Advertisement

Silicon Carbide Nanowires and Electronics

  • Shanliang Chen
  • Weijun Li
  • Xiaoxiao Li
  • Weiyou YangEmail author
Chapter
Part of the Nanostructure Science and Technology book series (NST)

Abstract

Silicon carbide (SiC) is recognized as one of the most important candidates of the third-generation semiconductors, owing to their superior properties such as outstanding mechanical properties, excellent chemical inertness, high thermal stability, as well as high thermal conductivity, which allow the SiC materials having the unique advantage to serve under high-temperature/high-voltage/high-power harsh environments. In this chapter, firstly, we presented a comprehensive overview on the recent advances with respect to the rational design and growth of SiC nanowires with different morphologies and dopings. Secondly, we highlighted the electronics of the SiC nanowires associated with their potential applications in field emission emitters, supercapacitors, photocatalysts, field-effect transistors, and pressure sensors. Finally, we made personal perspectives on the future research interests and directions of the SiC nanowires.

Keywords

SiC nanowires Field emission Supercapacitors Photocatalysts Field-effect transistors Pressure sensors 

References

  1. 1.
    Xia Y, Yang P, Sun Y et al (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15:353–389CrossRefGoogle Scholar
  2. 2.
    Yang P, Yan R, Fardy M (2010) Semiconductor nanowire: what is next? Nano Lett 10:1529–1536CrossRefGoogle Scholar
  3. 3.
    Hochbaum A, Yang P (2009) Semiconductor nanowires for energy conversion. Chem Rev 110:527–546CrossRefGoogle Scholar
  4. 4.
    Shen G, Chen P, Ryu K et al (2009) Devices and chemical sensing applications of metal oxide nanowires. J Mater Chem 19:828–839CrossRefGoogle Scholar
  5. 5.
    Zhai T, Li L, Ma Y et al (2011) One-dimensional inorganic nanostructures: synthesis, field-emission and photodetection. Chem Soc Rev 40:2986–3004CrossRefGoogle Scholar
  6. 6.
    Hsu C, Chang S (2014) Doped ZnO 1D nanostructures: synthesis, properties, and photodetector application. Small 10:4562–4585CrossRefGoogle Scholar
  7. 7.
    Dai H, Wong E, Lu Y et al (2003) Synthesis and characterization of carbide nanorods. Nature 375:769–772CrossRefGoogle Scholar
  8. 8.
    Johnson J, Choi H, Knutsen K et al (2002) Single gallium nitride nanowire lasers. Nat Mater 1:106–110CrossRefGoogle Scholar
  9. 9.
    Cheng G, Chang T, Qin Q et al (2014) Mechanical properties of silicon carbide nanowires: effect of size-dependent defect density. Nano Lett 14:754–758CrossRefGoogle Scholar
  10. 10.
    Li Y, Dorozhkin P, Bando Y et al (2005) Controllable modification of SiC nanowires encapsulated in BN nanotubes. Adv Mater 17:545–549CrossRefGoogle Scholar
  11. 11.
    Jie J, Zhang W, Bello I et al (2010) One-dimensional II-VI nanostructures: synthesis, properties and optoelectronic applications. Nano Today 5:313–336CrossRefGoogle Scholar
  12. 12.
    Fang X, Wu L, Hu L (2011) ZnS nanostructure arrays: a developing material star. Adv Mater 23:585–598CrossRefGoogle Scholar
  13. 13.
    Prakash J, Venugopalan R, Tripathi B et al (2015) Chemistry of one dimensional silicon carbide materials: principle, production, application and future prospects. Prog Solid State Ch 43:98–122CrossRefGoogle Scholar
  14. 14.
    Zekentes K, Rogdakis K (2011) SiC nanowires: material and devices. J Phys D Appl Phys 44:133001CrossRefGoogle Scholar
  15. 15.
    Zhou W, Zhang Y, Niu X et al (2008) One-dimensional SiC nanostructures: synthesis and properties, One-Dimensional Nanostructures. Springer, New York, pp 17–59CrossRefGoogle Scholar
  16. 16.
    Borowiak-Palen E, Ruemmeli M, Gemming T et al (2005) Bulk synthesis of carbon-filled silicon carbide nanotubes with a narrow diameter distribution. J Appl Phys 97:056102CrossRefGoogle Scholar
  17. 17.
    Round H (1997) A note on carborundum. Electr World 49:309Google Scholar
  18. 18.
    Janzen E, Kordina O, Henry A et al (1994) SiC-A semiconductor for high-power, high-temperature and high-frequency devices. Phys Scr 1994:283CrossRefGoogle Scholar
  19. 19.
    Nakamura D, Gunjishima I, Yamaguchi S et al (2004) Ultrahigh-quality silicon carbide single crystals. Nature 430:1009–1012CrossRefGoogle Scholar
  20. 20.
    Wong E, Sheehan P, Lieber C et al (1997) Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277:1971–1975CrossRefGoogle Scholar
  21. 21.
    Deng S, Li Z, Wang W et al (2006) Field emission study of SiC nanowires/nanorods directly grown on SiC ceramic substrate. Appl Phys Lett 89:023118-023118-3Google Scholar
  22. 22.
    Zhang Y, Han X, Zheng K et al (2007) Direct observation of super-plasticity of beta-SiC nanowires at low temperature. Adv Funct Mater 17:3435–3440CrossRefGoogle Scholar
  23. 23.
    Pan Z, Lai H, Au F et al (2000) Oriented silicon carbide nanowires: synthesis and field emission properties. Adv Mater 12:1186–1190CrossRefGoogle Scholar
  24. 24.
    Yang W, Araki H, Tang C et al (2005) Single-crystal SiC nanowires with a thin carbon coating for stronger and tougher ceramic composites. Adv Mater 17:1519–1523CrossRefGoogle Scholar
  25. 25.
    Chen S, Ying P, Wang L et al (2014) Temperature-dependent field emission of flexible n-type silicon carbide nanoneedle emitters. Appl Phys Lett 105:133106CrossRefGoogle Scholar
  26. 26.
    Xu N, Deng S, Chen J (2003) Nanomaterials for field electron emission: preparation, characterization and application. Ultramicroscopy 95:19–28CrossRefGoogle Scholar
  27. 27.
    Casady J, Johnson R (1996) Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: a review. Solid State Electron 39:1409–1422CrossRefGoogle Scholar
  28. 28.
    Sun Y, Cui H, Yang G et al (2010) The synthesis and mechanism investigations of morphology controllable 1-D SiC nanostructures via a novel approach. CrystEngComm 12:1134–1138CrossRefGoogle Scholar
  29. 29.
    Fan J, Wu X, Chu P (2006) Low-dimensional SiC nanostructures: fabrication, luminescence, and electrical properties. Prog Mater Sci 51:983–1031CrossRefGoogle Scholar
  30. 30.
    Gu L, Wang Y, Fang Y et al (2013) Performance characteristics of supercapacitor electrodes made of silicon carbide nanowires grown on carbon fabric. J Power Sources 243:648–653CrossRefGoogle Scholar
  31. 31.
    Chang C, Hsia B, Alper J et al (2015) High-temperature all solid-state microsupercapacitors based on SiC nanowire electrode and YSZ electrolyte. ACS Appl Mater Inter 7:26658–26665CrossRefGoogle Scholar
  32. 32.
    Chen Y, Zhang X, Zhao Q et al (2011) p-type 3C-SiC nanowires and their optical and electrical transport properties. Chem Commun 47:6398–6400CrossRefGoogle Scholar
  33. 33.
    Hao J, Wang Y, Tong X et al (2012) Photocatalytic hydrogen production over modified SiC nanowires under visible light irradiation. Int J Hydrogen Energy 37:15038–15044CrossRefGoogle Scholar
  34. 34.
    Yang T, Chang X, Chen J et al (2015) B-doped 3C-SiC nanowires with a finned microstructure for efficient visible light-driven photocatalytic hydrogen production. Nanoscale 7:8955–8961CrossRefGoogle Scholar
  35. 35.
    Hao Y, Wagner J, Su D et al (2006) Beaded silicon carbide nanochains via carbothermal reduction of carbonaceous silica xerogel. Nanotechnology 17:2870CrossRefGoogle Scholar
  36. 36.
    Shen G, Bando Y, Ye C et al (2006) Synthesis, characterization and field-emission properties of bamboo-like β-SiC nanowires. Nanotechnology 17:3468–3472CrossRefGoogle Scholar
  37. 37.
    Wu R, Pan Y, Yang G et al (2007) Twinned SiC zigzag nanoneedles. J Phys Chem C 111:6233–6237CrossRefGoogle Scholar
  38. 38.
    Wu C, Liao X, Chen J (2010) The formation of symmetric SiC bi-nanowires with a Y-shaped junction. Nanotechnology 21:405303CrossRefGoogle Scholar
  39. 39.
    Liu B, Bando Y, Tang C et al (2008) Mn-Si-catalyzed synthesis and tip-end-induced room temperature ferromagnetism of SiC/SiO2 core-shell heterostructures. J Phys Chem C 112:18911–18915CrossRefGoogle Scholar
  40. 40.
    Liu H, Huang Z, Huang J et al (2014) Thermal evaporation synthesis of SiC/SiOx nanochain heterojunctions and their photoluminescence properties. J Mater Chem C 2:7761–7767CrossRefGoogle Scholar
  41. 41.
    Qi X, Zhai G, Liang J et al (2014) Preparation and characterization of SiC@CNT coaxial nanocables using CNTs as a template. CrystEngComm 16:9697–9703CrossRefGoogle Scholar
  42. 42.
    Wang L, Li C, Yang Y et al (2015) Large-scale growth of well-aligned SiC tower-like nanowire arrays and their field emission properties. ACS Appl Mater Interfaces 7:526–533CrossRefGoogle Scholar
  43. 43.
    Gao F, Yang W, Wang H et al (2008) Controlled Al-doped single-crystalline 6H-SiC nanowires. Cryst Growth Des 8:1461–1464CrossRefGoogle Scholar
  44. 44.
    Chen S, Ying P, Wang L et al (2013) Growth of flexible N-doped SiC quasialigned nanoarrays and their field emission properties. J Mater Chem C 1:4779–4784CrossRefGoogle Scholar
  45. 45.
    Chen S, Shang M, Yang Z et al (2016) Current emission from P-doped SiC nanowires with ultralow turn-on fields. J Mater Chem C 4:7391–7396CrossRefGoogle Scholar
  46. 46.
    Chen S, Ying P, Wang L et al (2015) Highly flexible and robust N-doped SiC nanoneedle field emitters. NPG Asia Mater 7:e157CrossRefGoogle Scholar
  47. 47.
    He Z, Wang L, Gao F et al (2013) Synthesis of n-type SiC nanowires with tailored doping levels. CrystEngComm 15:2354–2358CrossRefGoogle Scholar
  48. 48.
    Feng W, Ma J, Yang W (2012) Precise control on the growth of SiC nanowires. CrystEngComm 14:1210–1212CrossRefGoogle Scholar
  49. 49.
    Wang L, Gao F, Chen S et al (2015) Nanowire-density-dependent field emission of n-type 3C-SiC nanoarrays. Appl Phys Lett 107:122108CrossRefGoogle Scholar
  50. 50.
    Wu R, Li B, Gao M et al (2008) Tuning the morphologies of SiC nanowires via the control of growth temperature, and their photoluminescence properties. Nanotechnology 19:335602CrossRefGoogle Scholar
  51. 51.
    Cheong K, Lockman Z (2009) Effects of temperature and crucible height on the synthesis of 6H-SiC nanowires and nanoneedles. J Alloys Compd 481:345–348CrossRefGoogle Scholar
  52. 52.
    Chen S, Ying P, Wang L et al (2014) Controlled growth of SiC flexible field emitters with clear and sharp tips. RSC Adv 4:8376–8382CrossRefGoogle Scholar
  53. 53.
    Wang H, Xie Z, Yang W et al (2008) Morphology control in the vapor-liquid-solid growth of SiC nanowires. Cryst Growth Des 8:3893–3896CrossRefGoogle Scholar
  54. 54.
    Wang H, Lin L, Yang W et al (2010) Preferred orientation of SiC nanowires induced by substrates. J Phys Chem C 114:2591–2594CrossRefGoogle Scholar
  55. 55.
    Zhang M, Li Z, Zhao J et al (2015) Amorphous carbon coating for improving the field emission performance of SiC nanowire cores. J Mater Chem C 3:658–663CrossRefGoogle Scholar
  56. 56.
    Li Z, Li W, Wang X et al (2014) Improving field-emission properties of SiC nanowires treated by H2 and N2 plasma. Phys Status Solidi A 7:1550–1554CrossRefGoogle Scholar
  57. 57.
    Wu R, Zhou K, Wei J et al (2012) Growth of tapered SiC nanowires on flexible carbon fabric: toward field emission applications. J Phys Chem C 116:12940–12945CrossRefGoogle Scholar
  58. 58.
    Krishnan B, Thirumalai R, Koshka Y et al (2011) Substrate-dependent orientation and polytype control in SiC nanowires grown on 4H-SiC substrates. Cryst Growth Des 11:538–541CrossRefGoogle Scholar
  59. 59.
    Li Z, Ren W, Meng A (2010) Morphology-dependent field emission characteristics of SiC nanowires. Appl Phys Lett 97:263117-263117-3Google Scholar
  60. 60.
    Li G, Li X, Chen Z et al (2009) Large areas of centimeters-long SiC nanowires synthesized by pyrolysis of a polymer precursor by a CVD route. J Phys Chem C 113:17655–17660CrossRefGoogle Scholar
  61. 61.
    Niu J, Wang J (2009) Synthesis of macroscopic SiC nanowires at the gram level and their electrochemical activity with Pt loadings. Acta Mater 57:3084–3090CrossRefGoogle Scholar
  62. 62.
    Yang G, Cui H, Sun Y et al (2009) Simple catalyst-free method to the synthesis of β-SiC nanowires and their field emission properties. J Phys Chem C 113:15969–15973CrossRefGoogle Scholar
  63. 63.
    Wang D, Xu D, Wang Q et al (2008) Periodically twinned SiC nanowires. Nanotechnology 19:215602CrossRefGoogle Scholar
  64. 64.
    Ryu Y, Park B, Song Y et al (2004) Carbon-coated SiC nanowires: direct synthesis from Si and field emission characteristics. J Cryst Growth 271:99–104CrossRefGoogle Scholar
  65. 65.
    Tang C, Bando Y (2003) Effect of BN coatings on oxidation resistance and field emission of SiC nanowires. Appl Phys Lett 83:659–661CrossRefGoogle Scholar
  66. 66.
    Wong K, Zhou X, Au F et al (1999) Field-emission characteristics of SiC nanowires prepared by chemical-vapor deposition. Appl Phys Lett 75:2918–2920CrossRefGoogle Scholar
  67. 67.
    Chen Q, Chen S, Gao F et al (2016) Enhanced field emission of Au nanoparticle-decorated SiC nanowires. J Mater Chem C 4:1363–1368CrossRefGoogle Scholar
  68. 68.
    Dong Q, Chen S, Chen Q et al (2016) Nanoparticle-density-dependent field emission of surface-decorated SiC nanowires. Appl Phys Lett 109:082104CrossRefGoogle Scholar
  69. 69.
    Hou H, Gao F, Wei G et al (2011) Electrospinning 3C-SiC mesoporous fibers with high purities and well-controlled structures. Cryst Growth Des 12:536–539CrossRefGoogle Scholar
  70. 70.
    Yang W, Miao H, Xie Z et al (2004) Synthesis of silicon carbide nanorods by catalyst-assisted pyrolysis of polymeric precursor. Chem Phys Lett 383:441–444CrossRefGoogle Scholar
  71. 71.
    Hou H, Wang L, Gao F et al (2013) Mass production of SiC/SiOx nanochain heterojunctions with high purities. CrystEngComm 15:2986–2991CrossRefGoogle Scholar
  72. 72.
    Wang X, Tang B, Gao F et al (2011) Large-scale synthesis of hydrophobic SiC/C nanocables with enhanced electrical properties. J Phys D Appl Phys 44:245404CrossRefGoogle Scholar
  73. 73.
    Chen D, Liu Z, Liang B et al (2012) Transparent metal oxide nanowire transistors. Nanoscale 4:3001–3012CrossRefGoogle Scholar
  74. 74.
    Wei G, Qin W, Zheng K et al (2009) Synthesis and properties of SiC/SiO2 nanochain heterojunctions by microwave method. Cryst Growth Des 9:1431–1435CrossRefGoogle Scholar
  75. 75.
    Qian B, Li H, Yang Z et al (2012) Inverted SiC nanoneedles grown on carbon fibers by a two-crucible method without catalyst. J Cryst Growth 338:6–11CrossRefGoogle Scholar
  76. 76.
    Meng A, Zhang M, Zhang J et al (2012) Synthesis and field emission properties of silicon carbide nanobelts with a median ridge. CrystEngComm 14:6755–6760CrossRefGoogle Scholar
  77. 77.
    Fang X, Zhai T, Gautam U et al (2011) ZnS nanostructures: from synthesis to applications. Prog Mater Sci 56:175–287CrossRefGoogle Scholar
  78. 78.
    Zou G, Li H, Zhang Y et al (2006) Solvothermal/hydrothermal route to semiconductor nanowires. Nanotechnology 17:S313CrossRefGoogle Scholar
  79. 79.
    Lu Q, Hu J, Tang K et al (1999) Growth of SiC nanorods at low temperature. Appl Phys Lett 75:507–509CrossRefGoogle Scholar
  80. 80.
    Xi G, Liu Y, Liu X et al (2003) Mg-catalyzed autoclave synthesis of aligned silicon carbide nanostructures. J Phys Chem B 110:14172–14178CrossRefGoogle Scholar
  81. 81.
    Ju Z, Xing Z, Guo C et al (2008) Sulfur-assisted approach for the low-temperature synthesis of β-SiC nanowires. Eur J Inorg Chem 24:3883–3888CrossRefGoogle Scholar
  82. 82.
    Langa S, Carstensen J, Tiginyanu I et al (2001) Self-induced voltage oscillations during anodic etching of n-InP and possible applications for three-dimensional microstructures. Electrochemical and Solid-State Lett 4:G50–G52CrossRefGoogle Scholar
  83. 83.
    Gautier G, Cayrel F, Capelle M et al (2012) Room light anodic etching of highly doped n-type 4H-SiC in high-concentration HF electrolytes: difference between C and Si crystalline faces. Nanoscale Res Lett 7:367CrossRefGoogle Scholar
  84. 84.
    Shishkin Y, Ke Y, Devaty R et al (2005) Fabrication and morphology of porous p-type SiC. J Appl Phys 97:044908CrossRefGoogle Scholar
  85. 85.
    Cao A, Luong Q, Dao C (2014) Influence of the anodic etching current density on the morphology of the porous SiC layer. AIP Adv 4:037105CrossRefGoogle Scholar
  86. 86.
    Shishkin Y, Choyke W, Devaty R (2004) Photoelectrochemical etching of n-type 4H silicon carbide. J Appl Phys 96:2311–2322CrossRefGoogle Scholar
  87. 87.
    Ke Y, Yan F, Devaty R et al (2009) Surface polishing by electrochemical etching of p-type 4H SiC. J Appl Phys 106:064901CrossRefGoogle Scholar
  88. 88.
    Tan J, Chen Z, Lu W et al (2014) Fabrication of uniform 4H-SiC mesopores by pulsed electrochemical etching. Nanoscale Res Lett 9:1–5CrossRefGoogle Scholar
  89. 89.
    Zheng H, Zhang Y, Yan Y et al (2014) Experimental observation and theoretical calculation of magnetic properties in Fe-doped cubic SiC nanowires. Carbon 78:288–297CrossRefGoogle Scholar
  90. 90.
    Chen Y, Zhang X, Xie Z (2015) Flexible nitrogen doped SiC nanoarray for ultrafast capacitive energy storage. ACS Nano 9:8054–8063CrossRefGoogle Scholar
  91. 91.
    Yang T, Zhang L, Hou X et al (2016) Bare and boron-doped cubic silicon carbide nanowires for electrochemical detection of nitrite sensitively. Sci Rep 6:24872CrossRefGoogle Scholar
  92. 92.
    Zhang X, Chen Y, Liu W et al (2013) Growth of n-type 3C-SiC nanoneedles on carbon fabric: toward extremely flexible field emission devices. J Mater Chem C 1:6479–6486CrossRefGoogle Scholar
  93. 93.
    Zhang X, Chen Y, Xie Z et al (2010) Shape and doping enhanced field emission properties of quasialigned 3C-SiC nanowires. J Phys Chem C 114:8251–8255CrossRefGoogle Scholar
  94. 94.
    Li X, Chen S, Ying P et al (2016) A giant negative piezoresistance effect in 3C-SiC nanowires with B dopants. J Mater Chem C 4:6466–6472CrossRefGoogle Scholar
  95. 95.
    Wang L, Wei G, Gao F et al (2015) High-temperature stable field emission of B-doped SiC nanoneedle arrays. Nanoscale 7:7585–7592CrossRefGoogle Scholar
  96. 96.
    Li S, Wang N, Zhao H et al (2014) Synthesis and electrical properties of p-type 3C-SiC nanowires. Mater Lett 126:217–219CrossRefGoogle Scholar
  97. 97.
    Yang Y, Yang H, Wei G et al (2014) Enhanced field emission of p-type 3C-SiC nanowires with B dopants and sharp corners. J Mater Chem C 2:4515–4520CrossRefGoogle Scholar
  98. 98.
    Xu Z, Zheng Q, Su G (2011) Thermoelectric properties of silicon carbide nanowires with nitride dopants and vacancies. Phys Rev B 84:245451CrossRefGoogle Scholar
  99. 99.
    Tian Y, Zheng H, Liu X et al (2012) Microstructure and magnetic properties of Mn-doped 3C-SiC nanowires. Mater Lett 76:219–221CrossRefGoogle Scholar
  100. 100.
    Seong H, Park T, Lee S et al (2009) Magnetic properties of vanadium-doped silicon carbide nanowires. Met Mater Int 15:107–111CrossRefGoogle Scholar
  101. 101.
    Gao F, Feng W, Wei G et al (2012) Triangular prism-shaped p-type 6H-SiC nanowires. CrystEngComm 14:488–491CrossRefGoogle Scholar
  102. 102.
    Wei G, Liu H, Shi C et al (2011) Temperature-dependent field emission properties of 3C-SiC nanoneedles. J Phys Chem C 115:13063–13068CrossRefGoogle Scholar
  103. 103.
    Cui Y, Lieber C (2001) Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291:851–853CrossRefGoogle Scholar
  104. 104.
    Sun S, Murray C, Weller D et al (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287:1989–1992CrossRefGoogle Scholar
  105. 105.
    Wang Z, Gong J, Su Y et al (2010) Six-fold-symmetrical hierarchical ZnO nanostructure arrays: synthesis, characterization, and field emission properties. Cryst Growth Des 10:2455–2459CrossRefGoogle Scholar
  106. 106.
    Yin L, Bando Y, Zhu Y et al (2005) Growth and field emission of hierarchical single-crystalline wurtzite AlN nanoarchitectures. Adv Mater 17:110–114CrossRefGoogle Scholar
  107. 107.
    Zhang J, Yang Y, Jiang F et al (2006) Fabrication, structural characterization and photoluminescence of Q-1D semiconductor ZnS hierarchical nanostructures. Nanotechnology 17:2695CrossRefGoogle Scholar
  108. 108.
    Zhang J, Chen J, Xin L et al (2014) Hierarchical 3C-SiC nanowires as stable photocatalyst for organic dye degradation under visible light irradiation. Mat Sci Eng B 179:6–11CrossRefGoogle Scholar
  109. 109.
    Xin L, Shi Q, Chen J et al (2012) Morphological evolution of one-dimensional SiC nanomaterials controlled by sol-gel carbothermal reduction. Mater Charact 65:55–61CrossRefGoogle Scholar
  110. 110.
    Shen G, Bando Y, Golberg D (2007) Self-assembled hierarchical single-crystalline β-SiC nanoarchitectures. Cryst Growth Des 7:35–38CrossRefGoogle Scholar
  111. 111.
    Guo J, Zuo Y, Li Z et al (2007) Preparation of SiC nanowires with fins by chemical vapor deposition. Phys E 39:262–266CrossRefGoogle Scholar
  112. 112.
    Wu R, Chen J, Yang G et al (2008) Self-assembled one-dimensional hierarchical SiC nanostructures: microstructure, growth mechanism, and optical properties. J Cryst Growth 310:3573–3578CrossRefGoogle Scholar
  113. 113.
    Wu R, Yang G, Pan Y et al (2007) Thermal evaporation and solution strategies to novel nanoarchitectures of silicon carbide. Appl Phys A Mater Sci Process 88:679–685CrossRefGoogle Scholar
  114. 114.
    Cambaz G, Yushin G, Gogotsi Y et al (2006) Anisotropic etching of SiC whiskers. Nano Lett 6:548–551CrossRefGoogle Scholar
  115. 115.
    Zhao B, Yang B, Wang T et al (2013) Nanocarbon-dependent synthesis of one-dimensional bead-chain-like β-SiC. Powder Technol 246:487–491CrossRefGoogle Scholar
  116. 116.
    Meng A, Zhang M, Gao W et al (2011) Large-scale synthesis of β-SiC nanochains and their raman/photoluminescence properties. Nanoscale Res Lett 6:1–7CrossRefGoogle Scholar
  117. 117.
    Li Z, Shi T, Tan D (2010) Long β-silicon carbide necklace-like whiskers prepared by carbothermal reduction of wood flour/silica/phenolic composite. J Am Ceram Soc 93:3499–3503CrossRefGoogle Scholar
  118. 118.
    Wei J, Li K, Li H et al (2006) Growth and morphology of one-dimensional SiC nanostructures without catalyst assistant. Mater Chem Phys 95:140–144CrossRefGoogle Scholar
  119. 119.
    Pozuelo M, Kao W, Yang J (2013) High-resolution TEM characterization of SiC nanowires as reinforcements in a nanocrystalline Mg-matrix. Mater Charact 77:81–88CrossRefGoogle Scholar
  120. 120.
    Zhang M, Zhao J, Li Z et al (2016) Bamboo-like 3C-SiC nanowires with periodical fluctuating diameter: homogeneous synthesis, synergistic growth mechanism, and their luminescence properties. J Solid State Chem 243:247–252CrossRefGoogle Scholar
  121. 121.
    Hu W, Wang L, Wu Q et al (2014) Preparation, characterization and microwave absorption properties of bamboo-like β-SiC nanowhiskers by molten-salt synthesis. J Mater Sci Mater Electron 25:5302–5308CrossRefGoogle Scholar
  122. 122.
    Chu Y, Li H, Fu Q et al (2013) Bamboo-shaped SiC nanowire-toughened SiC coating for oxidation protection of C/C composites. Corros Sci 70:11–16CrossRefGoogle Scholar
  123. 123.
    Chen J, Shi Q, Gao L et al (2010) Large-scale synthesis of ultralong single-crystalline SiC nanowires. Phys Status Solidi A 207:2483–2486CrossRefGoogle Scholar
  124. 124.
    Hao Y, Jin G, Han X et al (2006) Synthesis and characterization of bamboo-like SiC nanofibers. Mater Lett 60:1334–1337CrossRefGoogle Scholar
  125. 125.
    Wang D, Xu D, Wang Q et al (2008) Periodically twinned SiC nanowires. Nanotechnology 19:215602CrossRefGoogle Scholar
  126. 126.
    Choi H, Seong H, Lee J et al (2004) Growth and modulation of silicon carbide nanowires. J Cryst Growth 269:472–478CrossRefGoogle Scholar
  127. 127.
    Wang Z, Li J, Gao F et al (2010) Tensile and compressive mechanical behavior of twinned silicon carbide nanowires. Acta Mater 58:1963–1971CrossRefGoogle Scholar
  128. 128.
    Li Z, Wang S, Wang Z et al (2010) Mechanical behavior of twinned SiC nanowires under combined tension-torsion and compression-torsion strain. J Appl Phys 108:013504CrossRefGoogle Scholar
  129. 129.
    Duan W, Yin X, Cao F et al (2015) Absorption properties of twinned SiC nanowires reinforced Si3N4 composites fabricated by 3D-prining. Mater Lett 159:257–260CrossRefGoogle Scholar
  130. 130.
    Huang Z, Liu H, Chen K et al (2014) Synthesis and formation mechanism of twinned SiC nanowires made by a catalyst-free thermal chemical vapour deposition method. RSC Adv 4:18360–18364CrossRefGoogle Scholar
  131. 131.
    Li L, Chu Y, Li H et al (2014) Periodically twinned 6H-SiC nanowires with fluctuating stems. Ceram Int 40:4455–4460CrossRefGoogle Scholar
  132. 132.
    Chen J, Pan Y, Wu R (2010) Growth mechanism of twinned SiC nanowires synthesized by a simple thermal evaporation method. Phys E 42:2335–2340CrossRefGoogle Scholar
  133. 133.
    Li J, Zhu X, Ding P et al (2009) The synthesis of twinned silicon carbide nanowires by a catalyst-free pyrolytic deposition technique. Nanotechnology 20:145602CrossRefGoogle Scholar
  134. 134.
    Shim H, Huang H (2007) Three-stage transition during silicon carbide nanowire growth. Appl Phys Lett 90:083106CrossRefGoogle Scholar
  135. 135.
    Zhou Y, Chang X, Zhou J et al (1990) Twin morphology in bicrystalline silicon carbide whiskers. Mater Lett 10:288–290CrossRefGoogle Scholar
  136. 136.
    Wu R, Wu L, Yang G et al (2007) Fabrication and photoluminescence of bicrystalline SiC nanobelts. J Phys D Appl Phys 40:3697CrossRefGoogle Scholar
  137. 137.
    Seo W, Koumoto K, Aria S (2000) Morphology and stacking faults of β-Silicon carbide whisker synthesized by carbothermal reduction. J Am Ceram Soc 83:2584–2592CrossRefGoogle Scholar
  138. 138.
    Tang C, Bando Y, Sato T et al (2002) SiC and its bicrystalline nanowires with uniform BN coatings. Appl Phys Lett 80:4641–4643CrossRefGoogle Scholar
  139. 139.
    Yin L, Bando Y, Zhu Y et al (2004) A two-stage route to coaxial cubic-aluminum-nitride–boron- nitride composite nanotubes. Adv Mater 16:929–933CrossRefGoogle Scholar
  140. 140.
    Zhu Y, Bando Y, Yin L (2004) Design and fabrication of BN-sheathed ZnS nanoarchitectures. Adv Mater 16:331–334CrossRefGoogle Scholar
  141. 141.
    Zhang Y, Suenaga K, Colliex C et al (1998) Coaxial nanocable: silicon carbide and silicon oxide sheathed with boron nitride and carbon. Science 281:973–975CrossRefGoogle Scholar
  142. 142.
    Wang X, Tian J, Bao L et al (2007) Large scale SiC-SiOx nanocables: synthesis, photoluminescence, and field emission properties. J Appl Phys 102:014309CrossRefGoogle Scholar
  143. 143.
    Kwak G, Lee M, Senthil K et al (2010) Wettability control and water droplet dynamics on SiC-SiO2 core-shell nanowires. Langmuir 26:12273–12277CrossRefGoogle Scholar
  144. 144.
    Wang W, Wang Y, Gu L et al (2015) SiC@Si core-shell nanowires on carbon paper as a hybrid anode for-llithium-ion batteries. J Power Sources 293:492–497CrossRefGoogle Scholar
  145. 145.
    Lu W, Guo L, Jia Y et al (2014) Significant enhancement in photocatalytic activity of high quality SiC/graphene core-shell heterojunction with optimal structural parameters. RSC Adv 4:46771–46779CrossRefGoogle Scholar
  146. 146.
    Bechelany M, Brioude A, Stadelmann P et al (2007) Very long SiC-based coaxial nanocables with tunable chemical composition. Adv Funct Mater 17:3251–3257CrossRefGoogle Scholar
  147. 147.
    Filippo F, Francesca R, Paola L et al (2014) 3C-SiC nanowires luminescence enhancement by coating with a conformal oxides layer. J Phys D Appl Phys 47:394006CrossRefGoogle Scholar
  148. 148.
    Fang J, Aharonovich I, Levchenko I et al (2012) Plasma-enabled growth of single-crystalline SiC/AlSiC core-shell nanowires on porous alumina templates. Cryst Growth Des 12:2917–2922CrossRefGoogle Scholar
  149. 149.
    Negri M, Dhanabalan S, Attolini G et al (2015) Tuning the radial structure of core-shell silicon carbide nanowires. CrystEngComm 17:1258–1263CrossRefGoogle Scholar
  150. 150.
    Cui H, Zhou J, Yang G et al (2011) Growth, modulation and electronic properties of Al2O3-coatings SiC nanotubes via simple heating evaporation process. CrystEngComm 13:902–906CrossRefGoogle Scholar
  151. 151.
    Liang C, Liu C, Wang H et al (2014) SiC-Fe3O4 dielectric-magnetic hybrid nanowires: controllable fabrication, characterization and electromagnetic wave absorption. J Mater Chem A 2:16397–16402CrossRefGoogle Scholar
  152. 152.
    Liu W, Chen J, Yang T et al (2016) Enhancing photoluminescence properties of SiC/SiO2 coaxial nanocables by making oxygen vacancies. Dalton Trans 45:13503–13508CrossRefGoogle Scholar
  153. 153.
    Ma J, Liu Y, Hao P et al (2016) Effect of different oxide thickness on the bending Youngs modulus of SiO2@SiC nanowires. Sci Rep 6:18994CrossRefGoogle Scholar
  154. 154.
    Li Z, Zhao J, Zhang M et al (2014) SiC nanowires with thickness-controlled SiO2 shells: fabrication, mechanism, reaction kinetics and photoluminescence properties. Nano Res 7:462–472CrossRefGoogle Scholar
  155. 155.
    Wang B, Wang Y, Lei Y et al (2016) Vertical SnO2 nanosheet@SiC nanofibers with hierarchical architecture for high-performance gas sensors. J Mater Chem C 4:295–304CrossRefGoogle Scholar
  156. 156.
    Hu P, Dong S, Zhang D et al (2016) Catalyst-assisted synthesis of core-shell SiC/SiO2 nanowires via a simple method. Ceram Int 42:1581–1587CrossRefGoogle Scholar
  157. 157.
    Zhang J, Jia Q, Zhang S et al (2013) One-step molten-salt-mediated preparation and luminescent properties of ultra-long SiC/SiO2 core-shell nanowires. Ceram Int 42:2227–2233CrossRefGoogle Scholar
  158. 158.
    Chen K, Fang M, Huang Z et al (2013) Catalytic synthesis and growth mechanism of SiC@SiO2 nanowires and their photoluminescence properties. CrystEngComm 15:9032–9038CrossRefGoogle Scholar
  159. 159.
    Qiang X, Li H, Zhang Y et al (2013) Synthesis of SiC/SiO2 nanocables by chemical vapor deposition. J Alloys Compd 572:107–109CrossRefGoogle Scholar
  160. 160.
    Choi Y, Park S, Choi D (2012) Gas-phase synthesis and growth mechanism of SiC/SiO2 core-shell nanowires. CrystEngComm 14:1737–1743CrossRefGoogle Scholar
  161. 161.
    Zhuang H, Zhang L, Staedler T et al (2012) Nanoscale integration of SiC/SiO2 core-shell nanocables in diamond through a simultaneous hybrid structure fabrication. Appl Phys Lett 100:193102CrossRefGoogle Scholar
  162. 162.
    Fabbri F, Rossi F, Attolini G et al (2012) Luminescence properties of SiC/SiO2 core-shell nanowires with different radial structure. Mater Lett 71:137–140CrossRefGoogle Scholar
  163. 163.
    Filippo F, Francesca R, Giovanni A et al (2010) Enhancement of the core near-band-edge emission induced by an amorphous shell in coaxial one-dimensional nanostructure: the case of SiC/SiO2 core/shell self-organized nanowires. Nanotechnology 21:345702CrossRefGoogle Scholar
  164. 164.
    Wang X, Zhai H, Cao C et al (2009) One-step synthesis of orientation accumulation SiC-C coaxial nanocables at low temperature. J Mater Chem 19:2958–2962CrossRefGoogle Scholar
  165. 165.
    Kim R, Qin W, Wei G et al (2009) Synthesis of large-scale SiC-SiO2 nanowires decorated with amorphous carbon nanoparticles and Raman and PL properties. Chem Phys Lett 475:86–90CrossRefGoogle Scholar
  166. 166.
    Lopez-Camacho E, Fernandez M, Gomez-Aleixandre C (2008) The key role of hydrogen in the growth of SiC/SiO2 nanocables. Nanotechnology 19:305602CrossRefGoogle Scholar
  167. 167.
    Li B, Wu R, Pan Y et al (2008) Simultaneous growth of SiC nanowires, SiC nanotubes, and SiC/SiO2 core-shell nanocables. J Alloy Compd 462:446–451CrossRefGoogle Scholar
  168. 168.
    Meng A, Li Z, Zhang J et al (2007) Synthesis and Raman scattering of β-SiC/SiO2 core-shell nanowires. J Cryst Growth 308:263–268CrossRefGoogle Scholar
  169. 169.
    Cai K, Zhang A, Yin J (2007) Ultra thin and ultra long SiC/SiO2 nanocables from catalytic pyrolysis of poly(dimethyl siloxane). Nanotechnology 18:485601CrossRefGoogle Scholar
  170. 170.
    Yang Z, Zhou W, Zhu F et al (2006) SiC/SiO2 core-shell nanocables formed on the carbon fiber felt. Mater Chem Phys 96:439–441CrossRefGoogle Scholar
  171. 171.
    Liu X, Yao K (2005) Large-scale synthesis and photoluminescence properties of SiC/SiOx nanocables. Nanotechnology 16:2932CrossRefGoogle Scholar
  172. 172.
    Zhang H, Wang C, Wang L (2002) Helical crystalline SiC/SiO2 core-shell nanowires. Nano Lett 2:941–944CrossRefGoogle Scholar
  173. 173.
    Hu Y, Liu X, Zhang X et al (2016) Bead-curtain shaped SiC@SiO2 core-shell nanowires with superior electrochemical properties for lithium-ion batteries. Electrochim Acta 190:33–39CrossRefGoogle Scholar
  174. 174.
    Bechelany M, Riesterer J, Brioude A et al (2012) Rayleigh instability induced SiC/SiO2 necklace like nanostructures. CrystEngComm 14:7744–7748CrossRefGoogle Scholar
  175. 175.
    Sun Z, Qiao X, Ren Q et al (2016) Synthesis of SiC/SiO2 nanochains by carbonthermal reduction process and its optimization. Adv Powder Technol 27:1552–1559CrossRefGoogle Scholar
  176. 176.
    Liu W, Chen J, Chou K et al (2015) Large scale fabrication of dumbbell-shaped biomimetic SiC/SiO2 fibers. CrystEngComm 17:9318–9322CrossRefGoogle Scholar
  177. 177.
    Liu B, Yang B, Yuan F et al (2015) Defect-induced nucleation and epitaxy: a new strategy toward the rational synthesis of WZ-GaN/3C-SiC core-shell heterostructures. Nano Lett 15:7837–7846CrossRefGoogle Scholar
  178. 178.
    Li C, Ouyang H, Huang J et al (2014) Synthesis and visible-light photocatalytic activity of SiC/SiO2 nanochain heterojunctions. Mater Lett 122:125–128CrossRefGoogle Scholar
  179. 179.
    Wei J, Li K, Chen J et al (2013) Synthesis and growth mechanism of SiC/SiO2 nanochains heterostructure by catalyst-free chemical vapor deposition. J Am Ceram Soc 96:627–633Google Scholar
  180. 180.
    Li Z, Gao W, Meng A et al (2009) Large-scale synthesis and Raman and photoluminescence properties of single crystalline β-SiC nanowires periodically wrapped by amorphous SiO2 nanospheres. J Phys Chem C 113:91–96CrossRefGoogle Scholar
  181. 181.
    Li Y, Bando Y, Golberg D (2004) SiC-SiO2-C coaxial nanocables and chains of carbon nanotube-SiC heterojunctions. Adv Mater 16:93–96CrossRefGoogle Scholar
  182. 182.
    Nazarudin N, Azizan S, Rahman S et al (2014) Growth and structural property studies on NiSi/SiC core-shell nanowires by hot-wire chemical vapor deposition. Thin Solid Films 570:243–248CrossRefGoogle Scholar
  183. 183.
    Ollivier M, Latu-Romain L, Martin M et al (2013) Si-SiC core-shell nanowires. J Cryst Growth 363:158–163CrossRefGoogle Scholar
  184. 184.
    Nazarudin N, Mohd Noor N, Rahman S et al (2015) Photoluminescence and structural properties of Si/SiC core-shell nanowires growth by HWCVD. J Lumin 157:149–157CrossRefGoogle Scholar
  185. 185.
    Goh B, Rahman S (2014) Study of the growth, and effects of filament to substrate distance on the structural and optical properties of Si/SiC core-shell nanowires synthesized by hot-wire chemical vapor deposition. Mater Chem Phys 147:974–981CrossRefGoogle Scholar
  186. 186.
    Deng J, Sun P, Cheng G et al (2013) Improved field electron emission from SiC assisted carbon nanorod/nanotube heterostructured arrays by using energetic Si ion irradiation. Surf Coat Tech 228:S323–S327CrossRefGoogle Scholar
  187. 187.
    Ollivier M, Latu-Romain L, Salem B et al (2015) Integration of SiC-1D nanostructures into nano-field effect transistors. Mater Sci Semicon Proc 29:218–222CrossRefGoogle Scholar
  188. 188.
    Beaber A, Girshick S, Gerberich W (2011) Dislocation plasticity and phase transformations in Si-SiC core-shell nanotowers. Int J Fract 171:177–183CrossRefGoogle Scholar
  189. 189.
    Taguchi T, Igawa N, Yamamoto H et al (2005) Preparation and characterization of single-phase SiC nanotubes and C-SiC coaxial nanotubes. Phys E 28:431–438CrossRefGoogle Scholar
  190. 190.
    Pan Y, Zhu P, Wang X et al (2011) Preparation and characterization of one-dimensional SiC-CNT composite nanotubes. Diam Relat Mater 20:310–313CrossRefGoogle Scholar
  191. 191.
    Hamzan N, Nordin F, Rahman S et al (2015) Effects of substrate temperature on the growth, structural and optical properties of NiSi/SiC core-shell nanowires. Appl Surf Sci 343:70–76CrossRefGoogle Scholar
  192. 192.
    Hu J, Bando Y, Zhan J et al (2004) Fabrication of ZnS/SiC nanocables, SiC-shelled ZnS nanoribbons (and sheets), and SiC nanotubes (and tubes). Appl Phys Lett 85:2932CrossRefGoogle Scholar
  193. 193.
    Fan S, Chapline M, Franklin N et al (1999) Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 283:512–514CrossRefGoogle Scholar
  194. 194.
    Liu B, Zhang J, Wang X et al (2012) Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett 12:3005–3011CrossRefGoogle Scholar
  195. 195.
    Yang Y, Meng G, Liu X et al (2008) Aligned SiC porous nanowire arrays with excellent field emission properties converted from Si nanowires on silicon wafer. J Phys Chem C 112:20126–20130CrossRefGoogle Scholar
  196. 196.
    Liu B, Bando Y, Jiang X et al (2010) Self-assembled ZnS nanowire arrays: synthesis, in situ Cu doping and field emission. Nanotechnology 21:375601CrossRefGoogle Scholar
  197. 197.
    Liang Y, Xu H, Hark S (2010) Orientation and structure controllable epitaxial growth of ZnS nanowire arrays on GaAs substrates. J Phys Chem C 114:8343–8347CrossRefGoogle Scholar
  198. 198.
    Li Z, Zhang M, Meng A (2011) Synthesis and mechanism of single-crystalline β-SiC nanowire arrays on a 6H-SiC substrate. CrystEngComm 13:4097–4101CrossRefGoogle Scholar
  199. 199.
    Kang M, Lezec H, Sharifi F (2013) Stable field emission from nanoporous silicon carbide. Nanotechnology 24:065201CrossRefGoogle Scholar
  200. 200.
    Chen C, Chen S, Shang M et al (2016) Fabrication of highly oriented 4H-SiC gourd-shaped nanowire arrays and their field emission properties. J Mater Chem C 4:5195–5201CrossRefGoogle Scholar
  201. 201.
    Lee D (1969) Anisotropic etching of silicon. J Appl Phys 40:4569–4574CrossRefGoogle Scholar
  202. 202.
    Kelzenberg M, Boettcher S, Petykiewicz J et al (2010) Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nat Mater 9:239–244CrossRefGoogle Scholar
  203. 203.
    Li J, Yu H, Li Y (2012) Solar energy harnessing in hexagonally arranged Si nanowire arrays and effects of array symmetry on optical characteristics. Nanotechnology 23:194010CrossRefGoogle Scholar
  204. 204.
    Liu H, She G, Mu L et al (2012) Porous SiC nanowire arrays as stable photocatalyst for water splitting under UV irradiation. Mater Res Bull 47:917–920CrossRefGoogle Scholar
  205. 205.
    Che G, Lakshmi B, Fisher E et al (1998) Carbon nanotubule membranes for electrochemical energy storage and production. Nature 393:346–349CrossRefGoogle Scholar
  206. 206.
    Wang H, Li X, Kim T et al (2005) Inorganic polymer-derived tubular SiC arrays from sacrificial alumina templates. Appl Phys Lett 86:173104-173104-3Google Scholar
  207. 207.
    Li Z, Zhang J, Meng A et al (2006) Large-area highly-oriented SiC nanowire arrays: synthesis, Raman, and photoluminescence properties. J Phys Chem B 110:22382–22386CrossRefGoogle Scholar
  208. 208.
    Fang X, Bando Y, Gautam U et al (2008) Inorganic semiconductor nanostructures and their field-emission applications. J Mater Chem 18:509–522CrossRefGoogle Scholar
  209. 209.
    Mittal G, Lahiri I (2014) Recent progress in nanostructured next-generation field emission devices. J Phys D Appl Phys 47:323001CrossRefGoogle Scholar
  210. 210.
    Xu N, Huq S (2005) Novel cold cathode materials and applications. Mater Sci Eng R 48:47–189CrossRefGoogle Scholar
  211. 211.
    Fowler R, Nordheim L (1928) Electron emission in intense electric fields. Proc R Soc Lond Ser A 119:173–181CrossRefGoogle Scholar
  212. 212.
    De Heer W, Chatelain A, Ugarte D (1995) A carbon nanotube field-emission electron source. Science 270:1179–1180CrossRefGoogle Scholar
  213. 213.
    Zhu W, Kochanski G, Jin S (1998) Low-field electron emission from undoped nanostructured diamond. Science 282:1471–1473CrossRefGoogle Scholar
  214. 214.
    Musa I, Munindrasdasa D, Amaratunga G et al (1998) Ultra-low-threshold field emission from conjugated polymers. Nature 395:362–365CrossRefGoogle Scholar
  215. 215.
    Liu C, Hu Z, Wu Q et al (2005) Vapor-solid growth and characterization of aluminum nitride nanocones. J Am Chem Soc 127:1318–1322CrossRefGoogle Scholar
  216. 216.
    Fang X, Yan J, Hu L et al (2012) Thin SnO2 nanowires with uniform diameter as excellent field emitters: a stability of more than 2400 minutes. Adv Funct Mater 22:1613–1622CrossRefGoogle Scholar
  217. 217.
    Bonard J, Weiss N, Kind H et al (2001) Tuning the field emission properties of patterned carbon nanotube films. Adv Mater 13:184–188CrossRefGoogle Scholar
  218. 218.
    Huang J, Kempa K, Jo S et al (2005) Giant field enhancement at carbon nanotube tips induced by multistage effect. Appl Phys Lett 87:053110-053110-3Google Scholar
  219. 219.
    Wang X, Zhou J, Lao C et al (2007) In situ field emission of density-controlled ZnO nanowire arrays. Adv Mater 19:1627–1631CrossRefGoogle Scholar
  220. 220.
    Hwang J, Lee D, Kim J et al (2011) Vertical ZnO nanowires/graphene hybrids for transparent and flexible field emission. J Mater Chem 21:3432–3437CrossRefGoogle Scholar
  221. 221.
    Kim D, Choi Y, Choi K et al (2008) Stable field emission performance of SiC-nanowire-based cathodes. Nanotechnology 19:225706CrossRefGoogle Scholar
  222. 222.
    Xu Z, Bai X, Wang E (2006) Geometrical enhancement of field emission of individual nanotubes studied by in situ transmission electron microscopy. Appl Phys Lett 88:133107-133107-3Google Scholar
  223. 223.
    Teo K, Minoux E, Hudanski L et al (2005) Microwave devices: carbon nanotubes as cold cathodes. Nature 437:968–968CrossRefGoogle Scholar
  224. 224.
    Tan T, Sim H, Lau S et al (2006) X-ray generation using carbon-nanofiber-based flexible field emitters. Appl Phys Lett 88:103105-103105-3Google Scholar
  225. 225.
    He J, Yang R, Chueh Y et al (2006) Aligned AlN Nanorods with multi-tipped surfaces-growth, field-emission, and cathodoluminescence properties. Adv Mater 18:650–654CrossRefGoogle Scholar
  226. 226.
    Song J, Kulinich S, Yan J et al (2013) Epitaxial ZnO nanowire-on-nanoplate structures as efficient and transferable field emitters. Adv Mater 25:5750–5755CrossRefGoogle Scholar
  227. 227.
    Fang X, Bando Y, Ye C et al (2007) Crystal orientation-ordered ZnS nanobelt quasi-arrays and their enhanced field-emission. Chem Commun: 3048–3050Google Scholar
  228. 228.
    Li L, Wu P, Fang X et al (2010) Single-crystalline CdS nanobelts for excellent field-emitters and ultrahigh quantum-efficiency photodetectors. Adv Mater 22:3161–3165CrossRefGoogle Scholar
  229. 229.
    Cui H, Gong L, Yang G et al (2011) Enhanced field emission property of a novel Al2O3 nanoparticle-decorated tubular SiC emitter with low turn-on and threshold field. Phys Chem Chem Phys 13:985–990CrossRefGoogle Scholar
  230. 230.
    Cui H, Sun Y, Yang G et al (2009) Template-and catalyst-free synthesis, growth mechanism and excellent field emission properties of large scale single-crystalline tubular β-SiC. Chem Commun:6243–6245Google Scholar
  231. 231.
    Zhou J, Gong L, Deng S et al (2005) Growth and field-emission property of tungsten oxide nanotip arrays. Appl Phys Lett 87:223108CrossRefGoogle Scholar
  232. 232.
    Tang Y, Cong H, Chen Z et al (2005) An array of Eiffel-tower-shape AlN nanotips and its field emission properties. Appl Phys Lett 86:233104-233104-3Google Scholar
  233. 233.
    Li Y, Bando Y, Golberg D (2004) ZnO nanoneedles with tip surface perturbations: excellent field emitters. Appl Phys Lett 84:3603–3605CrossRefGoogle Scholar
  234. 234.
    Chattopadhyay S, Chen L, Chen KH (2006) Nanotips: growth, model, and applications. Crit Rev Solid State Mater Sci 31:15–53CrossRefGoogle Scholar
  235. 235.
    Wu R, Zhou K, Qian X et al (2012) Well-aligned SiC nanoneedle arrays for excellent field emitters. Mater Lett 91:220–223CrossRefGoogle Scholar
  236. 236.
    Ying P, Chen S, Ren X et al (2015) Investigation of temperature on the field electron emission from flexible N-doped SiC nanoneedles. Superlattice Microst 86:250–255CrossRefGoogle Scholar
  237. 237.
    Wu Z, Deng S, Xu N et al (2002) Needle-shaped silicon carbide nanowires: synthesis and field electron emission properties. Appl Phys Lett 80:3829–3831CrossRefGoogle Scholar
  238. 238.
    Fang X, Bando Y, Shen G et al (2007) Ultrafine ZnS nanobelts as field emitters. Adv Mater 19:2593–2596CrossRefGoogle Scholar
  239. 239.
    Yuan L, Tao Y, Chen J et al (2011) Carbon nanoparticles on carbon fabric for flexible and high-performance field emitters. Adv Funct Mater 21:2150–2154CrossRefGoogle Scholar
  240. 240.
    Huang A, Chu P, Wu X (2006) Enhanced electron field emission from oriented columnar AlN and mechanism. Appl Phys Lett 88:251103-251103-3Google Scholar
  241. 241.
    Deng Y, Xie Y, Zou K et al (2016) Review on recent advances in nitrogen-doped carbons: preparations and applications in supercapacitors. J Mater Chem A 4:1144–1173CrossRefGoogle Scholar
  242. 242.
    Wang H, Maiyalagan T, Wang X (2012) Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal 2:781–794CrossRefGoogle Scholar
  243. 243.
    Gautam U, Panchakarla L, Dierre B et al (2009) Solvothermal synthesis, cathodoluminescence, and field-emission properties of pure and N-doped ZnO nanobullets. Adv Funct Mater 19:131–140CrossRefGoogle Scholar
  244. 244.
    Zhang H, Tang J, Yuan J et al (2010) Nanostructured LaB6 field emitter with lowest apical work function. Nano Lett 10:3539–3544CrossRefGoogle Scholar
  245. 245.
    Chen S, Shang M, Gao F et al (2016) Extremely stable current emission of P-doped SiC flexible field emitters. Adv Sci 3:1500256CrossRefGoogle Scholar
  246. 246.
    Das B, Sarkar D, Maity S et al (2015) Ag decorated topological surface state protected hierarchical Bi2Se3 nanoflakes for enhanced field emission properties. J Mater Chem C 3:1766–1775CrossRefGoogle Scholar
  247. 247.
    Baby T, Ramaprabhu S (2011) Cold field emission from hydrogen exfoliated graphene composites. Appl Phys Lett 98:183111-183111-3CrossRefGoogle Scholar
  248. 248.
    Gautier L, Borgne V, Delegan N et al (2015) Field electron emission enhancement of graphenated MWCNTs emitters following their decoration with Au nanoparticles by a pulsed laser ablation process. Nanotechnology 26:045706CrossRefGoogle Scholar
  249. 249.
    Liu C, Kim K, Baek J et al (2009) Improved field emission properties of double-walled carbon nanotubes decorated with Ru nanoparticles. Carbon 47:1158–1164CrossRefGoogle Scholar
  250. 250.
    Zhang J, Yang C, Wang Y et al (2006) Improvement of the field emission of carbon nanotubes by hafnium coating and annealing. Nanotechnology 17:257CrossRefGoogle Scholar
  251. 251.
    Wei W, Jiang K, Wei Y et al (2006) LaB6 tip-modified multiwalled carbon nanotube as high quality field emission electron source. Appl Phys Lett 89:203112–203112CrossRefGoogle Scholar
  252. 252.
    Sridhar S, Tiwary C, Vinod S et al (2014) Field emission with ultralow turn on voltage from metal decorated carbon nanotubes. ACS Nano 8:7763–7770CrossRefGoogle Scholar
  253. 253.
    Pandey A, Prasad A, Moscatello J et al (2012) Very stable electron field emission from strontium titanate coated carbon nanotube matrices with low emission thresholds. ACS Nano 7:117–125CrossRefGoogle Scholar
  254. 254.
    Warule S, Chaudhari N, Shisode R et al (2015) Decoration of CdS nanoparticles on 3D self-assembled ZnO nanorods: a single-step process with enhanced field emission behaviour. CrystEngComm 17:140–148CrossRefGoogle Scholar
  255. 255.
    Li F, Zhang L, Wu S et al (2015) Au nanoparticles decorated ZnO nanoarrays with enhanced electron field emission and optical absorption properties. Mater Lett 145:209–211CrossRefGoogle Scholar
  256. 256.
    Zuo Y, Ren Y, Wang Z et al (2013) Enhanced field emission and hysteresis characteristics of aligned carbon nanotubes with Ti decoration. Org Electron 14:2306–2314CrossRefGoogle Scholar
  257. 257.
    Li H, Green J, Jiao J (2008) Bismuth triiodide sheet-assisted growth and enhanced field emission properties of cadmium sulfide nanowire array attached to a flexible CdS film. J Phys Chem C 112:15140–15143CrossRefGoogle Scholar
  258. 258.
    Zeng H, Xu X, Bando Y et al (2009) Template deformation-tailored ZnO nanorod/nanowire arrays: full growth control and optimization of field-emission. Adv Funct Mater 19:3165–3172CrossRefGoogle Scholar
  259. 259.
    Zhao Q, Zhang H, Zhu Y et al (2005) Morphological effects on the field emission of ZnO nanorod arrays. Appl Phys Lett 86:203115-203115-3Google Scholar
  260. 260.
    Xu J, Hou G, Li H et al (2013) Fabrication of vertically aligned single-crystalline lanthanum hexaboride nanowire arrays and investigation of their field emission. NPG Asia Mater 5:e53CrossRefGoogle Scholar
  261. 261.
    Niu J, Wang J, Xu N (2008) Field emission property of aligned and random SiC nanowires arrays synthesized by a simple vapor-solid reaction. Solid State Sci 10:618–621CrossRefGoogle Scholar
  262. 262.
    Wang Q, Corrigan T, Dai J et al (1997) Field emission from nanotube bundle emitters at low fields. Appl Phys Lett 70:3308–3310CrossRefGoogle Scholar
  263. 263.
    Liao L, Zhang W, Lu H et al (2007) Investigation of the temperature dependence of the field emission of ZnO nanorods. Nanotechnology 18:225703CrossRefGoogle Scholar
  264. 264.
    Zhang Q, Xu J, Zhao Y et al (2009) Fabrication of large-scale single-crystalline PrB6 nanorods and their temperature-dependent electron field emission. Adv Funct Mater 19:742–747CrossRefGoogle Scholar
  265. 265.
    Banerjee D, Jo S, Ren Z (2004) Enhanced field emission of ZnO nanowires. Adv Mater 16:2028–2032CrossRefGoogle Scholar
  266. 266.
    Nilsson L, Groening O, Emmenegger C et al (2009) Scanning field emission from patterned carbon nanotube films. Appl Phys Lett 76:2071–2073CrossRefGoogle Scholar
  267. 267.
    Yi W, Jeong T, Yu S et al (2002) Field-emission characteristics from wide-bandgap material-coated carbon nanotubes. Adv Mater 14:1464–1468CrossRefGoogle Scholar
  268. 268.
    Lo H, Das D, Hwang J et al (2003) SiC-capped nanotip arrays for field emission with ultralow turn-on field. Appl Phys Lett 83:1420–1422CrossRefGoogle Scholar
  269. 269.
    Hou K, Outlaw R, Wang S et al (2008) Uniform and enhanced field emission from chromium oxide coated carbon nanosheets. Appl Phys Lett 92:133112CrossRefGoogle Scholar
  270. 270.
    Late D, More M, Joag D et al (2006) Field emission studies on well adhered pulsed laser deposited LaB6 on W tip. Appl Phys Lett 89:123510CrossRefGoogle Scholar
  271. 271.
    Cui H, Gong L, Sun Y et al (2011) Direct synthesis of novel SiC@ Al2O3 core-shell epitaxial nanowires and field emission characteristics. CrystEngComm 13:1416–1421CrossRefGoogle Scholar
  272. 272.
    Ryu Y, Tak Y, Yong K (2005) Direct growth of core-shell SiC/SiO2 nanowires and field emission characteristics. Nanotechnology 16:S370CrossRefGoogle Scholar
  273. 273.
    Cao L, Jiang H, Song H et al (2009) SiC/SiO2 core-shell nanowires with different shapes: synthesis and field emission properties. Solid State Commun 150:794–798CrossRefGoogle Scholar
  274. 274.
    Zhang M, Li Z, Zhao J et al (2014) Facile synthesis of novel one-dimensional hierarchical SiC@SiO2@c-C nanostructures and their field emission properties. RSC Adv 4:55224–55228CrossRefGoogle Scholar
  275. 275.
    Jeong H, Jeong H, Kim H et al (2013) Self-organized graphene nanosheets with corrugated, ordered tip structures for high-performance flexible field emission. Small 9:2182–2188CrossRefGoogle Scholar
  276. 276.
    Ghosh P, Yusop M, Satoh S et al (2009) Transparent and flexible field electron emitters based on the conical nanocarbon structures. J Am Chem Soc 132:4034–4035CrossRefGoogle Scholar
  277. 277.
    Jung Y, Kar S, Talapatra S et al (2009) Aligned carbon nanotube-polymer hybrid architectures for diverse flexible electronic applications. Nano Lett 6:413–418CrossRefGoogle Scholar
  278. 278.
    Pradhan D, Kumar M, Ando Y et al (2008) One-dimensional and two-dimensional ZnO nanostructured materials on a plastic substrate and their field emission properties. J Phys Chem C 112:7093–7096CrossRefGoogle Scholar
  279. 279.
    Yoon B, Hong E, Jee S et al (2005) Fabrication of flexible carbon nanotube field emitter arrays by direct microwave irradiation on organic polymer substrate. J Am Chem Soc 127:8234–8235CrossRefGoogle Scholar
  280. 280.
    Liu N, Fang G, Zeng W et al (2012) Enhanced field emission from three-dimensional patterned carbon nanotube arrays grown on flexible carbon cloth. J Mater Chem 22:3478–3484CrossRefGoogle Scholar
  281. 281.
    Maiti U, Maiti S, Thapa R et al (2009) Flexible cold cathode with ultralow threshold field designed through wet chemical route. Nanotechnology 21:505701CrossRefGoogle Scholar
  282. 282.
    Hallam T, Cole M, Milne W et al (2014) Field emission characteristics of contact printed graphene fins. Small 10:95–99CrossRefGoogle Scholar
  283. 283.
    Hsu C, Su C, Hsueh T et al (2014) Enhanced field emission of Al-doped ZnO nanowires grown on a flexible polyimide substrate with UV exposure. RSC Adv 4:3043–3046Google Scholar
  284. 284.
    Das S, Saha S, Sen D et al (2009) Highly oriented cupric oxide nanoknife arrays on flexible carbon fabric as high performing cold cathode emitter. J Mater Chem C 2:1321–1330CrossRefGoogle Scholar
  285. 285.
    Zhang X, Gong L, Liu K et al (2009) Tungsten oxide nanowires grown on carbon cloth as a flexible cold cathode. Adv Mater 22:5292–5296CrossRefGoogle Scholar
  286. 286.
    Lyth S, Hatton R, Silva S (2007) Efficient field emission from Li-salt functionalized multiwall carbon nanotubes on flexible substrates. Appl Phys Lett 90:013120-013120-3Google Scholar
  287. 287.
    Kim K, Zhao Y, Jang H et al (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710CrossRefGoogle Scholar
  288. 288.
    Choi W, Shin K, Lee H et al (2011) Selective growth of ZnO nanorods on SiO2/Si substrates using a graphene buffer layer. Nano Res 4:440–447CrossRefGoogle Scholar
  289. 289.
    Arif M, Heo K, Lee B et al (2011) Metallic nanowire-graphene hybrid nanostructures for highly flexible field emission devices. Nanotechnology 22:355709CrossRefGoogle Scholar
  290. 290.
    Nguyen D, Tai N, Chen S et al (2012) Controlled growth of carbon nanotube/graphene hybrid materials for flexible and transparent conductors and electron field emitters. Nanoscale 4:632–638CrossRefGoogle Scholar
  291. 291.
    Lahiri I, Verma V, Choi W (2011) An all-graphene based transparent and flexible field emission device. Carbon 49:1614–1619CrossRefGoogle Scholar
  292. 292.
    Lee D, Lee J, Lee W et al (2011) Flexible field emission of nitrogen-doped carbon nanotubes/reduced graphene hybrid films. Small 7:95–100CrossRefGoogle Scholar
  293. 293.
    Lee D, Kim J, Han T et al (2010) Versatile carbon hybrid films composed of vertical carbon nanotubes grown on mechanically compliant graphene films. Adv Mater 22:1247–1252CrossRefGoogle Scholar
  294. 294.
    Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854CrossRefGoogle Scholar
  295. 295.
    Bastakoti B, Oveisi H, Hu C et al (2013) Mesoporous carbon incorporated with In2O3 nanoparticles as high-performance supercapacitors. Eur J Inorg Chem 7:1109–1112CrossRefGoogle Scholar
  296. 296.
    Wang D, Li F, Liu M et al (2008) 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew Chem Int Ed 120:379–382CrossRefGoogle Scholar
  297. 297.
    Salunkhe R, Lee Y, Chang K et al (2014) Nanoarchitectured graphene-based supercapacitors for next-generation energy-storage applications. Chem Eur J 20:13838–13852CrossRefGoogle Scholar
  298. 298.
    Wei T, Chen C, Chien H et al (2010) A cost-effective supercapacitor material of ultrahigh specific capacitances: spinel nickel cobaltite aerogels from an epoxide-driven sol-gel process. Adv Mater 22:347–351CrossRefGoogle Scholar
  299. 299.
    Faraji S, Ani F (2015) The development supercapacitor from activated carbon by electroless plating-a review. Renew Sust Energ Rev 42:823–834CrossRefGoogle Scholar
  300. 300.
    Mujawar S, Ambade S, Battumur T et al (2011) Electropolymerization of polyaniline on titanium oxide nanotubes for supercapacitor application. Electrochim Acta 56:4462–4466CrossRefGoogle Scholar
  301. 301.
    Xiang C, Li M, Zhi M et al (2012) Reduced graphene oxide/titanium dioxide composites for supercapacitor electrodes: shape and coupling effects. J Mater Chem 22:19161–19167CrossRefGoogle Scholar
  302. 302.
    Pang M, Long G, Jiang S et al (2015) One pot low-temperature growth of hierarchical δ-MnO2 nanosheets on nickel foam for supercapacitor applications. Electrochim Acta 161:297–304CrossRefGoogle Scholar
  303. 303.
    Wang X, Sumboja A, Lin M et al (2012) Enhancing electrochemical reaction sites in nickel-cobalt layered double hydroxides on zinc tin oxide nanowires: a hybrid material for an asymmetric supercapacitor device. Nanoscale 4:7266–7272CrossRefGoogle Scholar
  304. 304.
    Huang H, Chang K, Suzuki N et al (2013) Evaporation-induced coating of hydrous ruthenium oxide on mesoporous silica nanoparticles to develop high-performance supercapacitors. Small 9:2520–2526CrossRefGoogle Scholar
  305. 305.
    Chen H, Hu L, Chen M et al (2014) Nickel–cobalt layered double hydroxide nanosheets for high-performance supercapacitor electrode materials. Adv Funct Mater 24:934–942CrossRefGoogle Scholar
  306. 306.
    Acerce M, Voiry D, Chhowalla M (2015) Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat Nanotechnol 10:313–318CrossRefGoogle Scholar
  307. 307.
    Xie K, Qin X, Wang X et al (2012) Carbon nanocages as supercapacitor electrode materials. Adv Mater 24:347–352CrossRefGoogle Scholar
  308. 308.
    Zhang L, Zhang F, Yang X et al (2013) Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors. Sci Rep 3:1408CrossRefGoogle Scholar
  309. 309.
    Alper J, Kim M, Vincent M et al (2013) Silicon carbide nanowires as highly robust electrodes for micro-supercapacitors. J Power Sources 230:298–302CrossRefGoogle Scholar
  310. 310.
    Alper J, Wang S, Rossi F et al (2014) Selective Ultrathin carbon sheath on porous silicon nanowires: materials for extremely high energy density planar micro-supercapacitors. Nano Lett 14:1843–1847CrossRefGoogle Scholar
  311. 311.
    Beidaghi M, Gogotsi Y (2014) Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors. Energy Environ Sci 7:867–884CrossRefGoogle Scholar
  312. 312.
    Xia X, Zhang Y, Chao D et al (2015) Tubular TiC fibre nanostructures as supercapacitor electrode materials with stable cycling life and wide-temperature performance. Energy Environ Sci 8:1559–1568CrossRefGoogle Scholar
  313. 313.
    Xia X, Chao D, Fan Z et al (2014) A new type of porous graphite foams and their integrated composites with oxide/polymer core/shell nanowires for supercapacitors: structural design, fabrication, and full supercapacitor demonstrations. Nano Lett 14:1651–1658CrossRefGoogle Scholar
  314. 314.
    Yu M, Wang W, Li C et al (2014) Scalable self-growth of Ni@NiO core-shell electrode with ultrahigh capacitance and super-long cyclic stability for supercapacitors. NPG Asia Mater 6:e129CrossRefGoogle Scholar
  315. 315.
    Yu Z, Tetard L, Zhai L et al (2015) Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ Sci 8:702–730CrossRefGoogle Scholar
  316. 316.
    Zhi M, Xiang C, Li J et al (2013) Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review. Nanoscale 5:72–88CrossRefGoogle Scholar
  317. 317.
    Xiang C, Li M, Zhi M et al (2013) A reduced graphene oxide/Co3O4 composite for supercapacitor electrode. J Power Sources 226:65–70CrossRefGoogle Scholar
  318. 318.
    Wu Z, Zhou G, Yin L et al (2012) Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 1:107–131CrossRefGoogle Scholar
  319. 319.
    Salunkhe R, Lin J, Malgras V et al (2015) Large-scale synthesis of coaxial carbon nanotube/Ni(OH)2 composites for asymmetric supercapacitor application. Nano Energy 11:211–218CrossRefGoogle Scholar
  320. 320.
    Zhao J, Li Z, Zhang M et al (2016) Direct growth of ultrathin NiCo2O4/NiO nanosheets on SiC nanowires as a free-standing advanced electrode for high-performance asymmetric supercapacitors. ACS Sustain Chem Eng 4:3598–3608CrossRefGoogle Scholar
  321. 321.
    Li Y, Yu Z, Meng J et al (2013) Enhancing the activity of a SiC-TiO2 composite catalyst for photo-stimulated catalytic water splitting. Int J Hydrogen Energ 38:3898–3904CrossRefGoogle Scholar
  322. 322.
    Hao J, Wang Y, Tong X et al (2013) SiC nanomaterials with different morphologies for photocatalytic hydrogen production under visible light irradiation. Catal Today 212:220–224CrossRefGoogle Scholar
  323. 323.
    Yang J, Zeng X, Chen L et al (2013) Photocatalytic water splitting to hydrogen production of reduced graphene oxide/SiC under visible light. Appl Phys Lett 102:083101CrossRefGoogle Scholar
  324. 324.
    Wang Y, Guo X, Dong L et al (2013) Enhanced photocatalytic performance of chemically bonded SiC-graphene composites for visible-light-driven overall water splitting. Int J Hydrog Energy 38:12733–12738CrossRefGoogle Scholar
  325. 325.
    Zhou W, Yan L, Wang Y et al (2006) SiC nanowires: a photocatalytic nanomaterial. Appl Phys Lett 2006(89):013105CrossRefGoogle Scholar
  326. 326.
    Pham-Huu C, Keller N, Ehret G et al (2001) The first preparation of silicon carbide nanotubes by shape memory synthesis and their catalytic potential. J Catal 200:400–410CrossRefGoogle Scholar
  327. 327.
    Ouyang H, Huang J, Zeng X et al (2014) Visible-light photocatalytic activity of SiC hollow spheres prepared by a vapor-solid reaction of carbon spheres and silicon monoxide. Ceram Int 40:2619–2625CrossRefGoogle Scholar
  328. 328.
    Chen Z, Bing F, Liu Q et al (2012) Novel Z-scheme visible-light-driven Ag3PO4/Ag/SiC photocatalysts with enhanced photocatalytic activity. J Mater Chem A 3:4652–4658CrossRefGoogle Scholar
  329. 329.
    Kim T, Gomez-Solis C, Moctezuma E et al (2014) Sonochemical synthesis of Fe-TiO2-SiC composite for degradation of rhodamine B under solar simulator. Res Chem Intermed 40:1595–1605CrossRefGoogle Scholar
  330. 330.
    Wang H, Zhang L, Chen Z et al (2014) Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem Soc Rev 43:5234–5244CrossRefGoogle Scholar
  331. 331.
    Jing D, Guo L, Zhao L et al (2010) Efficient solar hydrogen production by photocatalytic water splitting: from fundamental study to pilot demonstration. Int J Hydrogen Energ 35:7087–7097CrossRefGoogle Scholar
  332. 332.
    van Dorp D, Hijnen N, Di Vece M et al (2009) SiC: a photocathode for water splitting and hydrogen storage. Angew Chem Int Ed 48:6085–6088CrossRefGoogle Scholar
  333. 333.
    Wang M, Chen J, Liao X et al (2014) Highly efficient photocatalytic hydrogen production of platinum nanoparticle-decorated SiC nanowires under simulated sunlight irradiation. Int J Hydrogen Energ 39:14581–14587CrossRefGoogle Scholar
  334. 334.
    Zhou X, Li X, Gao Q et al (2015) Metal-free carbon nanotube-SiC nanowire heterostructures with enhanced photocatalytic H2 evolution under visible light irradiation. Cat Sci Technol 5:2798–2806CrossRefGoogle Scholar
  335. 335.
    Li X, Wen J, Low J et al (2014) Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel. Sci China Mater 57:70–100CrossRefGoogle Scholar
  336. 336.
    Gondal M, Ali M, Chang X et al (2012) Pulsed laser-induced photocatalytic reduction of greenhouse gas CO2 into methanol: a value-added hydrocarbon product over SiC. J Environ Sci Heal A 47:1571–1576CrossRefGoogle Scholar
  337. 337.
    Gondal M, Ali M, Dastageer M et al (2013) CO2 conversion into methanol using granular silicon carbide (α6H-SiC): a comparative evaluation of 355-nm laser and xenon mercury broad band radiation sources. Catal Lett 143:108–117CrossRefGoogle Scholar
  338. 338.
    Zhou W, Fang F, Hou Z et al (2012) Field-effect transistor based on β-SiC nanowire. IEEE Electr Device L 27:463–465CrossRefGoogle Scholar
  339. 339.
    Seong H, Choi H, Lee S et al (2004) Optical and electrical transport properties in silicon carbide nanowires. Appl Phys Lett 85:1256–1258CrossRefGoogle Scholar
  340. 340.
    Rogdakis K, Lee S, Bescond M et al (2008) 3C-silicon carbide nanowire FET: an experimental and theoretical approach. IEEE T Electron Dev 55:1970–1976CrossRefGoogle Scholar
  341. 341.
    Choi J, Bano E, Latu-Romain L et al (2015) Improved ohmic contacts for SiC nanowire devices with nickel-silicide. J Alloys Compd 650:853–857CrossRefGoogle Scholar
  342. 342.
    Rogdakis K, Bano E, Montes L et al (2011) Rectifying source and drain contacts for effective carrier transport modulation of extremely doped SiC nanowire FETs. IEEE T Nanotechnol 10:980–984CrossRefGoogle Scholar
  343. 343.
    Zhou W, Liu X, Zhang Y (2006) Simple approach to β-SiC nanowires: synthesis, optical, and electrical properties. Appl Phys Lett 89: 223124–223124-3CrossRefGoogle Scholar
  344. 344.
    Rogdakis K, Poli S, Bano E et al (2009) Phonon- and surface-roughness-limited mobility of gate-all-around 3C-SiC and Si nanowire FETs. Nanotechnology 20:295202CrossRefGoogle Scholar
  345. 345.
    Konstantinos R, Marc B, Edwige B et al (2007) Theoretical comparison of 3C-SiC and Si nanowire FETs in ballistic and diffusive regimes. Nanotechnology 18:475715CrossRefGoogle Scholar
  346. 346.
    Liu E, Jain N, Varahramyan K et al (2010) Role of metal-semiconductor contact in nanowire field-effect transistors. IEEE T Nanotechnol 9:237–242CrossRefGoogle Scholar
  347. 347.
    Tang W, Dayeh S, Picraux S et al (2012) Ultrashort channel silicon nanowire transistors with nickel silicide source/drain contacts. Nano Lett 12:3979–3985CrossRefGoogle Scholar
  348. 348.
    Lin Y, Lu K, Wu W et al (2008) Single crystalline PtSi nanowires, PtSi/Si/PtSi nanowire heterostructures, and nanodevices. Nano Lett 8:913–918CrossRefGoogle Scholar
  349. 349.
    Eriksson J, Roccaforte F, Giannazzo F et al (2009) Improved Ni/3C-SiC contacts by effective contact area and conductivity increases at the nanoscale. Appl Phys Lett 94:112104CrossRefGoogle Scholar
  350. 350.
    Jang C, Kim T, Lee S et al (2008) Low-resistance ohmic contacts to SiC nanowires and their applications to field-effect transistors. Nanotechnology 19:345203CrossRefGoogle Scholar
  351. 351.
    Eaton W, Smith J (1997) Micromachined pressure sensors: review and recent developments. Smart Mater Struct 6:530–539CrossRefGoogle Scholar
  352. 352.
    Guckel H (1991) Surface micromachined pressure transducers. Sensor Actuat A Phys 28:133–146CrossRefGoogle Scholar
  353. 353.
    Dao D, Nakamura K, Bui T et al (2010) Micro/nano-mechanical sensors and actuators based on SOI-MEMS technology. Adv Nat Sci Nanosci Nanotechnol 1:013001CrossRefGoogle Scholar
  354. 354.
    Spearing S (2000) Materials issues in microellctromechanical systens (MEMS). Acta Mater 48:179–196CrossRefGoogle Scholar
  355. 355.
    Willander M, Friesel M, Wahab Q et al (2006) Silicon carbide and diamond for high temperature device applications. J Mater Sci Mater Electron 17:1–25CrossRefGoogle Scholar
  356. 356.
    Kroetz G, Eickhoff M, Moeller H (1999) Silicon compatible materials for harsh environment sensors. Sens Actuators A Phys 74:182–189CrossRefGoogle Scholar
  357. 357.
    Fahrner W, Job R, Werner M (2001) Sensors and smart electronics in harsh environment applications. Microsyst Technol 7:138–144CrossRefGoogle Scholar
  358. 358.
    Werner M (1999) High-temperature sensors based on SiC and diamond technology. Sensors Update 5:141–190CrossRefGoogle Scholar
  359. 359.
    Werner M, Fahrner R (2001) Review on materials, microsensors, systems, and devices for high-temperature and harsh-environment applications. IEEE Trans Ind Electron 48:249–257CrossRefGoogle Scholar
  360. 360.
    Shor J, Goldstein D, Kurtz A (1993) Characterization of n-Type β-Sic as a piezoresistor. IEEE T Electron Dev 40:1093CrossRefGoogle Scholar
  361. 361.
    Toriyama T, Sugiyama S (2002) Analysis of piezoresistance in n-type β-SiC for high-temperature mechanical sensors. Appl Phys Lett 81:2797CrossRefGoogle Scholar
  362. 362.
    Phan H, Dao D, Nakamura K et al (2015) The piezoresistive effect of SiC for MEMS sensors at high temperatures: a review. J Microelectromech Syst 24:1663–1677CrossRefGoogle Scholar
  363. 363.
    Alvin Barlian A, Park W, Mallon J et al (2009) Review:semiconductor piezoresistance for microsystems. Proc IEEE 97:513–552CrossRefGoogle Scholar
  364. 364.
    Wu R, Zhou K, Yue C et al (2015) Recent progress in synthesis, properties and potential applications of SiC nanomaterials. Prog Mater Sci 72:1–60CrossRefGoogle Scholar
  365. 365.
    Lugstein A, Steinmair M, Steiger A et al (2010) Anomalous piezoresistance effect in ultrastrained silicon nanowires. Nano Lett 10:3204–3208CrossRefGoogle Scholar
  366. 366.
    He R, Yang P (2006) Giant piezoresistance effect in silicon nanowires. Nat Nanotechnol 1:42–46CrossRefGoogle Scholar
  367. 367.
    Nakamura K, Toriyama T, Sugiyama S (2011) First-principles simulation on piezoresistivity in alpha and beta silicon carbide nanosheets. Jpn J Appl Phys 50:06GE05CrossRefGoogle Scholar
  368. 368.
    Rolnick H (1930) Tension coefficient of resistance of metals. Phys Rev 36:506–512CrossRefGoogle Scholar
  369. 369.
    Smith C (1954) Piezoresistance effect in germanium and silicon. Phys Rev 94:42–49CrossRefGoogle Scholar
  370. 370.
    Herring C (1955) Transport properties of a many-valley semiconductor. Bell Syst Tech J 34:237–290CrossRefGoogle Scholar
  371. 371.
    Herring C, Vogt E (1956) Transport and deformation-potential theory for many-valley semiconductors with anisotropic scattering. Phys Rev 101:944–961CrossRefGoogle Scholar
  372. 372.
    Long D (1961) Stress dependence of the piezoresistance effect. J Appl Phys 32:2050CrossRefGoogle Scholar
  373. 373.
    Bardeen J, Shockley W (1950) Deformation potentials and mobilities in non-polar crystals. Phys Rev 80:72–80CrossRefGoogle Scholar
  374. 374.
    Shao R, Zheng K, Zhang Y et al (2012) Piezoresistance behaviors of ultra-strained SiC nanowires. Appl Phys Lett 101:233109CrossRefGoogle Scholar
  375. 375.
    Zeng H, Li T, Bartenwerfer M et al (2013) In situ SEM electromechanical characterization of nanowire using an electrostatic tensile device. J Phys D Appl Phys 46:305501CrossRefGoogle Scholar
  376. 376.
    Gao F, Zheng J, Wang M et al (2012) Piezoresistance behaviors of p-type 6H-SiC nanowires. Chem Commun 47:11993–11995CrossRefGoogle Scholar
  377. 377.
    Bi J, Wei G, Wang L et al (2013) Highly sensitive piezoresistance behaviors of n-type 3C-SiC nanowires. J Mater Chem C 1:4514–4517CrossRefGoogle Scholar
  378. 378.
    Bi J, Wei G, Shang M et al (2014) Piezoresistance in Si3N4 nanobelts: toward highly sensitive and reliable pressure sensors. J Mater Chem C 2:10062–10066CrossRefGoogle Scholar
  379. 379.
    Milne J, Rowe A, Arscott S et al (2010) Giant piezoresistance effects in silicon nanowires and microwires. Phys Rev Lett 105:226802CrossRefGoogle Scholar
  380. 380.
    Phan H, Viet Dao D, Tanner P et al (2014) Fundamental piezoresistive coefficients of p-type single crystalline 3C-SiC. Appl Phys Lett 104:111905CrossRefGoogle Scholar
  381. 381.
    Phan H, Dao D, Tanner P et al (2014) Thickness dependence of the piezoresistive effect in p-type single crystalline 3C-SiC nanothin films. J Mater Chem C 2:7176–7179CrossRefGoogle Scholar
  382. 382.
    Alivisators A (1996) Semiconductor clusters, nanocrystala, and quantum Dots. Science 271:933–937CrossRefGoogle Scholar
  383. 383.
    Wu W, Wang Z (2016) Piezotronics and piezo-phototronics for adaptive electronics and optoelectronics. Nat Rev Mater 1:16031CrossRefGoogle Scholar
  384. 384.
    Li H, He Z, Chu Y et al (2013) Large-scale synthesis, growth mechanism, and photoluminescence of 3C-SiC nanobelts. Mater Lett 109:275–278CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Shanliang Chen
    • 1
  • Weijun Li
    • 1
  • Xiaoxiao Li
    • 1
  • Weiyou Yang
    • 1
    Email author
  1. 1.Institute of MaterialsNingbo University of TechnologyNingboChina

Personalised recommendations