Advertisement

Metal-Semiconductor Compound Contacts to Nanowire Transistors

  • Renjie Chen
  • Shadi A. DayehEmail author
Chapter
Part of the Nanostructure Science and Technology book series (NST)

Abstract

Compound contacts, formed by thermal annealing of metal-semiconductor nanowires (NWs), are prescribed for lithography-free self-aligned gate processes. Investigations of nanoscale contact metallization have revealed distinctive behaviors from their bulk counterparts, evoking reevaluation of the thermodynamics, kinetics, and resultant phases in alloyed and compound nanoscale contacts. In this chapter, we focus on several critical semiconductor materials of practical importance for devices, e.g., Si, Ge, and III–V NWs, and provide in-depth discussions on the phases of compound contacts, their reaction kinetics, and electrical properties. In Sect. 5.2, we introduce the phase selection rules that lead to multiphase coexistence in low-dimensional NW semiconductor channels. In Sect. 5.3, we discuss the kinetic processes during these solid-state reactions and present a model that can be used to distinguish the rate-limiting steps and to extrapolate the reaction kinetic parameters. In Sect. 5.4, we will introduce electrical properties of NW transistors with these compound contacts and summarize different applications of these contacts including ultrashort channel devices. This entire chapter is organized to demonstrate the promise of compound contacts in nanoscale electronics.

Keywords

Compound contact Solid-state reaction Silicide Germanide Nickelide to III–V Thermodynamics Kinetics Surface and volume diffusions Interface Electrical properties 

Notes

Acknowledgment

This work was supported by the LDRD program at Los Alamos National Laboratory, the National Science Foundation (DMR-1503595, NSF CAREER Award ECCS-1351980). Several reported works in this chapter were performed, in part, at the Center for Integrated Nanotechnologies, Center for Integrated Nanotechnologies (CINT), a US Department of Energy Office of Basic Energy Sciences user facility at Los Alamos National Laboratory (Contract DE-AC52-06NA25396), and Sandia National Laboratories (Contract DE-AC04-94AL85000). The authors would like to acknowledge discussions with former members of the Integrated Electronics and Biointerfaces Laboratory, Drs. Xing Dai, Wei Tang, and Binh-Minh Nguyen.

References

  1. 1.
    Cui Y, Lieber CM (2001) Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291(5505):851–853CrossRefGoogle Scholar
  2. 2.
    Duan X, Huang Y, Cui Y, Wang J, Lieber CM (2001) Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409(6816):66–69CrossRefGoogle Scholar
  3. 3.
    Huang Y, Duan X, Cui Y, Lauhon LJ, Kim K-H, Lieber CM (2001) Logic gates and computation from assembled nanowire building blocks. Science 294(5545):1313–1317CrossRefGoogle Scholar
  4. 4.
    Huang Y, Duan X, Wei Q, Lieber CM (2001) Directed assembly of one-dimensional nanostructures into functional networks. Science 291(5504):630–633CrossRefGoogle Scholar
  5. 5.
    Dayeh SA, Aplin DP, Zhou X, Yu PK, Yu ET, Wang D (2007) High electron mobility InAs nanowire field-effect transistors. Small 3(2):326–332CrossRefGoogle Scholar
  6. 6.
    Dayeh SA, Susac D, Kavanagh KL, Yu ET, Wang D (2008) Field dependent transport properties in InAs nanowire field effect transistors. Nano Lett 8(10):3114–3119CrossRefGoogle Scholar
  7. 7.
    Dayeh SA, Soci C, Bao X-Y, Wang D (2009) Advances in the synthesis of InAs and GaAs nanowires for electronic applications. Nano Today 4(4):347–358CrossRefGoogle Scholar
  8. 8.
    Gudiksen MS, Lauhon LJ, Wang J, Smith DC, Lieber CM (2002) Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415(6872):617–620CrossRefGoogle Scholar
  9. 9.
    Barrelet CJ, Greytak AB, Lieber CM (2004) Nanowire photonic circuit elements. Nano Lett 4(10):1981–1985CrossRefGoogle Scholar
  10. 10.
    Yan R, Gargas D, Yang P (2009) Nanowire photonics. Nat Photonics 3(10):569–576CrossRefGoogle Scholar
  11. 11.
    Wu Y, Xiang J, Yang C, Lu W, Lieber CM (2004) Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures. Nature 430(6995):61–65CrossRefGoogle Scholar
  12. 12.
    Requist R, Baruselli PP, Smogunov A, Fabrizio M, Modesti S, Tosatti E (2016) Metallic, magnetic and molecular nanocontacts. Nat Nanotechnol 11(6):499–508CrossRefGoogle Scholar
  13. 13.
    Zhou Y, Ogawa M, Han X, Wang KL (2008) Alleviation of Fermi-level pinning effect on metal/germanium interface by insertion of an ultrathin aluminum oxide. Appl Phys Lett 93(20):2105CrossRefGoogle Scholar
  14. 14.
    Sze SM, Ng KK (2006) Physics of semiconductor devices. Wiley, New YorkCrossRefGoogle Scholar
  15. 15.
    Chen L-J, Wu W-W (2015) Metal silicide nanowires. Jpn JAppl Phys 54(7S2):07JA04CrossRefGoogle Scholar
  16. 16.
    Lin Y-C, Huang Y (2013) Nanoscale contact engineering for Si nanowire devices. In: Silicon and silicide nanowires: applications, fabrication, and properties. Pan Stanford Publishing, Singapore, p 413CrossRefGoogle Scholar
  17. 17.
    Tang W, Nguyen B-M, Chen R, Dayeh SA (2014) Solid-state reaction of nickel silicide and germanide contacts to semiconductor nanochannels. Semicond Sci Technol 29(5):054004CrossRefGoogle Scholar
  18. 18.
    Tang J, Wang C-Y, Xiu F, Zhou Y, Chen L-J, Wang KL (2011) Formation and device application of Ge nanowire heterostructures via rapid thermal annealing. Adv Mater Sci Eng 2011:316513Google Scholar
  19. 19.
    Del Alamo JA (2011) Nanometre-scale electronics with III-V compound semiconductors. Nature 479(7373):317–323CrossRefGoogle Scholar
  20. 20.
    Nishi Y, Doering R (2000) Handbook of semiconductor manufacturing technology. CRC Press, Boca RatonGoogle Scholar
  21. 21.
    Chen LJ (2004) Silicide technology for integrated circuits, vol 5. IetGoogle Scholar
  22. 22.
    Lavoie C, d’Heurle F, Detavernier C, Cabral C (2003) Towards implementation of a nickel silicide process for CMOS technologies. Microelectron Eng 70(2):144–157CrossRefGoogle Scholar
  23. 23.
    Ahn C-G, Kim T-Y, Yang J-H, Baek I-B, W-j C, Lee S (2008) A two-step annealing process for Ni silicide formation in an ultra-thin body RF SOI MOSFET. Mater Sci Eng B 147(2):183–186CrossRefGoogle Scholar
  24. 24.
    Zhang Z, Pagette F, D'emic C, Yang B, Lavoie C, Zhu Y, Hopstaken M, Maurer S, Murray C, Guillorn M (2010) Sharp reduction of contact resistivities by effective Schottky barrier lowering with silicides as diffusion sources. IEEE Electron Device Letters 31(7):731–733CrossRefGoogle Scholar
  25. 25.
    Tu K-N, Alessandrini EI, Chu W-K, Krautle H, Mayer JW (1974) Epitaxial growth of nickel silicide NiSi2 on silicon. Jpn J Appl Phys 13(S1):669CrossRefGoogle Scholar
  26. 26.
    Tang W, Dayeh SA, Picraux ST, Huang JY, Tu K-N (2012) Figure. Nano Lett 12(8):3979–3985CrossRefGoogle Scholar
  27. 27.
    Lin Y-C, Chen Y, Xu D, Huang Y (2010) Growth of nickel silicides in Si and Si/SiOx core/shell nanowires. Nano Lett 10(11):4721–4726CrossRefGoogle Scholar
  28. 28.
    Chen Y, Lin Y-C, Huang C-W, Wang C-W, Chen L-J, Wu W-W, Huang Y (2012) Kinetic competition model and size-dependent phase selection in 1-D nanostructures. Nano Lett 12(6):3115–3120CrossRefGoogle Scholar
  29. 29.
    Chen Y, Lin Y-C, Zhong X, Cheng H-C, Duan X, Huang Y (2013) Kinetic manipulation of silicide phase formation in Si nanowire templates. Nano Lett 13(8):3703–3708CrossRefGoogle Scholar
  30. 30.
    Pretorius R (1996) Prediction of silicide formation and stability using heats of formation. Thin Solid Films 290:477–484CrossRefGoogle Scholar
  31. 31.
    d'Heurle F, Gas P (1986) Kinetics of formation of silicides: A review. J Mater Res 1(01):205–221CrossRefGoogle Scholar
  32. 32.
    Mangelinck D, Hoummada K, Blum I (2009) Kinetics of a transient silicide during the reaction of Ni thin film with (100) Si. Appl Phys Lett 95(18):1902CrossRefGoogle Scholar
  33. 33.
    Van Bockstael C, Detavernier C, Van Meirhaeghe R, Jordan-Sweet J, Lavoie C (2009) In situ study of the formation of silicide phases in amorphous Ni–Si mixed layers. J Appl Phys 106(6):064515CrossRefGoogle Scholar
  34. 34.
    Schlesinger ME (1990) Thermodynamics of solid transition-metal silicides. Chem Rev 90(4):607–628CrossRefGoogle Scholar
  35. 35.
    Ogata K, Sutter E, Zhu X, Hofmann S (2011) Ni-silicide growth kinetics in Si and Si/SiO2 core/shell nanowires. Nanotechnology 22(36):365305CrossRefGoogle Scholar
  36. 36.
    Lin Y-C, Chen Y, Chen R, Ghosh K, Xiong Q, Huang Y (2012) Crystallinity control of ferromagnetic contacts in stressed nanowire templates and the magnetic domain anisotropy. Nano Lett 12(8):4341–4348.  https://doi.org/10.1021/nl302113r CrossRefGoogle Scholar
  37. 37.
    Chen Y, Huang Y (2013) Phase control in solid state silicide nanowire formation. Phys Status solidi (c) 10(12):1666–1669CrossRefGoogle Scholar
  38. 38.
    Lu K-C, Wu W-W, Wu H-W, Tanner CM, Chang JP, Chen LJ, Tu KN (2007) In situ control of atomic-scale Si layer with huge strain in the nanoheterostructure NiSi/Si/NiSi through point contact reaction. Nano Lett 7(8):2389–2394.  https://doi.org/10.1021/nl071046u CrossRefGoogle Scholar
  39. 39.
    Chou Y-C, Wu W-W, Chen L-J, Tu K-N (2009) Homogeneous nucleation of epitaxial CoSi2 and NiSi in Si nanowires. Nano Lett 9(6):2337–2342.  https://doi.org/10.1021/nl900779j CrossRefGoogle Scholar
  40. 40.
    Loomans M, Chi D, Chua S (2004) Monosilicide-disilicide-silicon phase equilibria in the nickel-platinum-silicon and nickel-palladium-silicon systems. Metall Mater Trans A 35(10):3053–3061CrossRefGoogle Scholar
  41. 41.
    Liu J, Chen H, Feng J (2000) Enhanced thermal stability of NiSi films on Si (111) substrates by a thin Pt interlayer. J Cryst Growth 220(4):488–493CrossRefGoogle Scholar
  42. 42.
    Lew KK, Pan L, Dickey EC, Redwing JM (2003) Vapor–liquid–solid growth of silicon–germanium nanowires. Adv Mater 15(24):2073–2076CrossRefGoogle Scholar
  43. 43.
    Lauhon LJ, Gudiksen MS, Wang D, Lieber CM (2002) Epitaxial core–shell and core–multishell nanowire heterostructures. Nature 420(6911):57–61CrossRefGoogle Scholar
  44. 44.
    Dellas N, Minassian S, Redwing J, Mohney S (2010) Formation of nickel germanide contacts to Ge nanowires. Appl Phys Lett 97(26):263116CrossRefGoogle Scholar
  45. 45.
    Ellner M, Gödecke T, Schubert K (1971) Zur struktur der mischung Nickel-Germanium. J Less Common Met 24(1):23–40CrossRefGoogle Scholar
  46. 46.
    Pearson WB, Villars P, Calvert LD (1985) Pearson’s handbook of crystallographic data for intermetallic phases, vol 1. American Society for Metals, Materials ParkGoogle Scholar
  47. 47.
    Tang J, Wang C-Y, Xiu F, Hong AJ, Chen S, Wang M, Zeng C, Yang H-J, Tuan H-Y, Tsai C-J (2010) Single-crystalline Ni2Ge/Ge/Ni2Ge nanowire heterostructure transistors. Nanotechnology 21(50):505704CrossRefGoogle Scholar
  48. 48.
    Bhan S, Kudielka H (1978) Ordered bcc-phases at high temperatures in alloys of transition metals and B-subgroup elements. Z Met 69:333–336Google Scholar
  49. 49.
    Suzuki T, Oya Y, Ochiai S (1984) The mechanical behavior of nonstoichiometric compounds Ni3Si, Ni3Ge, and Fe3Ga. Metall Trans A 15(1):173–181CrossRefGoogle Scholar
  50. 50.
    Frank DJ (2002) Power-constrained CMOS scaling limits. IBM J Res Dev 46(2.3):235–244CrossRefGoogle Scholar
  51. 51.
    Theis TN, Solomon PM (2010) In quest of the “next switch”: prospects for greatly reduced power dissipation in a successor to the silicon field-effect transistor. Proc IEEE 98(12):2005–2014CrossRefGoogle Scholar
  52. 52.
    Dimoulas A, Toriumi A, Mohney SE (2009) Source and drain contacts for germanium and III–V FETs for digital logic. MRS Bull 34(07):522–529CrossRefGoogle Scholar
  53. 53.
    Sands T, Palmstrøm C, Harbison J, Keramidas V, Tabatabaie N, Cheeks T, Ramesh R, Silberberg Y (1990) Stable and epitaxial metal/III-V semiconductor heterostructures. Mat Sci Rep 5(3):99–170CrossRefGoogle Scholar
  54. 54.
    Murakami M, Koide Y (1998) Ohmic contacts for compound semiconductors. Crit Rev Solid State Mat Sci 23(1):1–60CrossRefGoogle Scholar
  55. 55.
    Chueh Y-L, Ford AC, Ho JC, Jacobson ZA, Fan Z, Chen C-Y, Chou L-J, Javey A (2008) Formation and Characterization of NixInAs/InAs Nanowire Heterostructures by Solid Source Reaction. Nano Lett 8(12):4528–4533CrossRefGoogle Scholar
  56. 56.
    Liu C-H, Chen S-Y, Chen C-Y, He J-H, Chen L-J, Ho JC, Chueh Y-L (2011) Kinetic growth of self-formed In2O3 nanodots via phase segregation: Ni/InAs system. ACS Nano 5(8):6637–6642CrossRefGoogle Scholar
  57. 57.
    Chen S-Y, Wang C-Y, Ford AC, Chou J-C, Wang Y-C, Wang F-Y, Ho JC, Wang H-C, Javey A, Gan J-Y (2013) Influence of catalyst choices on transport behaviors of InAs NWs for high-performance nanoscale transistors. Phys Chem Chem Phys 15(8):2654–2659CrossRefGoogle Scholar
  58. 58.
    Schusteritsch G, Hepplestone SP, Pickard CJ (2015) First-principles structure determination of interface materials: the Ni x InAs nickelides. Phys Rev B 92(5):054105CrossRefGoogle Scholar
  59. 59.
    Oxland R, Chang S, Li X, Wang S, Radhakrishnan G, Priyantha W, van Dal M, Hsieh C, Vellianitis G, Doornbos G (2012) An ultralow-resistance ultrashallow metallic source/drain contact scheme for III–V NMOS. Electron Device Letters, IEEE 33(4):501–503CrossRefGoogle Scholar
  60. 60.
    Ogawa M (1980) Alloying reaction in thin nickel films deposited on GaAs. Thin Solid Films 70(1):181–189CrossRefGoogle Scholar
  61. 61.
    Lahav A, Eizenberg M, Komem Y (1986) Interfacial reactions between Ni films and GaAs. J Appl Phys 60(3):991–1001CrossRefGoogle Scholar
  62. 62.
    Palmstrom C (1988) Lateral diffusion in Ni-GaAs couples investigated by transmission electron microscopy. J Mater Res 3(6)Google Scholar
  63. 63.
    Guérin R, Guivarc’h A (1989) Metallurgical study of Ni/GaAs contacts. I. Experimental determination of the solid portion of the Ni-Ga-As ternary-phase diagram. J Appl Phys 66(5):2122–2128CrossRefGoogle Scholar
  64. 64.
    Guivarc’h A, Guérin R, Caulet J, Poudoulec A, Fontenille J (1989) Metallurgical study of Ni/GaAs contacts. II. Interfacial reactions of Ni thin films on (111) and (001) GaAs. J Appl Phys 66(5):2129–2136CrossRefGoogle Scholar
  65. 65.
    Ivana LFY, Zhang X, Zhou Q, Pan J, Kong E, Samuel Owen MH, Yeo Y-C (2013) Crystal structure and epitaxial relationship of Ni4InGaAs2 films formed on InGaAs by annealing. J Vac Sci Technol B 31(1):012202CrossRefGoogle Scholar
  66. 66.
    Shekhter P, Mehari S, Ritter D, Eizenberg M (2013) Epitaxial NiInGaAs formed by solid state reaction on In0.53Ga0.47As: structural and chemical study. Journal of Vacuum Science & Technology B 31(3):031205CrossRefGoogle Scholar
  67. 67.
    Chen R, Dayeh SA (2015) Size and orientation effects on the kinetics and structure of nickelide contacts to InGaAs fin structures. Nano Lett 15(6):3770–3779CrossRefGoogle Scholar
  68. 68.
    Zhiou S, Rodriguez P, Gergaud P, Nemouchi F, Thanh TN (2015) Influence of the substrate on the solid-state reaction of ultra-thin Ni film with a In0.53Ga0.47As under-layer by means of full 3D reciprocal space mapping. 2015 I.E. International Interconnect Technology Conference and 2015 I.E. Materials for Advanced Metallization Conference (IITC/MAM):63–66Google Scholar
  69. 69.
    Dai X, Nguyen BM, Hwang Y, Soci C, Dayeh SA (2014) Novel heterogeneous integration technology of III–V layers and InGaAs finFETs to silicon. Adv Funct Mater 24(28):4420–4426CrossRefGoogle Scholar
  70. 70.
    Song Y, Schmitt AL, Jin S (2007) Ultralong Single-Crystal Metallic Ni2Si Nanowires with Low Resistivity. Nano Lett 7(4):965–969CrossRefGoogle Scholar
  71. 71.
    Lee C-Y, Lu M-P, Liao K-F, Wu W-W, Chen L-J (2008) Vertically well-aligned epitaxial Ni31Si12 nanowire arrays with excellent field emission properties. Appl Phys Lett 93(11)Google Scholar
  72. 72.
    Lin Y-C, Lu K-C, Wu W-W, Bai J, Chen LJ, Tu KN, Huang Y (2008) Single crystalline PtSi nanowires, PtSi/Si/PtSi nanowire heterostructures, and nanodevices. Nano Lett 8(3):913–918CrossRefGoogle Scholar
  73. 73.
    Chou Y-C, Wu W-W, Cheng S-L, Yoo B-Y, Myung N, Chen LJ, Tu KN (2008) In-situ TEM observation of repeating events of nucleation in epitaxial growth of nano CoSi2 in nanowires of Si. Nano Lett 8(8):2194–2199CrossRefGoogle Scholar
  74. 74.
    Lin Y-C, Chen Y, Shailos A, Huang Y (2010) Detection of spin polarized carrier in silicon nanowire with single crystal MnSi as magnetic contacts. Nano Lett 10(6):2281–2287CrossRefGoogle Scholar
  75. 75.
    Tang J, Wang C-Y, Xiu F, Lang M, Chu L-W, Tsai C-J, Chueh Y-L, Chen L-J, Wang KL (2011) Oxide-confined formation of germanium nanowire heterostructures for high-performance transistors. ACS Nano 5(7):6008–6015CrossRefGoogle Scholar
  76. 76.
    Burchhart T, Lugstein A, Hyun Y, Hochleitner G, Bertagnolli E (2009) Atomic scale alignment of copper-germanide contacts for ge nanowire metal oxide field effect transistors. Nano Lett 9(11):3739–3742CrossRefGoogle Scholar
  77. 77.
    Tang J, Wang C-Y, Hung M-H, Jiang X, Chang L-T, He L, Liu P-H, Yang H-J, Tuan H-Y, Chen L-J (2012) Ferromagnetic germanide in Ge nanowire transistors for spintronics application. ACS Nano 6(6):5710–5717CrossRefGoogle Scholar
  78. 78.
    Appenzeller J, Knoch J, Tutuc E, Reuter M, Guha S (2006) Dual-gate silicon nanowire transistors with nickel silicide contacts. Electron Devices Meeting (IEDM):1–4Google Scholar
  79. 79.
    Katsman A, Yaish Y, Rabkin E, Beregovsky M (2010) Surface diffusion controlled formation of nickel silicides in silicon nanowires. J Elec Materi 39(4):365–370CrossRefGoogle Scholar
  80. 80.
    Dellas NS, Abraham M, Minassian S, Kendrick C, Mohney SE (2011) Kinetics of reactions of Ni contact pads with Si nanowires. J Mater Res 26(17):2282–2285CrossRefGoogle Scholar
  81. 81.
    Yaish YE, Katsman A, Cohen GM, Beregovsky M (2011) Kinetics of nickel silicide growth in silicon nanowires: From linear to square root growth. J Appl Phys 109(9):094303CrossRefGoogle Scholar
  82. 82.
    Kidson GV (1961) Some aspects of the growth of diffusion layers in binary systems. J Nucl Mater 3(1):21–29CrossRefGoogle Scholar
  83. 83.
    Gösele U, Tu K (1982) Growth kinetics of planar binary diffusion couples: “Thin-film case” versus “bulk cases”. J Appl Phys 53(4):3252–3260CrossRefGoogle Scholar
  84. 84.
    Chen L, Wu W (2010) In situ TEM investigation of dynamical changes of nanostructures. Mater Sci Eng: R: Rep 70(3):303–319CrossRefGoogle Scholar
  85. 85.
    Lim K-Y, Lee H, Ryu C, Seo K-I, Kwon U, Kim S, Choi J, Oh K, Jeon H-K, Song C (2010) Novel stress-memorization-technology (SMT) for high electron mobility enhancement of gate last high-k/metal gate devices. In: Electron Devices Meeting (IEDM). IEEE International, 2010. IEEE, pp 10.11. 11-10.11. 14Google Scholar
  86. 86.
    Yamaguchi T, Kashihara K, Kudo S, Tsutsumi T, Okudaira T, Maekawa K, Hirose Y, Asai K, Yoneda M (2010) Characterizations of NiSi2-whisker defects in n-channel metal–oxide–semiconductor field-effect transistors with< 110> channel on Si (100). Jpn J Appl Phys 49(12R):126503CrossRefGoogle Scholar
  87. 87.
    Tang W, Picraux ST, Huang JY, Gusak AM, Tu K-N, Dayeh SA (2013) Nucleation and atomic layer reaction in nickel silicide for defect-engineered Si nanochannels. Nano Lett 13(6):2748–2753CrossRefGoogle Scholar
  88. 88.
    Dayeh S, Gin A, Picraux S (2011) Advanced core/multishell germanium/silicon nanowire heterostructures: morphology and transport. Appl Phys Lett 98(16):163112CrossRefGoogle Scholar
  89. 89.
    Fauske VT, Huh J, Divitini G, Dheeraj DL, Munshi AM, Ducati C, Weman H, Fimland B-O, van Helvoort ATJ (2016) In Situ Heat-Induced Replacement of GaAs Nanowires by Au. Nano Lett 16(5):3051–3057CrossRefGoogle Scholar
  90. 90.
    King T-J (2005) Taking silicon to the limit: challenges and opportunities. Electrochem Soc Interface:39Google Scholar
  91. 91.
    Léonard F, Talin AA (2011) Electrical contacts to one-and two-dimensional nanomaterials. Nat Nanotechnol 6(12):773–783CrossRefGoogle Scholar
  92. 92.
    Maszara W (2005) Fully silicided metal gates for high-performance CMOS technology: a review. J Electrochem Soc 152(7):G550–G555CrossRefGoogle Scholar
  93. 93.
    Tung R (1990) Schottky-barrier formation at single-crystal metal-semiconductor interfaces. In: Electronic structure of metal-semiconductor contacts. Springer, Dordrecht, pp 169–172CrossRefGoogle Scholar
  94. 94.
    Czornomaz L, El Kazzi M, Hopstaken M, Caimi D, Mächler P, Rossel C, Bjoerk M, Marchiori C, Siegwart H, Fompeyrine J (2012) CMOS compatible self-aligned S/D regions for implant-free InGaAs MOSFETs. Solid State Electron 74:71–76CrossRefGoogle Scholar
  95. 95.
    Subramanian S, Zhou Q, Zhang X, Balakrishnan M, Yeo Y-C (2011) Selective wet etching process for Ni-InGaAs contact formation in InGaAs N-MOSFETs with self-aligned source and drain. J Electrochem Soc 159(1):H16–H21CrossRefGoogle Scholar
  96. 96.
    Kim S, Yokoyama M, Taoka N, Iida R, Lee S, Nakane R, Urabe Y, Miyata N, Yasuda T, Yamada H (2010) Self-aligned metal source/drain InxGa1-xAs n-MOSFETs using Ni-InGaAs alloy. In: Electron Devices Meeting (IEDM). IEEE International, 2010. IEEE, pp 26.26. 21–26.26. 24Google Scholar
  97. 97.
    Zhang X, Guo HX, Gong X, Zhou Q, Yeo Y-C (2012) A self-aligned Ni-InGaAs contact technology for InGaAs channel n-MOSFETs. J Electrochem Soc 159(5):H511–H515CrossRefGoogle Scholar
  98. 98.
    Ivana PJ, Zhang Z, Zhang X, Guo H, Gong X, Yeo Y-C (2011) Photoelectron spectroscopy study of band alignment at interface between Ni-InGaAs and In0.53Ga0.47As. Appl Phys Lett 99(1):012105–012103CrossRefGoogle Scholar
  99. 99.
    Mehari S, Gavrilov A, Cohen S, Shekhter P, Eizenberg M, Ritter D (2012) Measurement of the Schottky barrier height between Ni-InGaAs alloy and In0.53Ga0.47As. Appl Phys Lett 101(7):072103–072104CrossRefGoogle Scholar
  100. 100.
    Kim S, Yokoyama M, Taoka N, Iida R, Lee S, Nakane R, Urabe Y, Miyata N, Yasuda T, Yamada H (2011) Self-aligned metal source/drain InxGa1-xAs n-metal--oxide--semiconductor field-effect transistors using Ni--InGaAs alloy. Appl Phys Express 4(2):4201Google Scholar
  101. 101.
    Tan EJ, Pey K-L, Singh N, Lo G-Q, Chi DZ, Chin YK, Hoe KM, Cui G, Lee PS (2008) Demonstration of Schottky barrier NMOS transistors with erbium silicided source/drain and silicon nanowire channel. IEEE Electron Device Lett 29(10):1167–1170CrossRefGoogle Scholar
  102. 102.
    Seo K, Varadwaj K, Mohanty P, Lee S, Jo Y, Jung M-H, Kim J, Kim B (2007) Magnetic properties of single-crystalline CoSi nanowires. Nano Lett 7(5):1240–1245CrossRefGoogle Scholar
  103. 103.
    Seo K, Bagkar N, S-i K, In J, Yoon H, Jo Y, Kim B (2010) Diffusion-Driven Crystal Structure Transformation: Synthesis of Heusler Alloy Fe3Si Nanowires. Nano Lett 10(9):3643–3647CrossRefGoogle Scholar
  104. 104.
    Izumi T, Taniguchi M, Kumai S, Sato A (2004) Ferromagnetic properties of cyclically deformed Fe3Ge and Ni3Ge. Philos Mag 84(36):3883–3895Google Scholar
  105. 105.
    Tang J, Wang C-Y, Jiang W, Chang L-T, Fan Y, Chan M, Wu C, Hung M-H, Liu P-H, Yang H-J (2012) Electrical probing of magnetic phase transition and domain wall motion in single-crystalline Mn5Ge3 nanowire. Nano Lett 12(12):6372–6379CrossRefGoogle Scholar
  106. 106.
    Wu Y-T, Huang C-W, Chiu C-H, Chang C-F, Chen J-Y, Lin T-Y, Huang Y-T, Lu K-C, Yeh P-H, Wu W-W (2016) Nickel/platinum dual silicide axial nanowire heterostructures with excellent photosensor applications. Nano Lett 16(2):1086–1091CrossRefGoogle Scholar
  107. 107.
    Dayeh SA, Dickerson RM, Picraux ST (2011) Axial bandgap engineering in germanium-silicon heterostructured nanowires. Appl Phys Lett 99(11):113105CrossRefGoogle Scholar
  108. 108.
    Chen R, Jungjohann KL, Mook WM, Nogan J, Dayeh SA (2017) Atomic scale dynamics of contact formation in the cross-section of InGaAs fin/nanowire channels. Nano letters 17(4):2189–2196CrossRefGoogle Scholar
  109. 109.
    Taur Y, Ning TH (2013) Fundamentals of modern VLSI devices. Cambridge university press, CambridgeGoogle Scholar
  110. 110.
    Crowell C, Rideout V (1969) Normalized thermionic-field (TF) emission in metal-semiconductor (Schottky) barriers. Solid State Electron 12(2):89–105CrossRefGoogle Scholar
  111. 111.
    Berger H (1972) Contact resistance and contact resistivity. J Electrochem Soc 119(4):507–514CrossRefGoogle Scholar
  112. 112.
    Hu J, Liu Y, Ning C-Z, Dutton R, Kang S-M (2008) Fringing field effects on electrical resistivity of semiconductor nanowire-metal contacts. Appl Phys Lett 92(8):083503CrossRefGoogle Scholar
  113. 113.
    Léonard F, Talin AA (2006) Size-dependent effects on electrical contacts to nanotubes and nanowires. Phys Rev Lett 97(2):026804CrossRefGoogle Scholar
  114. 114.
    Nguyen B-M, Taur Y, Picraux ST, Dayeh SA (2014) Diameter-independent hole mobility in Ge/Si core/shell nanowire field effect transistors. Nano Lett 14(2):585–591CrossRefGoogle Scholar
  115. 115.
    Mongillo M, Spathis P, Katsaros G, Gentile P, Sanquer M, De Franceschi S (2011) Joule-assisted silicidation for short-channel silicon nanowire devices. ACS Nano 5(9):7117–7123CrossRefGoogle Scholar
  116. 116.
    Van de Walle CG (1989) Band lineups and deformation potentials in the model-solid theory. Phys Rev B 39(3):1871CrossRefGoogle Scholar
  117. 117.
    Weber WM, Geelhaar L, Graham AP, Unger E, Duesberg GS, Liebau M, Pamler W, Chèze C, Riechert H, Lugli P, Kreupl F (2006) Silicon-nanowire transistors with intruded nickel-silicide contacts. Nano Lett 6(12):2660–2666.  https://doi.org/10.1021/nl0613858 CrossRefGoogle Scholar
  118. 118.
    Zhang Z, Hellström P-E, Östling M, Zhang S-L, Lu J (2006) Electrically robust ultralong nanowires of NiSi, Ni2Si, and Ni31Si12. Appl Phys Lett 88(4):043104CrossRefGoogle Scholar
  119. 119.
    Xiang J, Lu W, Hu Y, Wu Y, Yan H, Lieber CM (2006) Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature 441(7092):489–493CrossRefGoogle Scholar
  120. 120.
    Hu Y, Xiang J, Liang G, Yan H, Lieber CM (2008) Sub-100 nanometer channel length Ge/Si nanowire transistors with potential for 2 THz switching speed. Nano Lett 8(3):925–930CrossRefGoogle Scholar
  121. 121.
    Burchhart T, Zeiner C, Hyun Y, Lugstein A, Hochleitner G, Bertagnolli E (2010) High performance Ω-gated Ge nanowire MOSFET with quasi-metallic source/drain contacts. Nanotechnology 21(43):435704CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer EngineeringUniversity of California San DiegoSan DiegoUSA
  2. 2.Materials Science and Engineering ProgramUniversity of California San DiegoSan DiegoUSA
  3. 3.Department of NanoEngineeringUniversity of California San DiegoSan DiegoUSA

Personalised recommendations