Groups Decision Making Under Uncertain Conditions in Relation—A Volkswagen Case Study

  • Arran Roddy
  • Yi WangEmail author
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 484)


This report analyses the role of management in association to the functions of decision-making. Conceptualising an understanding of the necessary process steps and exploring the scientific underpinning of decision-making techniques. Using The Volkswagen Group (VW) as a case study there will be analysis of their decision-making approaches relating to the 2015 corporate deception scandal. The initial part of this report engages existing literature, using frameworks and governance to identify ethical concerns of the international economy and its impact on VW. Furthermore, discussion of decision trees will facilitate unique measures relevant to uncertainty in VW’s decision-making methods. Engaging whether the production of ‘greener’ vehicles will assist in recovering lost market shares. The end of this report critically analyses decision trees.


Volkswagen Decision making Critical analysis 


  1. 1.
    Tarsa, K.: Won’t get fooled again: why Vw’s emissions deception is illegal in Europe and how to improve the Eu’s auto regulatory system. Boston Coll. Int. Comp. Law Rev. 40, 315–341 (2017)Google Scholar
  2. 2.
    Burki, T.: Diesel cars and health: the Volkswagen emissions scandal. Lancet Respir. Med. 3(11), 838–839 (2015)CrossRefGoogle Scholar
  3. 3.
    Hou, L., Zhang, K., Luthin, M., Baccarelli, A.: Public health impact and economic costs of Volkswagen’s lack of compliance with the United States’ emission standards. Int. J. Environ. Res. Public Health 13(9), 891 (2016)CrossRefGoogle Scholar
  4. 4.
    Chossière, G., Malina, R., Ashok, A., Dedoussi, I., Eastham, S., Speth, R., Barrett, S.: Public health impacts of excess NOx emissions from Volkswagen diesel passenger vehicles in Germany. Environ. Res. Lett. 12(3) (2017)CrossRefGoogle Scholar
  5. 5.
    Mansouri, N.: A case study of Volkswagen unethical practice in diesel emission test. Int. J. Sci. Eng. Appl. 5(4), 211–216 (2016)Google Scholar
  6. 6.
    Holland, S., Mansur, E., Muller, N., Yates, A.: Response to comment on “damages and expected deaths due to excess NOx emissions from 2009–2015 Volkswagen diesel vehicles”. Environ. Sci. Technol. 50(7), 4137–4138 (2016)CrossRefGoogle Scholar
  7. 7.
    Oldenkamp, O., Van Zelm, R., Huijbregts, M.: Valuing the human health damage caused by the fraud of Volkswagen. Environ. Pollut. 212, 121–127 (2016)CrossRefGoogle Scholar
  8. 8.
    Jonson, J., Borken-Kleefeld, J., Simpson, D., Nyíri, A., Posch, M., Heyes, C.: Impact of excess NOx emissions from diesel cars on air quality, public health and eutrophication in Europe. Environ. Res. Lett. 12(9) (2017)CrossRefGoogle Scholar
  9. 9.
    Volkswagen: Strategy. (2018). Accessed 22 Apr 2018
  10. 10.
    World Commission on Environment and Development: Our Common Future. Oxford University Press, Oxford (1987)Google Scholar
  11. 11.
    Bovens, L.: The ethics of dieselgate. Midwest Stud. Philos. 40(1), 262–283 (2016)CrossRefGoogle Scholar
  12. 12.
    Trope, R., Ressler, E.: Mettle fatigue: VW’s single-point-of-failure ethics. IEEE Secur. Priv. 14(1), 12–30 (2016)CrossRefGoogle Scholar
  13. 13.
    Kirkley, W.: Creating ventures: decision factors in new venture creation. Asia Pac. J. Innov. Entrep. 10(1), 151–167 (2016)CrossRefGoogle Scholar
  14. 14.
    Painter, C., Martins, J.: Organisational communication management during the Volkswagen diesel emissions scandal: a hermeneutic study in attribution, crisis management, and information orientation. Knowl. Process. Manag. 24(3), 204–218 (2017)CrossRefGoogle Scholar
  15. 15.
    Mačaitytė, I., Virbašiūtė, G.: Volkswagen emission scandal and corporate social responsibility – a case study. Bus. Ethics Lead. Ship 2(1), 6–13 (2018)CrossRefGoogle Scholar
  16. 16.
    Arora, J.: Corporate governance: a farce at Volkswagen? Case J. 13(6), 685–703 (2017)CrossRefGoogle Scholar
  17. 17.
    Tirole, J.: A theory of collective reputations (with applications to the persistence of corruption and to firm quality). Rev. Econ. Stud. 63(1), 1 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Jung, J., Park, S.: Case study: Volkswagen’s diesel emissions scandal. Thunderbird Int. Bus. Rev. 59(1), 127–137 (2016)CrossRefGoogle Scholar
  19. 19.
    Georgeevski, B., Al Qudah, A.: The effect of the Volkswagen scandal (a comparative case study). Res. J. Financ. Account. 7(2), 55–57 (2016)Google Scholar
  20. 20.
    Castille, C., Fultz, A.: How does collaborative cheating emerge? a case study of the Volkswagen emissions scandal. In: Proceedings of the 51st Hawaii International Conference on Systems Sciences, pp. 94–103 (2018)Google Scholar
  21. 21.
    Chopra, T., Acharya, J.: Decision tree based approach for fault diagnosis in process control system. Int. J. Comput. Commun. Instrum. Eng. 4(1), 162–165 (2017)Google Scholar
  22. 22.
    Wang, Y., Li, Y., Song, Y., Rong, X., Zhang, S.: Improvement of ID3 algorithm based on simplified information entropy and coordination degree. Algorithms 10(4), 124 (2017)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Kamiński, B., Jakubczyk, M., Szufel, P.: A framework for sensitivity analysis of decision trees. Cent.L Eur. J. Oper. Res. 26(1), 135–159 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    McIver, D., Friedl, M.: Using prior probabilities in decision-tree classification of remotely sensed data. Remote Sens. Environ. 81(2–3), 253–261 (2002)CrossRefGoogle Scholar
  25. 25.
    Rojas, W., Meneses, C.: Graphical representation and exploratory visualization for decision trees in the KDD process. Procedia Soc. Behav. Sci. 73, 136–144 (2013)CrossRefGoogle Scholar
  26. 26.
    Venkatasubramaniam, A., Wolfson, J., Mitchell, N., Barnes, T., Jaka, M., French, S.: Decision trees in epidemiological research. Emerg. Themes Epidemiol. 14(1) (2017)Google Scholar
  27. 27.
    Bohanec, M., Bratko, I.: Trading accuracy for simplicity in decision trees. Mach. Learn. 15(3), 223–250 (1994)zbMATHGoogle Scholar
  28. 28.
    Berry, M., Linoff, G., Berry, M.: Mastering data mining. Wiley Computer Publications, New York (2000)Google Scholar
  29. 29.
    Sun, H., Hu, X.: Attribute selection for decision tree learning with class constraints. Chemometr. Intell. Lab. Syst. 163, 16–23 (2017)CrossRefGoogle Scholar
  30. 30.
    Farid, D., Rahman, C.: Assigning weights to training instances increases classification accuracy. Int. J. Data Min. Knowl. Manag. Process. 3(1), 13–25 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.The School of BusinessPlymouth UniversityPlymouthUK

Personalised recommendations