Advertisement

Model Predictive Controller using Interior Point and Ant Algorithm

  • Yvonne Ho
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

This chapter presents an adaption of the Ant System for implementing the optimization routine of the Model Predictive Controller. A hybrid optimization scheme for Model Predictive Control (MPC) is also proposed, comprising both Primal-Dual Interior-Point (PDIP) method used in [1] and the search heuristic based Ant System optimization methods developed in this chapter.

References

  1. 1.
    B.P. Nguyen, Y. Ho, Z. Wu, C.-K. Chui, Implementation of model predictive control with modified minimal model on low-power risc microcontrollers, in Proceedings of the Third Symposium on Information and Communication Technology, ser. SoICT ’12 (ACM, 2012), pp. 165–171Google Scholar
  2. 2.
    L. Wang, Model Predictive Control System Design and Implementation Using Matlab (Springer, 2009)Google Scholar
  3. 3.
    S. Mehrotra, On the implementation of a primal-dual interior point method. Siam J. Opt. 2(4), 575–601 (1992)MathSciNetCrossRefGoogle Scholar
  4. 4.
    S.J. Wright, Primal-Dual Interior-Point Methods (SIAM, 1997)Google Scholar
  5. 5.
    Y. Ye, M.J. Todd, S. Mizuno, An o (sqrt(n)l)-iteration homogeneous and self-dual linear programming algorithm. Math. Op. Res. 19(1), 53–67 (1994)CrossRefGoogle Scholar
  6. 6.
    M. Dorigo, V. Maniezzo, A. Colorni, Ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B (Cybernetics) 26(1), 29–41 (1996)CrossRefGoogle Scholar
  7. 7.
    Guidelines for the use of the C language in critical systems (MISRA, Mar 2013)Google Scholar
  8. 8.
    R.N. Bergman, L.S. Phillips, C. Cobelli, Physiologic evaluation of factors controlling glucose tolerance in man measurement of insulin sensitivity and beta-cell glucose sensitivity from the response to intravenous glucose. J. Clin. Invest. 68(6), 1456–1467 (1981)CrossRefGoogle Scholar
  9. 9.
    R.N. Bergman, Minimal model: perspective from 2005. Hormone Res. Paediatr. 64(Suppl. 3), 8–15 (2006)MathSciNetGoogle Scholar
  10. 10.
    M. Fisher, A semiclosed-loop algorithm for the control of blood glucose levels in diabetics. IEEE Trans. Bio-Med. Eng. 38(1), 57–61 (1991)CrossRefGoogle Scholar
  11. 11.
    S. Lynch, B. Bequette, Model predictive control of blood glucose in type i diabetics using subcutaneous glucose measurements, in Proceedings of the 2002 American Control Conference, vol. 5 (2002), pp. 4039–4043Google Scholar
  12. 12.
    C. Dalla Man, R.A. Rizza, C. Cobelli, Meal simulation model of the glucose-insulin system. IEEE Trans. Biomed. Eng. 54(10), 1740–1749 (2007)CrossRefGoogle Scholar
  13. 13.
    C. Dalla Man, D.M. Raimondo, R.A. Rizza, C. Cobelli, GIM, simulation software of meal glucose-insulin model. J. Diabetes Sci. Technol. 1(3), 323–330 (2007)CrossRefGoogle Scholar
  14. 14.
    L. Bleris, M. Kothare, Real-time implementation of model predictive control, in 2005 American Control Conference, vol. 6 (Portland, OR, USA, Aug 2005), pp. 4166–4171Google Scholar
  15. 15.
    L.G. Bleris, M.V. Kothare, Implementation of model predictive control for glucose regulation on a general purpose microprocessor, in Proceedings of the 44th IEEE Conference on Decision and Control (Seville, Spain, Dec 2005), pp. 5162–5167Google Scholar
  16. 16.
    A.K. Abbes, F. Bouani, M. Ksouri, A microcontroller implementation of constrained model predictive control. Int. J. Electr. Electr. Eng. 5(3), 199–206 (2006)Google Scholar
  17. 17.
    L. Magni, D.M. Raimondo, C.D. Man, M. Breton, S. Patek, G. De Nicolao, C. Cobelli, B.P. Kovatchev, Evaluating the efficacy of closed-loop glucose regulation via control-variability grid analysis. J. Diabetes Sci. Technol. 2(4), 630–635 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations