environ Microbiol 66:2791–2796PubMedPubMedCentralCrossRefGoogle Scholar
  144. Mire CE, Jeanette AT, William FO, Kandalam VR, Gregory BH (2004) Lead precipitation by Vibrio harveyi: evidence for novel Quorum-sensing interactions. Appl Environ Microbiol 70:855–864PubMedPubMedCentralCrossRefGoogle Scholar
  145. Mittal A, Singh P (2009) Isolation of hydrocarbon degrading bacteria from soils contaminated with crude oil spills. Ind J Exp Biol 47(9):760–765Google Scholar
  146. Nagy B, Măicăneanu A, Indolean C, Mânzatu C, MC S-D (2013) Comparative study of Cd(II) biosorption on cultivated Agaricus bisporus and wild Lactarius piperatus based biocomposites. Linear and nonlinear equilibrium modelling and kinetics. J Taiwan Inst Chem E 45(3):921–929CrossRefGoogle Scholar
  147. Nie L, Shah S, Burd GI, Dixon DG, Glick BR (2002) Phytoremediation of arsenate contaminated soil by transgenic canola and the plant growth-promoting bacterium Enterobacter cloacae CAL2. Plant Physiol Biochem 40:355–361CrossRefGoogle Scholar
  148. Ock Joo J, Choi JH, Kim IH, Kim YK, Oh BK (2015) Effective bioremediation of cadmium (II), nickel (II), and chromium (VI) in a marine environment by using Desulfovibrio desulfuricans. Biotechnol Bioprocess Eng 20:937–941CrossRefGoogle Scholar
  149. Okparanma RN, Ayotamuno JM, Davis DD, Allagoa M (2011) Mycoremediation of polycyclic aromatic hydrocarbons (PAH)-contaminated oil-based drill-cuttings. Afr J Biotechnol 10(26):5149–5156Google Scholar
  150. Olusola SA, Anslem EE (2010) Bioremediation of a crude oil polluted soil with Pleurotus Pulmonarius and Glomus Mosseae using Amaranthus Hybridus as a test plant. J Bioremed Biodegrad 1:111Google Scholar
  151. Oyetayo VO, Adebayo AO, Ibileye A (2012) Assessment of the biosorption potential of heavy metals by Pleurotus tuber-regium. Int J Adv Biol Res 2:293–297Google Scholar
  152. Peng G, Tian G, Liu J, Bao Q, Zang L (2011) Removal of heavy metals from sewage sludge with a combination of bioleaching and electrokinetic remediation technology. Desalin 271:100–104CrossRefGoogle Scholar
  153. Pham TTH, Brar SK, Tyagi RD, Surampalli RY (2010) Influence of ultrasonication and Fenton oxidation pre-treatment on rheological characteristics of wastewater sludge. Ultrason Sonochem 17:38–45PubMedCrossRefGoogle Scholar
  154. Phillips GJM, Stewart JE (1974) Distribution of hydrocarbon utilizing bacteria in Northwestern Atlantic waters and coastal sediments. Can J Microbiol 20(7):955–962CrossRefGoogle Scholar
  155. Philp JC, Atlas RM (2005) Bioremediation of contaminated soils and aquifers. In: Atlas RM, Philp JC (eds) Bioremediation: applied microbial solutions for real-world environmental cleanup. American Society for Microbiology (ASM) Press, Washington, DC, pp 139–236CrossRefGoogle Scholar
  156. Pinholt Y, Struwe S, Kjoller A (1979) Microbial changes during oil decomposition in soil. Holarctic Ecol 2:195–200Google Scholar
  157. Płociniczak T, Sinkkonen A, Romantschuk M, Piotrowska-Seget Z (2013) Characterization of Enterobacter intermedius MH8b and its use for the enhancement of heavy metals uptake by Sinapis alba L. Appl Soil Ecol 63:1–7CrossRefGoogle Scholar
  158. Potysz A, Lens PNL, van de Vossenberg J, Rene ER, Grybos M, Guibaud G, Kierczak J, van Hullebusch ED (2016) Comparison of Cu, Zn and Fe bioleaching from Cu-metallurgical slags in the presence of Pseudomonas fluorescens and Acidithiobacillus thiooxidans. Appl Geochem 68:39–52CrossRefGoogle Scholar
  159. Prapagdee B, Chanprasert M, Mongkolsuk S (2013) Bioaugmentation with cadmium-resistant plant growth-promoting rhizobacteria to assist cadmium phytoextraction by Helianthus annuus. Chemosphere 92:659–666PubMedCrossRefGoogle Scholar
  160. Prasad ASA, Varatharaju G, Anushri C, Dhivyasree S (2013) Biosorption of lead by Pleurotus florida and Trichoderma viride. Br Biotechnol J 3(1):66–78CrossRefGoogle Scholar
  161. Puentes-Cárdenas IJ, Pedroza-Rodríguez AM, Navarrete-López M, Villegas-Garrido TL, Cristiani-Urbina E (2012) Biosorption of trivalent chromium from aqueous solutions by Pleurotus ostreatus biomass. Environ Eng Manag J 11(10):1741–1752CrossRefGoogle Scholar
  162. Punamiya P, Datta R, Sarkar D, Barber S, Patel M, Das P (2010) Symbiotic role of Glomus mosseae in phytoextraction of lead in vetiver grass [Chrysopogon zizanioides (L.)]. J Hazard Mater 177(1):465–474PubMedCrossRefGoogle Scholar
  163. Quarcoo A, Adotey G (2013) Determination of heavy metals in Pleurotus ostreatus (oyster mushroom) and Termitomyces clypeatus (termite mushroom) sold on selected markets in Accra. Ghana. Mycosphere 4:960–967CrossRefGoogle Scholar
  164. Rajkumar M, Ma Y, Freitas H (2013) Characterization of metal-resistant plant growth promoting Bacillus weihenstephanensis isolated from serpentine soil in Portugal. J Basic Microbiol 48:1–9Google Scholar
  165. Rajput Y, Shit S, Shukla A, Shukla K (2011) Biodegradation of malachite green by wild mushroom of Chhatisgrah. J Exp Sci 2:69–72Google Scholar
  166. Rani A, Souche Y, Goel R (2013) Comparative in situ remediation potential of Pseudomonas putida 710A and Commamonas aquatica 710B using plant (Vigna radiata (L.) wilczek) assay. Ann Microbiol 63(3):923–928CrossRefGoogle Scholar
  167. Rashidi A, Safdari J, Roosta-Azad R, Zokaei-Kadijani S (2012) Modeling of uranium bioleaching by Acidithiobacillus ferrooxidans. Annal Nucl Energy 43:13–18CrossRefGoogle Scholar
  168. Reddy MS, Naresh B, Leela T, Prashanthi M, Madhusudhan NC, Dhanasri G, Devi P (2010) Biodegradation of phenanthrene with biosurfactant production by a new strain of Brevibacillus sp. Bioresour Technol 101:7980–7983CrossRefGoogle Scholar
  169. Reed ML, Glick BR (2005) Growth of canola (Brassica napus) in the presence of plant growth promoting bacteria and either copper or polycyclic aromatic hydrocarbons. Can J Microbiol 51:1061–1069PubMedCrossRefGoogle Scholar
  170. Rezza I, Salinas E, Elorza M, de Tosetti MS, Donati E (2001) Mechanisms involved in bioleaching of an aluminosilicate by heterotrophic microorganisms. Process Biochem 36(6):495–500CrossRefGoogle Scholar
  171. Rojo F (2009) Degradation of alkanes by bacteria. Environ Microbiol 11:2477–2490PubMedCrossRefGoogle Scholar
  172. Romo E, Weinacker DF, Zepeda AB, Figueroa CA, Chavez-Crooker P, Farias JG (2013) Bacterial consortium for copper extraction from sulphide ore consisting mainly of chalcopyrite. Braz J Microbiol 44(2):523–528PubMedPubMedCentralCrossRefGoogle Scholar
  173. Ron EZ, Rosenberg E (2014) Enhanced bioremediation of oil spills in the sea. Curr Opin Biotechnol 27:191–194PubMedCrossRefGoogle Scholar
  174. Roy S, Hens D, Biswas D, Biswas D, Kumar R (2002) Survey of petroleum degrading bacteria in coastal waters of Sunderban Biosphere Reserve. World J Microbiol Biotechnol 18(6):575–581CrossRefGoogle Scholar
  175. Sajna KV, Sukumaran RK, Gottumukkala LD, Pandey A (2015) Crude oil biodegradation aided by biosurfactants from Pseudozyma sp. NII 08165 or its culture broth. Bioresour Technol 191:133–139PubMedCrossRefGoogle Scholar
  176. Salehizadeh H, Shojaosadati SA (2003) Removal of metal ions from aqueous solution by polysaccharide produced from Bacillus firmus. Water Res 37:4231–4235PubMedCrossRefGoogle Scholar
  177. Salleh AB, Ghazali FM, Rahman RNZA, Basri M (2003) Bioremediation of petroleum hydrocarbon pollution. Indian J Biotechnol 2:411–425Google Scholar
  178. Santini JM, Sly LI, Schnagl RD, Macy JM (2000) A new chemolithoautotrophic arsenite-oxidizing bacterium isolated from a gold mine: phylogenetic, physiological, and preliminary biochemical studies. Appl Environ Microbiol 66:92–97PubMedPubMedCentralCrossRefGoogle Scholar
  179. Savvaidis I, Hughes MN, Poole RK (2003) Copper bio sorption by Pseudomonas cepacia and other strains. World J Microbiol Biotechnol 19:117–121CrossRefGoogle Scholar
  180. Sesli E, Tuzen M, Soylak M (2008) Evaluation of trace metal contents of some wild edible mushrooms from Black Sea region Turkey. J Hazard Mater 160:462–467PubMedCrossRefGoogle Scholar
  181. Sharma S (2012) Bioremediation: features, strategies and applications. Asian J Pharma Life Sci 2(2):202–213Google Scholar
  182. Sheng X, He L, Wang Q, Ye H, Jiang C (2008) Effects of inoculation of biosurfactant-producing Bacillus sp. J119 on plant growth and cadmium uptake in a cadmium-amended soil. J Hazard Mater 155(1):17–22PubMedCrossRefGoogle Scholar
  183. Silva IS, Grossman M, Durranta LR (2009a) Degradation of polycyclic aromatic hydrocarbons (2–7 rings) under microaerobic and very low- oxygen conditions by soil fungi. Int Biodeterior Biodegrad 63(2):224–229CrossRefGoogle Scholar
  184. Silva IS, Santos EC, Menezes CR, Faria AF, Franciscon E, Grossman M, Durrant LR (2009b) Bioremediation of a polyaromatic hydrocarbon contaminated soil by native soil microbiota and bioaugmentation with isolated microbial consortia. Biores Technol 100(20):4669–4675CrossRefGoogle Scholar
  185. Spain JC, Gibson DT (1991) Pathway for biodegradation of p-Nitrophenol in a Moraxella sp. Appl Environ Microbiol 57(3):812–819PubMedPubMedCentralGoogle Scholar
  186. Srivastava S, Verma PC, Chaudhary V, Singh N, Abhilash PC, Kumar KV, Sharma N, Singh N (2013) Inoculation of arsenic-resistant Staphylococcus arlettae on growth and arsenic uptake in Brassica juncea (L.) Czern. Var. R-46. J Hazard Mater 262:1039–1047PubMedCrossRefGoogle Scholar
  187. Sutherland C, Venkobachar C (2013) Equilibrium modeling of Cu (II) biosorption onto untreated and treated forest macro-fungus Fomes fasciatus. Int J Plant Anim Environ Sci 3:193–203Google Scholar
  188. Tabaraki R, Ahmady-Asbchin S, Abdi O (2013) Biosorption of Zn (II) from aqueous solutions by Acinetobacter sp. isolated from petroleum spilled soil. J Environ Chem Eng 1:604–608CrossRefGoogle Scholar
  189. Tay CC, Liew HH, Yong SK, Surif S, Abdul-Talib S (2009) Biosorption of lead(II) from aqueous solutions by Pleurotus as a toxicity biosorbent. In: Environmental science and technology conference (ESTEC), Kuala Terengganu MalaysiaGoogle Scholar
  190. Tay CC, Liew HH, Yin CY, Abdul-Talib S, Surif S, Suhaimi AA, Yong SK (2011) Biosorption of Cadmium ions using Pleurotus ostreatus: growth kinetics, isotherm study and biosorption mechanism. Korean J Chem Eng 28:825–830CrossRefGoogle Scholar
  191. Tiwari S, Singh SN, Garg SK (2012) Stimulated phytoextraction of metals from fly ash by microbial interventions. Environ Technol 33:2405–2413PubMedCrossRefGoogle Scholar
  192. Tsujiyama S, Muraoka T, Takada N (2013) Biodegradation of 2,4-dichlorophenol by shiitake mushroom (Lentinula edodes) using vanillin as an activator. Biotechnol Lett 35:1079–1083PubMedCrossRefGoogle Scholar
  193. Tunali S, Cabuk A, Akar T (2006) Removal of lead and copper ions from aqueous solutions by bacterial strain isolated from soil. Chem Eng J 115:203–211CrossRefGoogle Scholar
  194. Tuzen M, Sesli E, Soylak M (2007) Trace element levels of mushroom species from East Black Sea region of Turkey. Food Control 18:806–810CrossRefGoogle Scholar
  195. Uddin MJ, Aditya Sagar G, Jagdeeshwar J (2017) Soil pollution and soil remediation techniques. Int J Adv Res, Ideas Innov Technol 3(1):582–593Google Scholar
  196. Uslu G, Tanyol M (2006) Equilibrium and thermodynamic parameters of single and binary mixture biosorption of lead (II) and copper (II) ions onto Pseudomonas putida: effect of temperature. J Hazard Mater 135:87–93PubMedCrossRefPubMedCentralGoogle Scholar
  197. Varjani SJ, Srivastava VK (2015) Green technology and sustainable development of environment. Renew Res J 3(1):244–249Google Scholar
  198. Varjani SJ, Upasani VN (2016) Biodegradation of petroleum hydrocarbons by oleophilic strain of Pseudomonas aeruginosa NCIM 5514. Bioresour Technol 222:195–201PubMedCrossRefPubMedCentralGoogle Scholar
  199. Varjani SJ, Rana DP, Jain AK, Bateja S, Upasani VN (2015) Synergistic ex-situ biodegradation of crude oil by halotolerant bacterial consortium of indigenous strains isolated from on shore sites of Gujarat, India. Int Biodeterior Biodegrad 103:116–124CrossRefGoogle Scholar
  200. Vera M, Schippers A, Sand W (2013) Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation-part A. Appl Microbiol Biotechnol 97(17):7529–7541PubMedCrossRefPubMedCentralGoogle Scholar
  201. Verma JP, Jaiswal DK (2016) Book review: advances in biodegradation and bioremediation of industrial waste. Front Microbiol 6:1555PubMedCentralCrossRefGoogle Scholar
  202. Vivas A, Azcón R, Biró B, Barea JM, Ruiz-Lozano JM (2003) Influence of bacterial strains isolated from lead-polluted soil and their interactions with arbuscular mycorrhizae on the growth of Trifolium pratense L. under lead toxicity. Can J Microbiol 49(10):577–588PubMedCrossRefPubMedCentralGoogle Scholar
  203. Wang LM, Chi XQ, Zhang JJ, Sun DL, Zhou NY (2014) Bioaugmentation of a methyl parathion contaminated soil with Pseudomonas sp. strain WBC-3. Int Biodeterior Biodegrad 87(1):116–121CrossRefGoogle Scholar
  204. Watkinson RJ, Morgan P (1990) Physiology of aliphatic hydrocarbon-degrading microorganisms. Biodegrad 1(2–3):79–92CrossRefGoogle Scholar
  205. Watling HR (2014) Review of biohydrometallurgical metals extraction from polymetallic mineral resources. Minerals 5(1):1–60CrossRefGoogle Scholar
  206. Widdel F, Rabus R (2001) Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr Opin Biotechnol 12:259–276PubMedCrossRefPubMedCentralGoogle Scholar
  207. Wilkes H, Buckel W, Golding BT, Rabus R (2016) Metabolism of hydrocarbons in n-Alkane utilizing anaerobic bacteria. J Mol Microbiol Biotechnol 26:138–151PubMedCrossRefGoogle Scholar
  208. Wu JF, Jiang CY, Wang BJ, Ma YF, Liu ZP, Liu SJ (2006a) Novel partial reductive pathway for 4-chloronitrobenzene and nitrobenzene degradation in Comamonas sp. strain CNB-1. Appl Environ Microbiol 72(3):1759–1765PubMedPubMedCentralCrossRefGoogle Scholar
  209. Wu S, Cheung K, Luo Y, Wong M (2006b) Effects of inoculation of plant growth promoting rhizobacteria on metal uptake by Brassica juncea. Environ Pollut 140:124–135PubMedCrossRefGoogle Scholar
  210. Wu M, Xu Y, Ding W, Li Y, Xu H (2016) Mycoremediation of manganese and phenanthrene by Pleurotus eryngii mycelium enhanced by tween 80 and saponin. Appl Microbiol Biotechnol 100:7249–7261PubMedCrossRefGoogle Scholar
  211. Xiangliang P, Jianlong W, Daoyong Z (2005) Biosorption of Pb(II) by Pleurotus ostreatus immobilized in calcium alginate gel. Process Bio Chem 40:2799–2803CrossRefGoogle Scholar
  212. Xiangliang P, Jianlong W, Daoyong Z (2009) Biosorption of Co(II) by immobilised Pleurotus ostreatus. Int J Environ Pollut 37:289–298CrossRefGoogle Scholar
  213. Xiao Y, Wu JF, Liu H, Wang SJ, Liu SJ, Zhou NY (2006) Characterization of genes involved in the initial reactions of 4- chloronitrobenzene degradation in Pseudomonas putida ZWL73. Appl Microbiol Biotechnol 73(1):166–171PubMedCrossRefPubMedCentralGoogle Scholar
  214. Xu Y, Feng YY (2016) Feasibility of sewage sludge leached by Aspergillus niger in land utilization. Pol J Environ Stud 25(1):405CrossRefGoogle Scholar
  215. Yayçinkaya Y, Arica MY, Soysal L, Bektaş S (2002) Cadmium and mercury uptake by immobilized Pleurotus sapidus. Turk J Chem 26(3):441–452Google Scholar
  216. Yu SH, Ke L, Wong YS, Tam NFY (2005) Degradation of polycyclic aromatic hydrocarbons by a bacterial consortium enriched from mangrove sediments. Environ Int 31(2):149–154PubMedCrossRefGoogle Scholar
  217. Yuan M, He H, Xiao L, Zhong T, Liu H, Li S, Deng P, Ye Z, Jing Y (2013) Enhancement of Cd phytoextraction by two Amaranthus species with endophytic Rahnella sp. JN27. Chemosphere 103:99–104PubMedCrossRefPubMedCentralGoogle Scholar
  218. Zaidi S, Usmani S, Singh BR, Musarrat J (2006) Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64:991–997PubMedCrossRefGoogle Scholar
  219. Zhang ZH, Hong Q, Xu JH, Zhang X, Li S (2006) Isolation of fenitrothion-degrading strain Burkholderia sp. FDS-1 and cloning of mpd gene. Biodegradation 17(3):275–283PubMedCrossRefPubMedCentralGoogle Scholar
  220. Zhang JJ, Liu H, Xiao Y, Zhang XE, Zhou NY (2009) Identification and characterization of catabolic para-nitrophenol 4-monooxygenase and para-benzoquinone reductase from Pseudomonas sp. strain WBC-3. J Bacteriol 191(8):2703–2710PubMedPubMedCentralCrossRefGoogle Scholar
  221. Zhang Y, He L, Chen Z, Wang Q, Qian M, Sheng X (2011) Characterization of ACC deaminase-producing endophytic bacteria isolated from copper-tolerant plants and their potential in promoting the growth and copper accumulation of Brassica napus. Chemosphere 83:57–62PubMedCrossRefPubMedCentralGoogle Scholar
  222. Zhang X, Lin L, Chen M, Zhu Z, Wang W, Chen B (2012) A nonpathogenic Fusarium oxysporum strain enhances phytoextraction of heavy metals by the hyperaccumulator Sedumal fredii Hance. J Hazard Mater 229–230:361–370PubMedCrossRefPubMedCentralGoogle Scholar
  223. Zhao S, Ramette A, Niu GL, Liu H, Zhou NY (2009) Effects of nitrobenzene contamination and of bioaugmentation on nitrification and ammonia-oxidizing bacteria in soil. FEMS Microbiol Ecol 70(2):315–323CrossRefGoogle Scholar
  224. Zhen D, Liu H, Wang SJ, Zhang JJ, Zhao F, Zhou NY (2006) Plasmid mediated degradation of 4-chloronitrobenzene by newly isolated Pseudomonas putida strain ZWL73. Appl Microbiol Biotechnol 72(4):797–803PubMedCrossRefGoogle Scholar
  225. Zhu F, Qu L, Fan W, Qiao M, Hao H, Wang X (2011) Assessment of heavy metals in some wild edible mushrooms collected from Yunnan Province, China. Environ Monit Assess 179:191–199PubMedCrossRefPubMedCentralGoogle Scholar
  226. Zhu MJ, Du F, Zhang GQ, Wang HX, Ng TB (2013) Purification a laccase exhibiting dye decolorizing ability from an edible mushroom Russula virescens. Int Biodeterior Biodegrad 82:33–39CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Bhupendra Koul
    • 1
  • Pooja Taak
    • 1
  1. 1.School of Bioengineering & BiosciencesLovely Professional UniversityPhagwaraIndia

Personalised recommendations