Advertisement

One-Dimensional Nanowire-Based Heterostructures for Gas Sensors

  • Jun ZhangEmail author
  • Xianghong Liu
Chapter
Part of the Nanostructure Science and Technology book series (NST)

Abstract

One-dimensional (1D) nanostructured materials hold great potential for application in electronic devices owing to their structural advantages such as high surface-to-volume ratio, high surface sensitivity, high carrier mobility and ease for device integration. For gas sensing devices, the 1D nanowires have drawn considerable interests and the sensing performances of 1D nanowires could be further improved through surface functionalization. To this end various nanoparticles of metals or metal oxides have been employed as a sensitizer for 1D nanowires to achieve better detection performances. In this chapter, we presented a comprehensive overview on the recent progress with respect to the rational design and growth of 1D hetero-nanowires to make efficient gas sensors. The advantageous aspects of 1D nanowires for application as the sensing elements, as well as the sensing mechanism, are first discussed. We then place the focus on highlighting the sensing capability of nanowire heterostructures, i.e., metal nanoparticle/metal oxide nanowires and binary metal oxide (p-n and n-n) nanowires. Finally, we give some personal perspectives on the future developments in this area.

Keywords

Nanowires Gas sensors Heterostructures Metal oxides Nanoparticle sensitizers 

References

  1. 1.
    Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H (2000) Nanotube molecular wires as chemical sensors. Science 287(5453):622–625CrossRefGoogle Scholar
  2. 2.
    Favier F, Walter EC, Zach MP, Benter T, Penner RM (2001) Hydrogen sensors and switches from electrodeposited palladium mesowire arrays. Science 293(5538):2227–2231CrossRefGoogle Scholar
  3. 3.
    Cui Y, Wei Q, Park H, Lieber CM (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293(5533):1289–1292CrossRefGoogle Scholar
  4. 4.
    Law M, Kind H, Messer B, Kim F, Yang PD (2002) Photochemical sensing of NO2 with SnO2 nanoribbon nanosensors at room temperature. Angew Chem Int Ed 41(13):2405–2408CrossRefGoogle Scholar
  5. 5.
    Kolmakov A, Zhang YX, Cheng GS, Moskovits M (2003) Detection of CO and O2 using tin oxide nanowire sensors. Adv Mater 15(12):997–1000CrossRefGoogle Scholar
  6. 6.
    Shen G, Chen P-C, Ryu K, Zhou C (2009) Devices and chemical sensing applications of metal oxide nanowires. J Mater Chem 19(7):828–839CrossRefGoogle Scholar
  7. 7.
    Kolmakov A, Moskovits M (2004) Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures. Annu Rev Mater Res 34:151–180CrossRefGoogle Scholar
  8. 8.
    Ramgir NS, Yang Y, Zacharias M (2010) Nanowire-based sensors. Small 6(16):1705–1722CrossRefGoogle Scholar
  9. 9.
    Huang X-J, Choi Y-K (2007) Chemical sensors based on nanostructured materials. Sensors Actuators B Chem 122(2):659–671CrossRefGoogle Scholar
  10. 10.
    Kim H-J, Lee J-H (2014) Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview. Sensors Actuators B Chem 192:607–627CrossRefGoogle Scholar
  11. 11.
    Comini E, Faglia G, Sberveglieri G, Pan ZW, Wang ZL (2002) Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl Phys Lett 81(10):1869–1871CrossRefGoogle Scholar
  12. 12.
    Kolmakov A, Zhang Y, Cheng G, Moskovits M (2003) Detection of CO and O2 using tin oxide nanowire sensors. Adv Mater 15(12):997–1000CrossRefGoogle Scholar
  13. 13.
    Li C, Zhang D, Liu X, Han S, Tang T, Han J, Zhou C (2003) In2O3 nanowires as chemical sensors. Appl Phys Lett 82(10):1613–1615CrossRefGoogle Scholar
  14. 14.
    Wan Q, Li QH, Chen YJ, Wang TH, He XL, Li JP, Lin CL (2004) Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl Phys Lett 84(18):3654–3656CrossRefGoogle Scholar
  15. 15.
    Kolmakov A, Klenov DO, Lilach Y, Stemmer S, Moskovits M (2005) Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. Nano Lett 5(4):667–673CrossRefGoogle Scholar
  16. 16.
    Kim SS, Park JY, Choi S-W, Na HG, Yang JC, Kim HW (2011) Enhanced NO2 sensing characteristics of Pd-functionalized networked In2O3 nanowires. J Alloys Compd 509(37):9171–9177CrossRefGoogle Scholar
  17. 17.
    Na CW, Woo H-S, Kim I-D, Lee J-H (2011) Selective detection of NO2 and C2H5OH using a Co3O4-decorated ZnO nanowire network sensor. Chem Commun 47(18):5148–5150CrossRefGoogle Scholar
  18. 18.
    Katoch A, Choi S-W, Sun G-J, Kim SS (2013) Pt nanoparticle-decorated ZnO nanowire sensors for detecting benzene at room temperature. J Nanosci Nanotechnol 13(10):7097–7099CrossRefGoogle Scholar
  19. 19.
    Kwak C-H, Woo H-S, Lee J-H (2014) Selective trimethylamine sensors using Cr2O3-decorated SnO2 nanowires. Sensors Actuators B Chem 204:231–238CrossRefGoogle Scholar
  20. 20.
    Park S, Park S, Jung J, Hong T, Lee S, Kim HW, Lee C (2014) H2S gas sensing, properties of CuO-functionalized WO3 nanowires. Ceram Int 40(7):11051–11056CrossRefGoogle Scholar
  21. 21.
    Zhang Y, Xiang Q, Xu JQ, Xu PC, Pan QY, Li F (2009) Self-assemblies of Pd nanoparticles on the surfaces of single crystal ZnO nanowires for chemical sensors with enhanced performances. J Mater Chem 19(27):4701–4706CrossRefGoogle Scholar
  22. 22.
    Franke ME, Koplin TJ, Simon U (2006) Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter? Small 2(1):36–50CrossRefGoogle Scholar
  23. 23.
    Hwang I-S, Kim S-J, Choi J-K, Choi J, Ji H, Kim G-T, Cao G, Lee J-H (2010) Synthesis and gas sensing characteristics of highly crystalline ZnO–SnO2 core–shell nanowires. Sensors Actuators B Chem 148(2):595–600CrossRefGoogle Scholar
  24. 24.
    Singh N, Ponzoni A, Gupta RK, Lee PS, Comini E (2011) Synthesis of In2O3–ZnO core–shell nanowires and their application in gas sensing. Sensors Actuators B Chem 160(1):1346–1351CrossRefGoogle Scholar
  25. 25.
    Park S, An S, Mun Y, Lee C (2013) UV-enhanced NO2 gas sensing properties of SnO2-Core/ZnO-Shell nanowires at room temperature. Acs Appl Mater Inter 5(10):4285–4292CrossRefGoogle Scholar
  26. 26.
    Kim J-H, Katoch A, Kim SS (2016) Optimum shell thickness and underlying sensing mechanism in p-n CuO-ZnO core-shell nanowires. Sensors Actuators B Chem 222:249–256CrossRefGoogle Scholar
  27. 27.
    Wu JM (2010) A room temperature ethanol sensor made from p-type Sb-doped SnO2 nanowires. Nanotechnology 21(23):235501CrossRefGoogle Scholar
  28. 28.
    Ramgir NS, Mulla IS, Vijayamohanan KP (2005) A room temperature nitric oxide sensor actualized from Ru-doped SnO2 nanowires. Sensors Actuators B Chem 107(2):708–715CrossRefGoogle Scholar
  29. 29.
    Wan Q, Wang TH (2005) Single-crystalline Sb-doped SnO2 nanowires: synthesis and gas sensor application. Chem Commun 30:3841–3843CrossRefGoogle Scholar
  30. 30.
    Penner RM (2012) Chemical sensing with nanowires. In: Cooks RG, Yeung ES (eds) Annual review of analytical chemistry, vol 5, pp 461–485.  https://doi.org/10.1146/annurev-anchem-062011-143007 CrossRefGoogle Scholar
  31. 31.
    Chen P-C, Shen G, Zhou C (2008) Chemical sensors and electronic noses based on 1-D metal oxide nanostructures. IEEE T Nanotechnol 7(6):668–682CrossRefGoogle Scholar
  32. 32.
    Ponzoni A, Zappa D, Comini E, Sberveglieri V, Faglia G, Sberveglieri G (2012) Metal oxide nanowire gas sensors: application of Conductometric and surface ionization architectures. In: Del Rosso R, Pierucci S, Klemes JJ (eds) Nose 2012: 3rd international conference on environmental odour monitoring and control. Chemical engineering transactions 30:31–36. doi: https://doi.org/10.3303/cet1230006
  33. 33.
    Ramgir N, Datta N, Kaur M, Kailasaganapathi S, Debnath AK, Aswal DK, Gupta SK (2013) Metal oxide nanowires for chemiresistive gas sensors: issues, challenges and prospects. Colloid Surface A 439:101–116CrossRefGoogle Scholar
  34. 34.
    Sawicka KM, Prasad AK, Gouma PI (2005) Metal oxide nanowires for use in chemical sensing applications. Sens Lett 3(1):31–35CrossRefGoogle Scholar
  35. 35.
    Fang X, Hu L, Ye C, Zhang L (2010) One-dimensional inorganic semiconductor nanostructures: a new carrier for nanosensors. Pure Appl Chem 82(11):2185–2198CrossRefGoogle Scholar
  36. 36.
    Comini E, Baratto C, Concina I, Faglia G, Falasconi M, Ferroni M, Galstyan V, Gobbi E, Ponzoni A, Vomiero A, Zappa D, Sberveglieri V, Sberveglieri G (2013) Metal oxide nanoscience and nanotechnology for chemical sensors. Sensors Actuators B Chem 179:3–20CrossRefGoogle Scholar
  37. 37.
    Zhai T, Yao J (2012) One-dimensional nanostructures: principles and applications. Wiley, HobokenCrossRefGoogle Scholar
  38. 38.
    Chen X, Wong CK, Yuan CA, Zhang G (2013) Nanowire-based gas sensors. Sensors Actuators B Chem 177:178–195CrossRefGoogle Scholar
  39. 39.
    Sysoev VV, Schneider T, Goschnick J, Kiselev I, Habicht W, Hahn H, Strelcov E, Kolmakov A (2009) Percolating SnO2 nanowire network as a stable gas sensor: direct comparison of long-term performance versus SnO2 nanoparticle films. Sensors Actuators B Chem 139(2):699–703CrossRefGoogle Scholar
  40. 40.
    Zhang D, Liu Z, Li C, Tang T, Liu X, Han S, Lei B, Zhou C (2004) Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices. Nano Lett 4(10):1919–1924CrossRefGoogle Scholar
  41. 41.
    Shimizu Y, Egashira M (1999) Basic aspects and challenges of semiconductor gas sensors. MRS Bull 24(6):18–24CrossRefGoogle Scholar
  42. 42.
    Barsan N, Weimar U (2001) Conduction model of metal oxide gas sensors. J Electroceram 7(3):143–167CrossRefGoogle Scholar
  43. 43.
    Yamazoe N (1991) New approaches for improving semiconductor gas sensors. Sensors Actuators B Chem 5:7–19CrossRefGoogle Scholar
  44. 44.
    Yamazoe N, Sakai G, Shimanoe K (2003) Oxide semiconductor gas sensors. Catal Surv Jpn 7(1):63–75CrossRefGoogle Scholar
  45. 45.
    Miller DR, Akbar SA, Morris PA (2014) Nanoscale metal oxide-based heterojunctions for gas sensing: a review. Sensors Actuators B Chem 204:250–272CrossRefGoogle Scholar
  46. 46.
    Li T, Zeng W, Wang Z (2015) Quasi-one-dimensional metal-oxide-based heterostructural gas-sensing materials: a review. Sensors Actuators B Chem 221:1570–1585CrossRefGoogle Scholar
  47. 47.
    Hsueh T-J, Chang S-J, Hsu C-L, Lin Y-R, Chen IC (2007) Highly sensitive ZnO nanowire ethanol sensor with Pd adsorption. Appl Phys Lett 91(5):053111CrossRefGoogle Scholar
  48. 48.
    Chang S-J, Hsueh T-J, Chen IC, Huang B-R (2008) Highly sensitive ZnO nanowire CO sensors with the adsorption of Au nanoparticles. Nanotechnology 19(17):175502CrossRefGoogle Scholar
  49. 49.
    Katoch A, Choi S-W, Sun G-J, Kim SS (2015) Low temperature sensing properties of Pt nanoparticle-functionalized networked ZnO nanowires. J Nanosci Nanotechnol 15(1):330–333CrossRefGoogle Scholar
  50. 50.
    Liang Y-C, Liao W-K, Deng X-S (2014) Synthesis and substantially enhanced gas sensing sensitivity of homogeneously nanoscale Pd- and Au-particle decorated ZnO nanostructures. J Alloys Compd 599:87–92CrossRefGoogle Scholar
  51. 51.
    Guo J, Zhang J, Zhu M, Ju D, Xu H, Cao B (2014) High-performance gas sensor based on ZnO nanowires functionalized by Au nanoparticles. Sensors Actuators B Chem 199:339–345CrossRefGoogle Scholar
  52. 52.
    Hosseini ZS, Mortezaali A, Zad AI, Fardindoost S (2015) Sensitive and selective room temperature H2S gas sensor based on Au sensitized vertical ZnO nanorods with flower-like structures. J Alloys Compd 628:222–229CrossRefGoogle Scholar
  53. 53.
    Wang L, Wang S, Xu M, Hu X, Zhang H, Wang Y, Huang W (2013) A Au-functionalized ZnO nanowire gas sensor for detection of benzene and toluene. Phys Chem Chem Phys 15(40):17179–17186CrossRefGoogle Scholar
  54. 54.
    Ramgir NS, Sharma PK, Datta N, Kaur M, Debnath A, Aswal D, Gupta S (2013) Room temperature H2S sensor based on Au modified ZnO nanowires. Sensors Actuators B Chem 186:718–726CrossRefGoogle Scholar
  55. 55.
    Liu X, Zhang J, Guo X, Wu S, Wang S (2010) Amino acid-assisted one-pot assembly of Au, Pt nanoparticles onto one-dimensional ZnO microrods. Nanoscale 2(7):1178–1184CrossRefGoogle Scholar
  56. 56.
    Ramgir NS, Kaur M, Sharma PK, Datta N, Kailasaganapathi S, Bhattacharya S, Debnath AK, Aswal DK, Gupta K (2013) Ethanol sensing properties of pure and Au modified ZnO nanowires. Sensors Actuators B Chem 187:313–318CrossRefGoogle Scholar
  57. 57.
    Suo C, Gao C, Wu X, Zuo Y, Wang X, Jia J (2015) Ag-decorated ZnO nanorods prepared by photochemical deposition and their high selectivity to ethanol using conducting oxide electrodes. RSC Adv 5(112):92107–92113CrossRefGoogle Scholar
  58. 58.
    Ponnuvelu DV, Pullithadathil B, Prasad AK, Dhara S, Ashok A, Mohamed K, Tyagi AK, Raja B (2015) Rapid synthesis and characterization of hybrid ZnO@Au core-shell nanorods for high performance, low temperature NO2 gas sensor applications. Appl Surf Sci 355:726–735CrossRefGoogle Scholar
  59. 59.
    Zhang YA, Xu JQ, Xu PC, Zhu YH, Chen XD, Yu WJ (2010) Decoration of ZnO nanowires with Pt nanoparticles and their improved gas sensing and photocatalytic performance. Nanotechnology 21(28):7CrossRefGoogle Scholar
  60. 60.
    Rai P, Yu YT (2013) Citrate-assisted one-pot assembly of palladium nanoparticles onto ZnO nanorods for CO sensing application. Mater Chem Phys 142(2–3):545–548CrossRefGoogle Scholar
  61. 61.
    Rai P, Kim YS, Song HM, Song MK, Yu YT (2012) The role of gold catalyst on the sensing behavior of ZnO nanorods for CO and NO2 gases. Sensors Actuators B Chem 165(1):133–142CrossRefGoogle Scholar
  62. 62.
    Shen Y, Yamazaki T, Liu Z, Meng D, Kikuta T, Nakatani N, Saito M, Mori M (2009) Microstructure and H2 gas sensing properties of undoped and Pd-doped SnO2 nanowires. Sensors Actuators B Chem 135(2):524–529CrossRefGoogle Scholar
  63. 63.
    Fu DY, Zhu CL, Zhang XT, Li CY, Chen YJ (2016) Two-dimensional net-like SnO2/ZnO heteronanostructures for high-performance H2S gas sensor. J Mater Chem A 4(4):1390–1398CrossRefGoogle Scholar
  64. 64.
    Kim J-H, Wu P, Kim HW, Kim SS (2016) Highly selective sensing of CO, C6H6, and C7H8 gases by catalytic functionalization with metal nanoparticles. Acs Appl Mater Int 8(11):7173–7183CrossRefGoogle Scholar
  65. 65.
    Do Dang T, Nguyen Duc H, Pham Van T, Nguyen Van D, Dao TD, Chung HV, Nagao T, Nguyen Van H (2014) Effective decoration of Pd nanoparticles on the surface of SnO2 nanowires for enhancement of CO gas-sensing performance. J Hazard Mater 265:124–132Google Scholar
  66. 66.
    Park S, Kim S, Ko H, Lee C (2014) Dependence of the selectivity of SnO2 nanorod gas sensors on functionalization materials. Appl Phys a-Mater 117(3):1259–1267CrossRefGoogle Scholar
  67. 67.
    Lin Y, Wei W, Li YJ, Li F, Zhou JR, Sun DM, Chen Y, Ruan SP (2015) Preparation of Pd nanoparticle-decorated hollow SnO2 nanofibers and their enhanced formaldehyde sensing properties. J Alloys Compd 651:690–698CrossRefGoogle Scholar
  68. 68.
    Kou X, Xie N, Chen F, Wang T, Guo L, Wang C, Wang Q, Ma J, Sun Y, Zhang H, Lu G (2017) Superior acetone gas sensor based on electrospun SnO2 nanofibers by Rh doping. Sens Actuators B 256:861–869CrossRefGoogle Scholar
  69. 69.
    Abideen ZU, Kim J-H, Kim SS (2017) Optimization of metal nanoparticle amount on SnO2 nanowires to achieve superior gas sensing properties. Sensors Actuators B Chem 238:374–380CrossRefGoogle Scholar
  70. 70.
    Huang H, Ong C, Guo J, White T, Tse MS, Tan OK (2010) Pt surface modification of SnO2 nanorod arrays for CO and H2 sensors. Nanoscale 2(7):1203–1207CrossRefGoogle Scholar
  71. 71.
    Choi S-W, Jung S-H, Kim SS (2011) Significant enhancement of the NO2 sensing capability in networked SnO2 nanowires by au nanoparticles synthesized via gamma-ray radiolysis. J Hazard Mater 193:243–248CrossRefGoogle Scholar
  72. 72.
    Wang ZJ, Li ZY, Jiang TT, Xu XR, Wang C (2013) Ultrasensitive hydrogen sensor based on Pd-0-loaded SnO2 electrospun nanofibers at room temperature. Acs Appl Mater Int 5(6):2013–2021CrossRefGoogle Scholar
  73. 73.
    Zheng W, Lu XF, Wang W, Li ZY, Zhang HN, Wang ZJ, Xu XR, Li SY, Wang C (2009) Assembly of Pt nanoparticles on electrospun In2O3 nanofibers for H2S detection. J Colloid Interface Sci 338(2):366–370CrossRefGoogle Scholar
  74. 74.
    Kim SS, Park JY, Choi SW, Kim HS, Na HG, Yang JC, Kim HW (2010) Significant enhancement of the sensing characteristics of In2O3 nanowires by functionalization with Pt nanoparticles. Nanotechnology 21(41):7CrossRefGoogle Scholar
  75. 75.
    Singh N, Gupta RK, Lee PS (2011) Gold-nanoparticle-functionalized In2O3 nanowires as CO gas sensors with a significant enhancement in response. Acs Appl Mater Int 3(7):2246–2252CrossRefGoogle Scholar
  76. 76.
    Xing R, Xu L, Song J, Zhou C, Li Q, Liu D, Song HW (2015) Preparation and gas sensing properties of In2O3/Au Nanorods for detection of volatile organic compounds in exhaled breath. Sci Rep 5 5:10717CrossRefGoogle Scholar
  77. 77.
    Zou XM, Wang JL, Liu XQ, Wang CL, Jiang Y, Wang Y, Xiao XH, Ho JC, Li JC, Jiang CZ, Fang Y, Liu W, Liao L (2013) Rational Design of sub-Parts per million specific gas sensors Array based on metal nanoparticles decorated nanowire enhancement-mode transistors. Nano Lett 13(7):3287–3292CrossRefGoogle Scholar
  78. 78.
    Hu PQ, Du GJ, Zhou WJ, Cui JJ, Lin JJ, Liu H, Liu D, Wang JY, Chen SW (2010) Enhancement of ethanol vapor sensing of TiO2 Nanobelts by surface engineering. Acs Appl Mater Int 2(11):3263–3269CrossRefGoogle Scholar
  79. 79.
    Jin C, Kim H, Choi S-W, Kim SS, Lee C (2014) Synthesis, structure, and gas-sensing properties of Pt-functionalized TiO2 nanowire sensors. J Nanosci Nanotechnol 14(8):5833–5838CrossRefGoogle Scholar
  80. 80.
    Meng D, Yamazaki T, Kikuta T (2014) Preparation and gas sensing properties of undoped and Pd-doped TiO2 nanowires. Sensors Actuators B Chem 190:838–843CrossRefGoogle Scholar
  81. 81.
    Sennik E, Soysal U, Ozturk ZZ (2014) Pd loaded spider-web TiO2 nanowires: fabrication, characterization and gas sensing properties. Sensors Actuators B Chem 199:424–432CrossRefGoogle Scholar
  82. 82.
    Sennik E, Alev Ol; Zturk ZZ (2016) The effect of Pd on the H2 and VOC sensing properties of TiO2 nanorods. Sensors Actuators B Chem 229:692–700Google Scholar
  83. 83.
    Xiang Q, Meng GF, Zhao HB, Zhang Y, Li H, Ma WJ, Xu JQ (2010) Au nanoparticle modified WO3 Nanorods with their enhanced properties for Photocatalysis and gas sensing. J Phys Chem C 114(5):2049–2055CrossRefGoogle Scholar
  84. 84.
    Liu X, Zhang J, Yang T, Guo X, Wu S, Wang S (2011) Synthesis of Pt nanoparticles functionalized WO3 nanorods and their gas sensing properties. Sensors Actuators B Chem 156(2):918–923CrossRefGoogle Scholar
  85. 85.
    Tong PV, Hoa ND, Duy NV, Dang Thi Thanh L, Hieu NV (2016) Enhancement of gas-sensing characteristics of hydrothermally synthesized WO3 nanorods by surface decoration with Pd nanoparticles. Sensors Actuators B Chem 223:453–460CrossRefGoogle Scholar
  86. 86.
    Choi S-J, Chattopadhyay S, Kim JJ, Kim S-J, Tuller HL, Rutledge GC, Kim I-D (2016) Coaxial electrospinning of WO3 nanotubes functionalized with bio-inspired Pd catalysts and their superior hydrogen sensing performance. Nanoscale 8(17):9159–9166CrossRefGoogle Scholar
  87. 87.
    Nguyen Minh V, Kim D, Kim H (2015) Porous Au-embedded WO3 nanowire structure for efficient detection of CH4 and H2S. Sci Rep 5 5:11040CrossRefGoogle Scholar
  88. 88.
    Kruefu V, Wisitsoraat A, Tuantranont A, Phanichphant S (2015) Ultra-sensitive H2S sensors based on hydrothermal/impregnation-made Ru-functionalized WO3 nanorods. Sensors Actuators B Chem 215:630–636CrossRefGoogle Scholar
  89. 89.
    Chavez F, Perez-Sanchez GF, Goiz O, Zaca-Moran P, Pena-Sierra R, Morales-Acevedo A, Felipe C, Soledad-Priego M (2013) Sensing performance of palladium-functionalized WO3 nanowires by a drop-casting method. Appl Surf Sci 275:28–35CrossRefGoogle Scholar
  90. 90.
    Gunawan P, Mei L, Teo J, Ma JM, Highfield J, Li QH, Zhong ZY (2012) Ultrahigh sensitivity of Au/1D alpha-Fe2O3 to acetone and the sensing mechanism. Langmuir 28(39):14090–14099CrossRefGoogle Scholar
  91. 91.
    Wang SR, Zhang HX, Wang YS, Wang LW, Gong Z (2014) Facile one-pot synthesis of Au nanoparticles decorated porous alpha-Fe2O3 nanorods for in situ detection of VOCs. RSC Adv 4(1):369–373CrossRefGoogle Scholar
  92. 92.
    Hubner M, Koziej D, Grunwaldt J-D, Weimar U, Barsan N (2012) An Au clusters related spill-over sensitization mechanism in SnO2-based gas sensors identified by operando HERFD-XAS, work function changes, DC resistance and catalytic conversion studies. Phys Chem Chem Phys 14(38):13249–13254CrossRefGoogle Scholar
  93. 93.
    Zhang J, Liu X, Neri G, Pinna N (2016) Nanostructured materials for room-temperature gas sensors. Adv Mater 28(5):795–831CrossRefGoogle Scholar
  94. 94.
    Korotcenkov G (2007) Metal oxides for solid-state gas sensors: what determines our choice? Mater Sci Eng B 139(1):1–23CrossRefGoogle Scholar
  95. 95.
    Park S, Park S, Jung J, Hong T, Lee S, Kim HW, Lee C (2014) H2S gas sensing properties of CuO-functionalized WO3 nanowires. Ceram Int 40(7):11051–11056CrossRefGoogle Scholar
  96. 96.
    Park S, Sun G-J, Kheel H, Hyun SK, Jin C, Lee C (2016) Hydrogen gas sensing of Co3O4-decorated WO3 nanowires. Met Mater Int 22(1):156–162CrossRefGoogle Scholar
  97. 97.
    Zhao XD, Ji HM, Jia QQ, Wang MJ (2015) A nanoscale Co3O4-WO3 p-n junction sensor with enhanced acetone responsivity. J Mater Sci-Mater Electron 26(10):8217–8223CrossRefGoogle Scholar
  98. 98.
    Na CW, Woo H-S, Lee J-H (2012) Design of highly sensitive volatile organic compound sensors by controlling NiO loading on ZnO nanowire networks. RSC Adv 2(2):414–417CrossRefGoogle Scholar
  99. 99.
    Zhang Y-B, Yin J, Li L, Zhang L-X, Bie L-J (2014) Enhanced ethanol gas-sensing properties of flower-like p-CuO/n-ZnO heterojunction nanorods. Sensors Actuators B Chem 202:500–507CrossRefGoogle Scholar
  100. 100.
    Xu Q, Ju D, Zhang Z, Yuan S, Zhang J, Xu H, Cao B (2016) Near room-temperature triethylamine sensor constructed with CuO/ZnO P-N heterostructural nanorods directly on flat electrode. Sensors Actuators B Chem 225:16–23CrossRefGoogle Scholar
  101. 101.
    Zhao M, Wang X, Ning L, Jia J, Li X, Cao L (2011) Electrospun cu-doped ZnO nanofibers for H2S sensing. Sensors Actuators B Chem 156(2):588–592CrossRefGoogle Scholar
  102. 102.
    Sun GJ, Choi SW, Katoch A, Wu P, Kim SS (2013) Bi-functional mechanism of H2S detection using CuO-SnO2 nanowires. J Mater Chem C 1(35):5454–5462CrossRefGoogle Scholar
  103. 103.
    Choi S-W, Katoch A, Kim J-H, Kim SS (2014) Prominent reducing gas-sensing performances of n-SnO2 nanowires by local creation of p-n heterojunctions by functionalization with p-Cr2O3 nanoparticles. Acs Appl Mater Inter 6(20):17723–17729CrossRefGoogle Scholar
  104. 104.
    Hieu NV, Phung THV, Nhan LT, Duy NV, Hoa ND (2012) Giant enhancement of H2S gas response by decorating n-type SnO2 nanowires with p-type NiO nanoparticles. Appl Phys Lett 101(25):253106CrossRefGoogle Scholar
  105. 105.
    Kim J-H, Katoch A, Kim S-H, Kim SS (2015) Chemiresistive sensing behavior of SnO2 (n)–Cu2O (p) Core–Shell nanowires. Acs Appl Mater Int 7(28):15351–15358CrossRefGoogle Scholar
  106. 106.
    Zhao Y, He X, Li J, Gao X, Jia J (2012) Porous CuO/SnO2 composite nanofibers fabricated by electrospinning and their H2S sensing properties. Sensors Actuators B Chem 165(1):82–87CrossRefGoogle Scholar
  107. 107.
    Choi S-W, Zhang J, Akash K, Kim SS (2012) H2S sensing performance of electrospun CuO-loaded SnO2 nanofibers. Sensors Actuators B Chem 169:54–60CrossRefGoogle Scholar
  108. 108.
    Liang X, Kim T-H, Yoon J-W, Kwak C-H, Lee J-H (2015) Ultrasensitive and ultraselective detection of H2S using electrospun CuO-loaded In2O3 nanofiber sensors assisted by pulse heating. Sensors Actuators B Chem 209:934–942CrossRefGoogle Scholar
  109. 109.
    Tien LC, Norton DP, Gila BP, Pearton SJ, Wang HT, Kang BS, Ren F (2007) Detection of hydrogen with SnO2-coated ZnO nanorods. Appl Surf Sci 253(10):4748–4752CrossRefGoogle Scholar
  110. 110.
    Kuang Q, Lao C-S, Li Z, Liu Y-Z, Xie Z-X, Zheng L-S, Wang ZL (2008) Enhancing the photon- and gas-sensing properties of a single SnO2 nanowire based nanodevice by nanoparticle surface functionalization. J Phys Chem C 112(30):11539–11544CrossRefGoogle Scholar
  111. 111.
    An S, Park S, Ko H, Lee C (2012) Enhanced NO2 gas sensing properties of WO3 nanorods encapsulated with ZnO. Appl Phys a-Mater 108(1):53–58CrossRefGoogle Scholar
  112. 112.
    Lu GY, Xu J, Sun JB, Yu YS, Zhang YQ, Liu FM (2012) UV-enhanced room temperature NO2 sensor using ZnO nanorods modified with SnO2 nanoparticles. Sensors Actuators B Chem 162(1):82–88CrossRefGoogle Scholar
  113. 113.
    Kaneti YV, Zakaria QMD, Zhang ZJ, Chen CY, Yue J, Liu MS, Jiang XC, Yu AB (2014) Solvothermal synthesis of ZnO-decorated alpha-Fe2O3 nanorods with highly enhanced gas-sensing performance toward n-butanol. J Mater Chem A 2(33):13283–13292CrossRefGoogle Scholar
  114. 114.
    Zhang HX, Wang SR, Wang YS, Yang JD, Gao XL, Wang LW (2014) TiO2(B) nanoparticle-functionalized WO3 nanorods with enhanced gas sensing properties. Phys Chem Chem Phys 16(22):10830–10836CrossRefGoogle Scholar
  115. 115.
    Zhang JX, Zhu GX, Shen XP, Ji ZY, Chen KM (2014) Alpha-Fe2O3 nanospindles loaded with ZnO nanocrystals: synthesis and improved gas sensing performance. Cryst Res Technol 49(7):452–459CrossRefGoogle Scholar
  116. 116.
    Zhao CH, Hu WQ, Zhang ZX, Zhou JY, Pan XJ, Xie EQ (2014) Effects of SnO2 additives on nanostructure and gas-sensing properties of alpha-Fe2O3 nanotubes. Sensors Actuators B Chem 195:486–493CrossRefGoogle Scholar
  117. 117.
    Choi SW, Katoch A, Kim JH, Kim SS (2015) Striking sensing improvement of n-type oxide nanowires by electronic sensitization based on work function difference. J Mater Chem C 3(7):1521–1527CrossRefGoogle Scholar
  118. 118.
    Kim S, Park S, Sun GJ, Hyun SK, Kim KK, Lee C (2015) Enhanced acetone gas sensing performance of the multiple-networked Fe2O3-functionalized In2O3 nanowire sensor. Curr Appl Phys 15(8):947–952CrossRefGoogle Scholar
  119. 119.
    Xu S, Gao J, Wang LL, Kan K, Xie Y, Shen PK, Li L, Shi KY (2015) Role of the heterojunctions in In2O3-composite SnO2 nanorod sensors and their remarkable gas-sensing performance for NOx at room temperature. Nanoscale 7(35):14643–14651CrossRefGoogle Scholar
  120. 120.
    Diao KD, Huang YP, Zhou MJ, Zhang JC, Tang YJ, Wang SX, Liu TX, Cui XD (2016) Selectively enhanced sensing performance for oxidizing gases based on ZnO nanoparticle-loaded electrospun SnO2 nanotube heterostructures. RSC Adv 6(34):28419–28427CrossRefGoogle Scholar
  121. 121.
    Li F, Gao X, Wang R, Zhang T, Lu G, Barsan N (2016) Design of Core–Shell Heterostructure Nanofibers with different work function and their sensing properties to trimethylamine. Acs Appl Mater Int 8(30):19799–19806CrossRefGoogle Scholar
  122. 122.
    Feng C, Wang C, Cheng P, Li X, Wang B, Guan Y, Ma J, Zhang H, Sun Y, Sun P, Zheng J, Lu G (2015) Facile synthesis and gas sensing properties of La2O3–WO3 nanofibers. Sens Actuators B 221(C):434–442CrossRefGoogle Scholar
  123. 123.
    Feng C, Li X, Ma J, Sun Y, Wang C, Sun P, Zheng J, Lu G (2015) Facile synthesis and gas sensing properties of In2O3–WO3 heterojunction nanofibers. Sensors Actuators B Chem 209:622–629CrossRefGoogle Scholar
  124. 124.
    Li F, Gao X, Wang R, Zhang T, Lu G (2017) Study on TiO2-SnO2 core-shell heterostructure nanofibers with different work function and its application in gas sensor. Sens Actuators B 248(C):812–819CrossRefGoogle Scholar
  125. 125.
    Zhang J, Liu X, Wang L, Yang T, Guo X, Wu S, Wang S, Zhang S (2011) Synthesis and gas sensing properties of alpha-Fe2O3@ZnO core-shell nanospindles. Nanotechnology 22(18):185501CrossRefGoogle Scholar
  126. 126.
    Kukkola J, Mohl M, Leino A-R, Maklin J, Halonen N, Shchukarev A, Konya Z, Jantunen H, Kordas K (2013) Room temperature hydrogen sensors based on metal decorated WO3 nanowires. Sensors Actuators B Chem 186:90–95CrossRefGoogle Scholar
  127. 127.
    Zhu LF, She JC, Luo JY, Deng SZ, Chen J, Xu NS (2010) Study of physical and chemical processes of H2 sensing of Pt-coated WO3 nanowire films. J Phys Chem C 114(36):15504–15509CrossRefGoogle Scholar
  128. 128.
    Hwang I-S, Choi J-K, Woo H-S, Kim S-J, Jung S-Y, Seong T-Y, Kim I-D, Lee J-H (2011) Facile control of C2H5OH sensing characteristics by decorating discrete ag nanoclusters on SnO2 nanowire networks. Acs Appl Mater Int 3(8):3140–3145CrossRefGoogle Scholar
  129. 129.
    Kwak C-H, Woo H-S, Lee J-H (2014) Selective trimethylamine sensors using Cr2O3-decorated SnO2 nanowires. Sens Actuators B 204(Supplement C):231–238CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.College of PhysicsQingdao UniversityQingdaoChina

Personalised recommendations