Advertisement

Nanowire-Based Transparent Conductive Electrodes

  • Han-Yi ChenEmail author
  • Meng-Che Tu
Chapter
Part of the Nanostructure Science and Technology book series (NST)

Abstract

For decades, transparent conductive electrodes (TCEs) have been widely used in various applications owing to their high optical transmittance and excellent electrical conductivity. Despite indium tin oxide (ITO) being the most commonly used TCE nowadays, developing the potential substitution materials of ITO is necessary due to the (1) high cost of indium and (2) the brittleness of ITO film, which makes ITO film difficult to use in flexible substrates. In recent years, the intensive development of nanotechnology leads the growth of nanostructured TCEs because of their high surface area, enhanced active sites, and shortened diffusion distances. This chapter starts at briefly introducing the principles and requirements of TCEs, followed by reviewing and comparing the synthetic methodologies and physical properties of various nanostructured TCEs such as transparent conductive oxides (TCOs), single-walled carbon nanotubes (SWCNTs), and metallic nanowires. The applications based on those TCEs, such as photovoltaic devices, light-emitting diodes (LED), touch panels, smart windows, and transparent heaters, are also discussed.

Keywords

Nanowires Transparent conductive electrodes Transparent conductive oxides Metallic nanowires Flexible electronics 

References

  1. 1.
    Kang MG, Guo LJ (2007) Nanoimprinted semitransparent metal electrodes and their application in organic light-emitting diodes. Adv Mater 19(10):1391–1396.  https://doi.org/10.1002/adma.200700134 CrossRefGoogle Scholar
  2. 2.
    O'Dwyer C, Szachowicz M, Visimberga G, Lavayen V, Newcomb SB, Torres CMS (2009) Bottom-up growth of fully transparent contact layers of indium tin oxide nanowires for light-emitting devices. Nat Nanotechnol 4(4):239–244.  https://doi.org/10.1038/nnano.2008.418 CrossRefGoogle Scholar
  3. 3.
    Minami T (2008) Present status of transparent conducting oxide thin-film development for indium-tin-oxide (ITO) substitutes. Thin Solid Films 516(17):5822–5828.  https://doi.org/10.1016/j.tsf.2007.10.063 CrossRefGoogle Scholar
  4. 4.
    Jae Kyeong J (2011) The status and perspectives of metal oxide thin-film transistors for active matrix flexible displays. Semicond Sci Technol 26(3):034008CrossRefGoogle Scholar
  5. 5.
    Yang SB, Kong B-S, Jung D-H, Baek Y-K, Han C-S, Oh S-K, Jung H-T (2011) Recent advances in hybrids of carbon nanotube network films and nanomaterials for their potential applications as transparent conducting films. Nanoscale 3(4):1361–1373.  https://doi.org/10.1039/C0NR00855A CrossRefGoogle Scholar
  6. 6.
    Novak JP, Lay MD, Perkins FK, Snow ES (2004) Macroelectronic applications of carbon nanotube networks. Solid-State Electron 48(10–11):1753–1756.  https://doi.org/10.1016/j.sse.2004.05.010 CrossRefGoogle Scholar
  7. 7.
    Gruner G (2006) Carbon nanotube films for transparent and plastic electronics. J Mater Chem 16(35):3533–3539.  https://doi.org/10.1039/B603821M CrossRefGoogle Scholar
  8. 8.
    Kaempgen M, Duesberg GS, Roth S (2005) Transparent carbon nanotube coatings. Appl Surface Sci 252(2):425–429.  https://doi.org/10.1016/j.apsusc.2005.01.020 CrossRefGoogle Scholar
  9. 9.
    Pasquier AD, Unalan HE, Kanwal A, Miller S, Chhowalla M (2005) Conducting and transparent single-wall carbon nanotube electrodes for polymer-fullerene solar cells. Appl Phys Lett 87(20):203511.  https://doi.org/10.1063/1.2132065 CrossRefGoogle Scholar
  10. 10.
    Rowell MW, Topinka MA, McGehee MD, Prall H-J, Dennler G, Sariciftci NS, Hu L, Gruner G (2006) Organic solar cells with carbon nanotube network electrodes. Appl Phys Lett 88(23):233506.  https://doi.org/10.1063/1.2209887 CrossRefGoogle Scholar
  11. 11.
    Vanboort HJ, Groth R (1968) Low-pressure sodium lamps with indium oxide filter. Philips Tech Rev 29(1):17Google Scholar
  12. 12.
    Kostlin H, Jost R, Lems W (1975) Optical and electrical properties of doped in2o3 films. Physica Status Solidi a-Appl Res 29(1):87–93.  https://doi.org/10.1002/pssa.2210290110 CrossRefGoogle Scholar
  13. 13.
    Ellmer K (2012) Past achievements and future challenges in the development of optically transparent electrodes. Nat Photonics 6(12):808–816.  https://doi.org/10.1038/nphoton.2012.282 CrossRefGoogle Scholar
  14. 14.
    Gao J, Chen R, Li DH, Jiang L, Ye JC, Ma XC, Chen XD, Xiong QH, Sun HD, Wu T (2011) UV light emitting transparent conducting tin-doped indium oxide (ITO) nanowires. Nanotechnology 22(19):195706CrossRefGoogle Scholar
  15. 15.
    Wan Q, Dattoli EN, Fung WY, Guo W, Chen YB, Pan XQ, Lu W (2006) High-performance transparent conducting oxide nanowires. Nano Lett 6(12):2909–2915.  https://doi.org/10.1021/nl062213d CrossRefGoogle Scholar
  16. 16.
    Nguyen P, Ng HT, Kong J, Cassell AM, Quinn R, Li J, Han J, McNeil M, Meyyappan M (2003) Epitaxial directional growth of indium-doped tin oxide nanowire arrays. Nano Lett 3(7):925–928.  https://doi.org/10.1021/nl0342186 CrossRefGoogle Scholar
  17. 17.
    Han GS, Lee S, Noh JH, Chung HS, Park JH, Swain BS, Im J-H, Park N-G, Jung HS (2014) 3-D TiO2 nanoparticle/ITO nanowire nanocomposite antenna for efficient charge collection in solid state dye-sensitized solar cells. Nanoscale 6(11):6127–6132.  https://doi.org/10.1039/C4NR00621F CrossRefGoogle Scholar
  18. 18.
    Sannicolo T, Lagrange M, Cabos A, Celle C, Simonato JP, Bellet D (2016) Metallic nanowire-based transparent electrodes for next generation flexible devices: a review. Small 12(44):6052–6075.  https://doi.org/10.1002/smll.201602581 CrossRefGoogle Scholar
  19. 19.
    Hecht DS, Hu L, Irvin G (2011) Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv Mater 23(13):1482–1513.  https://doi.org/10.1002/adma.201003188 CrossRefGoogle Scholar
  20. 20.
    Morfa AJ, Akinoglu EM, Subbiah J, Giersig M, Mulvaney P (2013) Transparent metal electrodes from ordered nanosphere arrays. J Appl Phys 114(5):054502.  https://doi.org/10.1063/1.4816790 CrossRefGoogle Scholar
  21. 21.
    Andersson A, Johansson N, Bröms P, Yu N, Lupo D, Salaneck WR (1998) Fluorine tin oxide as an alternative to indium tin oxide in polymer LEDs. Adv Mater 10(11):859–863.  https://doi.org/10.1002/(SICI)1521-4095(199808)10:11<859::AID-ADMA859>3.0.CO;2-1 CrossRefGoogle Scholar
  22. 22.
    Park SH, Lee BH, Shin JM, Jeong S-Y, Song S, Suh H, Lee K (2012) Highly transparent polymer light-emitting diode using modified aluminum-doped zinc oxide top electrode. Appl Phys Lett 100(13):133306.  https://doi.org/10.1063/1.3698340 CrossRefGoogle Scholar
  23. 23.
    Zou JH, Liu JH, Karakoti AS, Kumar A, Joung D, Li QA, Khondaker SI, Seal S, Zhai L (2010) Ultralight multiwalled carbon nanotube aerogel. ACS Nano 4(12):7293–7302.  https://doi.org/10.1021/nn102246a CrossRefGoogle Scholar
  24. 24.
    Sun Y, Rogers JA (2007) Inorganic semiconductors for flexible electronics. Adv Mater 19(15):1897–1916.  https://doi.org/10.1002/adma.200602223 CrossRefGoogle Scholar
  25. 25.
    Langley D, Giusti G, Mayousse C, Celle C, Bellet D, Simonato JP (2013) Flexible transparent conductive materials based on silver nanowire networks: a review. Nanotechnology 24(45):452001.  https://doi.org/10.1088/0957-4484/24/45/452001 CrossRefGoogle Scholar
  26. 26.
    Xiong X, Zou C-L, Ren X-F, Liu A-P, Ye Y-X, Sun F-W, Guo G-C (2013) Silver nanowires for photonics applications. Laser Photonics Rev 7(6):901–919.  https://doi.org/10.1002/lpor.201200076 CrossRefGoogle Scholar
  27. 27.
    Guo CF, Ren Z (2015) Flexible transparent conductors based on metal nanowire networks. Mater Today 18(3):143–154.  https://doi.org/10.1016/j.mattod.2014.08.018 CrossRefGoogle Scholar
  28. 28.
    De S, Coleman JN (2010) Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films? ACS Nano 4(5):2713–2720.  https://doi.org/10.1021/nn100343f CrossRefGoogle Scholar
  29. 29.
    Eritt M, May C, Leo K, Toerker M, Radehaus C (2010) OLED manufacturing for large area lighting applications. Thin Solid Films 518(11):3042–3045.  https://doi.org/10.1016/j.tsf.2009.09.188 CrossRefGoogle Scholar
  30. 30.
    Celle C, Mayousse C, Moreau E, Basti H, Carella A, Simonato J-P (2012) Highly flexible transparent film heaters based on random networks of silver nanowires. Nano Res 5(6):427–433.  https://doi.org/10.1007/s12274-012-0225-2 CrossRefGoogle Scholar
  31. 31.
    Sorel S, Bellet D, Coleman JN (2014) Relationship between material properties and transparent heater performance for both bulk-like and percolative nanostructured networks. ACS Nano 8(5):4805–4814CrossRefGoogle Scholar
  32. 32.
    Ji S, He W, Wang K, Ran Y, Ye C (2014) Thermal response of transparent silver nanowire/PEDOT:PSS film heaters. Small 10(23):4951–4960.  https://doi.org/10.1002/smll.201401690 CrossRefGoogle Scholar
  33. 33.
    Rai T, Dantes P, Bahreyni B, Kim WS (2013) A stretchable RF antenna with silver nanowires. IEEE Electron Device Lett 34(4):544–546.  https://doi.org/10.1109/LED.2013.2245626 CrossRefGoogle Scholar
  34. 34.
    Song L, Myers AC, Adams JJ, Zhu Y (2014) Stretchable and reversibly deformable radio frequency antennas based on silver nanowires. ACS Appl Mater Interfaces 6(6):4248–4253.  https://doi.org/10.1021/am405972e CrossRefGoogle Scholar
  35. 35.
    Uematsu S, Quan Z, Suganuma Y, Sonoyama N (2012) Reversible lithium charge–discharge property of bi-capped Keggin-type polyoxovanadates. J Power Sources 217(Supplement C):13–20.  https://doi.org/10.1016/j.jpowsour.2012.05.096 CrossRefGoogle Scholar
  36. 36.
    Hu M, Gao J, Dong Y, Li K, Shan G, Yang S, Li RK-Y (2012) Flexible transparent PES/silver nanowires/PET sandwich-structured film for high-efficiency electromagnetic interference shielding. Langmuir 28(18):7101–7106.  https://doi.org/10.1021/la300720y CrossRefGoogle Scholar
  37. 37.
    Housecroft C, Sharpe AG (2012) Inorganic chemistry. Pearson Education Limited, HarlowGoogle Scholar
  38. 38.
    Noriega R, Rivnay J, Goris L, Kalblein D, Klauk H, Kern K, Thompson LM, Palke AC, Stebbins JF, Jokisaari JR, Kusinski G, Salleo A (2010) Probing the electrical properties of highly-doped Al:ZnO nanowire ensembles. J Appl Phys 107(7):074312.  https://doi.org/10.1063/1.3360930 CrossRefGoogle Scholar
  39. 39.
    Wang H-W, Ting C-F, Hung M-K, Chiou C-H, Liu Y-L, Liu Z, Ratinac KR, Ringer SP (2009) Three-dimensional electrodes for dye-sensitized solar cells: synthesis of indium–tin-oxide nanowire arrays and ITO/TiO2 core–shell nanowire arrays by electrophoretic deposition. Nanotechnology 20(5):055601CrossRefGoogle Scholar
  40. 40.
    Synowicki R, Hale JS, Ianno N, Woollam JA, Hambourger PD (1993) Low earth orbit effects on indium tin oxide and polyester and comparison with laboratory simulations. Surf Coat Technol 62(1–3):499–503CrossRefGoogle Scholar
  41. 41.
    Deb SK, Lee S-H, Tracy CE, Pitts JR, Gregg BA, Branz HM (2001) Stand-alone photovoltaic-powered electrochromic smart window. Electrochim Acta 46(13):2125–2130CrossRefGoogle Scholar
  42. 42.
    Betz U, Olsson MK, Marthy J, Escolá M, Atamny F (2006) Thin films engineering of indium tin oxide: large area flat panel displays application. Surf Coat Technol 200(20):5751–5759CrossRefGoogle Scholar
  43. 43.
    Hartnagel H, Dawar A, Jain A, Jagadish C (1995) Semiconducting transparent thin films. Institute of Physics, BristolGoogle Scholar
  44. 44.
    Maruyama T, Fukui K (1991) Indium-tin oxide thin films prepared by chemical vapor deposition. J Appl Phys 70(7):3848–3851CrossRefGoogle Scholar
  45. 45.
    Wu W-F, Chiou B-S, Hsieh S-T (1994) Effect of sputtering power on the structural and optical properties of RF magnetron sputtered ITO films. Semicond Sci Technol 9(6):1242CrossRefGoogle Scholar
  46. 46.
    Ishida T, Kobayashi H, Nakato Y (1993) Structures and properties of electron-beam-evaporated indium tin oxide films as studied by X-ray photoelectron spectroscopy and work-function measurements. J Appl Phys 73(9):4344–4350CrossRefGoogle Scholar
  47. 47.
    Alam M, Cameron D (2000) Optical and electrical properties of transparent conductive ITO thin films deposited by sol–gel process. Thin Solid Films 377:455–459CrossRefGoogle Scholar
  48. 48.
    Vasu V, Subrahmanyam A (1990) Reaction kinetics of the formation of indium tin oxide films grown by spray pyrolysis. Thin Solid Films 193:696–703CrossRefGoogle Scholar
  49. 49.
    Chiquito AJ, Lanfredi AJ, De Oliveira RF, Pozzi LP, Leite ER (2007) Electron dephasing and weak localization in Sn doped In2O3 nanowires. Nano Lett 7(5):1439–1443CrossRefGoogle Scholar
  50. 50.
    Wan Q, Feng P, Wang T (2006) Vertically aligned tin-doped indium oxide nanowire arrays: epitaxial growth and electron field emission properties. Appl Phys Lett 89(12):123102CrossRefGoogle Scholar
  51. 51.
    Joanni E, Savu R, de Sousa GM, Bueno PR, de Freitas JN, Nogueira AF, Longo E, Varela JA (2007) Dye-sensitized solar cell architecture based on indium–tin oxide nanowires coated with titanium dioxide. Scr Mater 57(3):277–280CrossRefGoogle Scholar
  52. 52.
    Yan C, Jiang H, Zhao T, Li C, Ma J, Lee PS (2011) Binder-free Co (OH) 2 nanoflake–ITO nanowire heterostructured electrodes for electrochemical energy storage with improved high-rate capabilities. J Mater Chem 21(28):10482–10488CrossRefGoogle Scholar
  53. 53.
    Kim D-W, Hwang I-S, Kwon SJ, Kang H-Y, Park K-S, Choi Y-J, Choi K-J, Park J-G (2007) Highly conductive coaxial SnO2− In2O3 heterostructured nanowires for Li ion battery electrodes. Nano Lett 7(10):3041–3045CrossRefGoogle Scholar
  54. 54.
    Park K-S, Kang J-G, Choi Y-J, Lee S, Kim D-W, Park J-G (2011) Long-term, high-rate lithium storage capabilities of TiO 2 nanostructured electrodes using 3D self-supported indium tin oxide conducting nanowire arrays. Energy Environ Sci 4(5):1796–1801CrossRefGoogle Scholar
  55. 55.
    Hsu CH, Chen DH (2010) Synthesis and conductivity enhancement of Al-doped ZnO nanorod array thin films. Nanotechnology 21(28):285603.  https://doi.org/10.1088/0957-4484/21/28/285603 CrossRefGoogle Scholar
  56. 56.
    Lee J-H, Park B-O (2003) Transparent conducting ZnO:Al, In and Sn thin films deposited by the sol–gel method. Thin Solid Films 426(1–2):94–99.  https://doi.org/10.1016/S0040-6090(03)00014-2 CrossRefGoogle Scholar
  57. 57.
    Kusinski GJ, Jokisaari JR, Noriega R, Goris L, Donovan M, Salleo A (2010) Transmission electron microscopy of solution-processed, intrinsic and Al-doped ZnO nanowires for transparent electrode fabrication. J Microscopy-Oxford 237(3):443–449.  https://doi.org/10.1111/j.1365-2818.2009.03289.x CrossRefGoogle Scholar
  58. 58.
    Herrero J, Guillén C (2004) Improved ITO thin films for photovoltaic applications with a thin ZnO layer by sputtering. Thin Solid Films 451–452:630–633.  https://doi.org/10.1016/j.tsf.2003.11.050 CrossRefGoogle Scholar
  59. 59.
    Ellmer K (2001) Resistivity of polycrystalline zinc oxide films: current status and physical limit. J Phys D Appl Phys 34(21):3097CrossRefGoogle Scholar
  60. 60.
    Tang W, Cameron DC (1994) Aluminum-doped zinc oxide transparent conductors deposited by the sol-gel process. Thin Solid Films 238(1):83–87.  https://doi.org/10.1016/0040-6090(94)90653-X CrossRefGoogle Scholar
  61. 61.
    Bamiduro O, Mustafa H, Mundle R, Konda RB, Pradhan AK (2007) Metal-like conductivity in transparent Al:ZnO films. Appl Phys Lett 90(25):252108.  https://doi.org/10.1063/1.2749836 CrossRefGoogle Scholar
  62. 62.
    Kun-Yang W, Cheng-Chuan W, Dong-Hwang C (2007) Preparation and conductivity enhancement of Al-doped zinc oxide thin films containing trace Ag nanoparticles by the sol–gel process. Nanotechnology 18(30):305604CrossRefGoogle Scholar
  63. 63.
    Goris L, Noriega R, Donovan M, Jokisaari J, Kusinski G, Salleo A (2009) Intrinsic and doped zinc oxide nanowires for transparent electrode fabrication via low-temperature solution synthesis. J Electron Mater 38(4):586–595.  https://doi.org/10.1007/s11664-008-0618-x CrossRefGoogle Scholar
  64. 64.
    Zang W, Wang W, Zhu D, Xing L, Xue X (2014) Humidity-dependent piezoelectric output of Al-ZnO nanowire nanogenerator and its applications as a self-powered active humidity sensor. RSC Adv 4(99):56211–56215.  https://doi.org/10.1039/C4RA10216A CrossRefGoogle Scholar
  65. 65.
    Xue XY, Nie YX, He B, Xing LL, Zhang Y, Wang ZL (2013) Surface free-carrier screening effect on the output of a ZnO nanowire nanogenerator and its potential as a self-powered active gas sensor. Nanotechnology 24(22):225501.  https://doi.org/10.1088/0957-4484/24/22/225501 CrossRefGoogle Scholar
  66. 66.
    Xu YF, Rao HS, Wang XD, Chen HY, Kuang DB, Su CY (2016) In situ formation of zinc ferrite modified Al-doped ZnO nanowire arrays for solar water splitting. J Mater Chem A 4(14):5124–5129.  https://doi.org/10.1039/c5ta10563c CrossRefGoogle Scholar
  67. 67.
    Ueda K, Hase T, Yanagi H, Kawazoe H, Hosono H, Ohta H, Orita M, Hirano M (2001) Epitaxial growth of transparent p-type conducting CuGaO 2 thin films on sapphire (001) substrates by pulsed laser deposition. J Appl Phys 89(3):1790–1793CrossRefGoogle Scholar
  68. 68.
    Nagarajan R, Draeseke A, Sleight A, Tate J (2001) P-type conductivity in CuCr 1− x Mg x O 2 films and powders. J Appl Phys 89(12):8022–8025CrossRefGoogle Scholar
  69. 69.
    Jayaraj M, Draeseke A, Tate J, Sleight A (2001) P-type transparent thin films of CuY 1− x Ca x O 2. Thin Solid Films 397(1):244–248CrossRefGoogle Scholar
  70. 70.
    Kudo A, Yanagi H, Hosono H, Kawazoe H (1998) SrCu 2 O 2: a p-type conductive oxide with wide band gap. Appl Phys Lett 73(2):220–222CrossRefGoogle Scholar
  71. 71.
    Yanagi H, Hase T, Ibuki S, Ueda K, Hosono H (2001) Bipolarity in electrical conduction of transparent oxide semiconductor CuInO 2 with delafossite structure. Appl Phys Lett 78(11):1583–1585CrossRefGoogle Scholar
  72. 72.
    Scanlon DO, Watson GW (2009) (Cu2S2)(Sr3Sc2O5)− a layered, direct band gap, p-type transparent conducting Oxychalcogenide: a theoretical analysis. Chem Mater 21(22):5435–5442CrossRefGoogle Scholar
  73. 73.
    Hirose H, Ueda K, Kawazoe H, Hosono H (2002) Electronic structure of Sr2Cu2ZnO2S2 layered oxysulfide with CuS layers. Chem Mater 14(3):1037–1041CrossRefGoogle Scholar
  74. 74.
    Subrahmanyam A, Barik UK (2005) Synthesis of P-type transparent conducting silver: indium oxide (AIO) thin films by reactive electron beam evaporation technique. J Phys Chem Solids 66(5):817–822CrossRefGoogle Scholar
  75. 75.
    Golshahi S, Rozati S, Martins R, Fortunato E (2009) P-type ZnO thin film deposited by spray pyrolysis technique: the effect of solution concentration. Thin Solid Films 518(4):1149–1152CrossRefGoogle Scholar
  76. 76.
    Parreira P, Lavareda G, Valente J, Nunes F, Amaral A, de Carvalho CN (2010) Optoelectronic properties of transparent p-type semiconductor CuxS thin films. Physica Status Solidi (a) 207(7):1652–1654CrossRefGoogle Scholar
  77. 77.
    Chen H-Y, Su H-C, Chen C-H, Liu K-L, Tsai C-M, Yen S-J, Yew T-R (2011) Indium-doped molybdenum oxide as a new p-type transparent conductive oxide. J Mater Chem 21(15):5745–5752CrossRefGoogle Scholar
  78. 78.
    Liu Y, Pollaor S, Wu Y (2015) Electrohydrodynamic processing of p-type transparent conducting oxides. J Nanomater 2015:1Google Scholar
  79. 79.
    Hu L, Hecht DS, Gruner G (2010) Carbon nanotube thin films: fabrication, properties, and applications. Chem Rev 110(10):5790–5844CrossRefGoogle Scholar
  80. 80.
    Wu Z, Chen Z, Du X, Logan JM, Sippel J, Nikolou M, Kamaras K, Reynolds JR, Tanner DB, Hebard AF (2004) Transparent, conductive carbon nanotube films. Science 305(5688):1273–1276CrossRefGoogle Scholar
  81. 81.
    Pei S, Du J, Zeng Y, Liu C, Cheng H-M (2009) The fabrication of a carbon nanotube transparent conductive film by electrophoretic deposition and hot-pressing transfer. Nanotechnology 20(23):235707CrossRefGoogle Scholar
  82. 82.
    Tenent RC, Barnes TM, Bergeson JD, Ferguson AJ, To B, Gedvilas LM, Heben MJ, Blackburn JL (2009) Ultrasmooth, large-area, high-uniformity, conductive transparent single-walled-carbon-nanotube films for photovoltaics produced by ultrasonic spraying. Adv Mater 21(31):3210–3216CrossRefGoogle Scholar
  83. 83.
    Geng H-Z, Kim KK, So KP, Lee YS, Chang Y, Lee YH (2007) Effect of acid treatment on carbon nanotube-based flexible transparent conducting films. J Am Chem Soc 129(25):7758–7759CrossRefGoogle Scholar
  84. 84.
    Wang X, Zhi L, Müllen K (2008) Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett 8(1):323–327CrossRefGoogle Scholar
  85. 85.
    Li X, Zhu Y, Cai W, Borysiak M, Han B, Chen D, Piner RD, Colombo L, Ruoff RS (2009) Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett 9(12):4359–4363CrossRefGoogle Scholar
  86. 86.
    Kobayashi T, Bando M, Kimura N, Shimizu K, Kadono K, Umezu N, Miyahara K, Hayazaki S, Nagai S, Mizuguchi Y (2013) Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process. Appl Phys Lett 102(2):023112CrossRefGoogle Scholar
  87. 87.
    Kong B-S, Jung D-H, Oh S-K, Han C-S, Jung H-T (2007) Single-walled carbon nanotube gold nanohybrids: application in highly effective transparent and conductive films. J Phys Chem C 111(23):8377–8382CrossRefGoogle Scholar
  88. 88.
    Hu L, Zhao YL, Ryu K, Zhou C, Stoddart JF, Grüner G (2008) Light-induced charge transfer in pyrene/CdSe-SWNT hybrids. Adv Mater 20(5):939–946CrossRefGoogle Scholar
  89. 89.
    Lee P, Ham J, Lee J, Hong S, Han S, Suh YD, Lee SE, Yeo J, Lee SS, Lee D (2014) Highly stretchable or transparent conductor fabrication by a hierarchical multiscale hybrid nanocomposite. Adv Funct Mater 24(36):5671–5678CrossRefGoogle Scholar
  90. 90.
    Lee J-Y, Connor ST, Cui Y, Peumans P (2008) Solution-processed metal nanowire mesh transparent electrodes. Nano Lett 8(2):689–692CrossRefGoogle Scholar
  91. 91.
    De S, Higgins TM, Lyons PE, Doherty EM, Nirmalraj PN, Blau WJ, Boland JJ, Coleman JN (2009) Silver nanowire networks as flexible, transparent, conducting films: extremely high DC to optical conductivity ratios. ACS Nano 3(7):1767–1774CrossRefGoogle Scholar
  92. 92.
    Bergin SM, Chen Y-H, Rathmell AR, Charbonneau P, Li Z-Y, Wiley BJ (2012) The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films. Nanoscale 4(6):1996–2004CrossRefGoogle Scholar
  93. 93.
    Lee J, Lee P, Lee H, Lee D, Lee SS, Ko SH (2012) Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel. Nanoscale 4(20):6408–6414CrossRefGoogle Scholar
  94. 94.
    Hu L, Kim HS, Lee J-Y, Peumans P, Cui Y (2010) Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 4(5):2955–2963CrossRefGoogle Scholar
  95. 95.
    Kim T, Canlier A, Kim GH, Choi J, Park M, Han SM (2013) Electrostatic spray deposition of highly transparent silver nanowire electrode on flexible substrate. ACS Appl Mater Interfaces 5(3):788–794CrossRefGoogle Scholar
  96. 96.
    Madaria AR, Kumar A, Zhou C (2011) Large scale, highly conductive and patterned transparent films of silver nanowires on arbitrary substrates and their application in touch screens. Nanotechnology 22(24):245201CrossRefGoogle Scholar
  97. 97.
    Tokuno T, Nogi M, Karakawa M, Jiu J, Nge TT, Aso Y, Suganuma K (2011) Fabrication of silver nanowire transparent electrodes at room temperature. Nano Res 4(12):1215–1222CrossRefGoogle Scholar
  98. 98.
    Spechler JA, Arnold CB (2012) Direct-write pulsed laser processed silver nanowire networks for transparent conducting electrodes. Appl Phys A 108(1):25–28CrossRefGoogle Scholar
  99. 99.
    Lee D, Lee H, Ahn Y, Jeong Y, Lee D-Y, Lee Y (2013) Highly stable and flexible silver nanowire–graphene hybrid transparent conducting electrodes for emerging optoelectronic devices. Nanoscale 5(17):7750–7755CrossRefGoogle Scholar
  100. 100.
    Yu Z, Zhang Q, Li L, Chen Q, Niu X, Liu J, Pei Q (2011) Highly flexible silver nanowire electrodes for shape-memory polymer light-emitting diodes. Adv Mater 23(5):664–668CrossRefGoogle Scholar
  101. 101.
    Gaynor W, Burkhard GF, McGehee MD, Peumans P (2011) Smooth nanowire/polymer composite transparent electrodes. Adv Mater 23(26):2905–2910CrossRefGoogle Scholar
  102. 102.
    Rathmell AR, Bergin SM, Hua YL, Li ZY, Wiley BJ (2010) The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films. Adv Mater 22(32):3558–3563CrossRefGoogle Scholar
  103. 103.
    Survey G (2016) Mineral commodity summaries 2016. Government Printing OfficeGoogle Scholar
  104. 104.
    Zhang D, Wang R, Wen M, Weng D, Cui X, Sun J, Li H, Lu Y (2012) Synthesis of ultralong copper nanowires for high-performance transparent electrodes. J Am Chem Soc 134(35):14283–14286CrossRefGoogle Scholar
  105. 105.
    Hsu P-C, Wu H, Carney TJ, McDowell MT, Yang Y, Garnett EC, Li M, Hu L, Cui Y (2012) Passivation coating on electrospun copper nanofibers for stable transparent electrodes. ACS Nano 6(6):5150–5156CrossRefGoogle Scholar
  106. 106.
    Guo H, Lin N, Chen Y, Wang Z, Xie Q, Zheng T, Gao N, Li S, Kang J, Cai D (2013) Copper nanowires as fully transparent conductive electrodes. Sci Rep 3:2323CrossRefGoogle Scholar
  107. 107.
    Kiruthika S, Gupta R, Rao K, Chakraborty S, Padmavathy N, Kulkarni GU (2014) Large area solution processed transparent conducting electrode based on highly interconnected Cu wire network. J Mater Chem C 2(11):2089–2094CrossRefGoogle Scholar
  108. 108.
    Kang M-G, Park HJ, Ahn SH, Guo LJ (2010) Transparent Cu nanowire mesh electrode on flexible substrates fabricated by transfer printing and its application in organic solar cells. Sol Energy Mater Sol Cells 94(6):1179–1184CrossRefGoogle Scholar
  109. 109.
    Yang L, Zhang T, Zhou H, Price SC, Wiley BJ, You W (2011) Solution-processed flexible polymer solar cells with silver nanowire electrodes. ACS Appl Mater Interfaces 3(10):4075–4084CrossRefGoogle Scholar
  110. 110.
    Kim A, Won Y, Woo K, Kim C-H, Moon J (2013) Highly transparent low resistance ZnO/Ag nanowire/ZnO composite electrode for thin film solar cells. ACS Nano 7(2):1081–1091CrossRefGoogle Scholar
  111. 111.
    Xu F, Zhu Y (2012) Highly conductive and stretchable silver nanowire conductors. Adv Mater 24(37):5117–5122.  https://doi.org/10.1002/adma.201201886 CrossRefGoogle Scholar
  112. 112.
    Liang J, Li L, Tong K, Ren Z, Hu W, Niu X, Chen Y, Pei Q (2014) Silver nanowire percolation network soldered with graphene oxide at room temperature and its application for fully stretchable polymer light-emitting diodes. ACS Nano 8(2):1590–1600CrossRefGoogle Scholar
  113. 113.
    Hu L, Gruner G, Li D, Kaner RB, Cech J (2007) Patternable transparent carbon nanotube films for electrochromic devices. AIPGoogle Scholar
  114. 114.
    Yoon YH, Song JW, Kim D, Kim J, Park JK, Oh SK, Han CS (2007) Transparent film heater using single-walled carbon nanotubes. Adv Mater 19(23):4284–4287CrossRefGoogle Scholar
  115. 115.
    Wan Q, Huang J, Xie Z, Wang T, Dattoli EN, Lu W (2008) Branched Sn O 2 nanowires on metallic nanowire backbones for ethanol sensors application. Appl Phys Lett 92(10):102101CrossRefGoogle Scholar
  116. 116.
    Kurowska E, Brzózka A, Jarosz M, Sulka G, Jaskuła M (2013) Silver nanowire array sensor for sensitive and rapid detection of H 2 O 2. Electrochim Acta 104:439–447CrossRefGoogle Scholar
  117. 117.
    Amjadi M, Pichitpajongkit A, Lee S, Ryu S, Park I (2014) Highly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocomposite. ACS Nano 8(5):5154–5163CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringNational Tsing Hua UniversityHsinchuTaiwan

Personalised recommendations