Advertisement

Properties Engineering of III–V Nanowires for Electronic Application

  • Sen Po Yip
  • Lifan Shen
  • Edwin Y. B. Pun
  • Johnny C. Ho
Chapter
Part of the Nanostructure Science and Technology book series (NST)

Abstract

III–V nanowires (NWs) are promising building blocks for future electronics and sensors due to their excellent electrical and optical properties. However, we need to know how to manipulate their electrical properties before transferring them from laboratory to daily life. Therefore, the manipulation of their electrical properties becomes important for practical applications. The aim of this chapter is to review and discuss the strategies on how to manipulate the electrical properties by means of surface manipulation, contact modification, and crystal engineering. The effect and the underlying mechanism of the strategies will be discussed. We expect these techniques to be promising and, after further development, are applicable in the next generations of electronic devices and sensors.

Keywords

III-V nanowires Electronic application Properties engineering Surface Contact modification Crystal engineering 

References

  1. 1.
    Zhang J, Wu J, Xiong Q (2012) One-dimensional semiconductor nanowires: synthesis and Raman scattering. One-dimensional nanostructures: principles and applications, pp 145–166CrossRefGoogle Scholar
  2. 2.
    Soci C, Zhang A, Xiang B, Dayeh SA, Aplin D, Park J, Bao X, Lo Y-H, Wang D (2007) ZnO nanowire UV photodetectors with high internal gain. Nano Lett 7(4):1003–1009CrossRefGoogle Scholar
  3. 3.
    Lu W, Xie P, Lieber CM (2008) Nanowire transistor performance limits and applications. IEEE Trans Electron Devices 55(11):2859–2876CrossRefGoogle Scholar
  4. 4.
    Liu X, Long Y-Z, Liao L, Duan X, Fan Z (2012) Large-scale integration of semiconductor nanowires for high-performance flexible electronics. ACS Nano 6(3):1888–1900CrossRefGoogle Scholar
  5. 5.
    Miao X, Zhang C, Li X (2013) Monolithic barrier-all-around high electron mobility transistor with planar GaAs nanowire channel. Nano Lett 13(6):2548–2552CrossRefGoogle Scholar
  6. 6.
    Zhang C, Choi W, Mohseni PK, Li X (2015) InAs planar nanowire gate-all-around MOSFETs on GaAs substrates by selective lateral epitaxy. IEEE Electron Device Lett 36(7):663–665CrossRefGoogle Scholar
  7. 7.
    Duan X, Niu C, Sahi V, Chen J, Parce JW, Empedocles S, Goldman JL (2003) High-performance thin-film transistors using semiconductor nanowires and nanoribbons. Nature 425(6955):274–278CrossRefGoogle Scholar
  8. 8.
    Duan X, Huang Y, Cui Y, Wang J, Lieber CM (2001) Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409(6816):66–69CrossRefGoogle Scholar
  9. 9.
    Han N, Wang F, Hou JJ, Yip SP, Lin H, Xiu F, Fang M, Yang Z, Shi X, Dong G, Hung TF, Ho JC (2013) Tunable electronic transport properties of metal-cluster-decorated III-V nanowire transistors. Adv Mater 25(32):4445–4451CrossRefGoogle Scholar
  10. 10.
    Law M, Greene LE, Johnson JC, Saykally R, Yang P (2005) Nanowire dye-sensitized solar cells. Nat Mater 4(6):455–459CrossRefGoogle Scholar
  11. 11.
    Mohseni PK, Behnam A, Wood JD, Zhao X, Yu KJ, Wang NC, Rockett A, Rogers JA, Lyding JW, Pop E (2014) Monolithic III-V nanowire solar cells on graphene via direct van der waals epitaxy. Adv Mater 26(22):3755–3760CrossRefGoogle Scholar
  12. 12.
    Thathachary AV, Agrawal N, Liu L, Datta S (2014) Electron transport in multigate in x Ga1–x as nanowire FETs: from diffusive to ballistic regimes at room temperature. Nano Lett 14(2):626–633CrossRefGoogle Scholar
  13. 13.
    Wallentin J, Anttu N, Asoli D, Huffman M, Åberg I, Magnusson MH, Siefer G, Fuss-Kailuweit P, Dimroth F, Witzigmann B (2013) InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit. Science 339(6123):1057–1060CrossRefGoogle Scholar
  14. 14.
    Yang Z-x, Han N, Fang M, Lin H, Cheung H-Y, Yip S, Wang E-J, Hung T, Wong C-Y, Ho JC (2014) Surfactant-assisted chemical vapour deposition of high-performance small-diameter GaSb nanowires. Nat Commun 5:5249CrossRefGoogle Scholar
  15. 15.
    Shin HW, Lee SJ, Kim DG, Bae M-H, Heo J, Choi KJ, Choi WJ, J-w C, Shin JC (2015) Short-wavelength infrared photodetector on Si employing strain-induced growth of very tall InAs nanowire arrays. Sci Rep 5:10764CrossRefGoogle Scholar
  16. 16.
    Tomioka K, Yoshimura M, Fukui T (2012) A III-V nanowire channel on silicon for high-performance vertical transistors. Nature 488(7410):189–192CrossRefGoogle Scholar
  17. 17.
    Ford AC, Ho JC, Chueh Y-L, Tseng Y-C, Fan Z, Guo J, Bokor J, Javey A (2008) Diameter-dependent electron mobility of InAs nanowires. Nano Lett 9(1):360–365CrossRefGoogle Scholar
  18. 18.
    Ford AC, Chuang S, Ho JC, Chueh YL, Fan Z, Javey A (2010) Patterned p-doping of InAs nanowires by gas-phase surface diffusion of Zn. Nano Lett 10(2):509–513CrossRefGoogle Scholar
  19. 19.
    Fan Z, Ho JC, Takahashi T, Yerushalmi R, Takei K, Ford AC, Chueh YL, Javey A (2009) Toward the development of printable nanowire electronics and sensors. Adv Mater 21(37):3730–3743CrossRefGoogle Scholar
  20. 20.
    Takahashi T, Takei K, Ho JC, Chueh Y-L, Fan Z, Javey A (2009) Monolayer resist for patterned contact printing of aligned nanowire arrays. J Am Chem Soc 131(6):2102–2103CrossRefGoogle Scholar
  21. 21.
    Ford AC, Ho JC, Fan Z, Ergen O, Altoe V, Aloni S, Razavi H, Javey A (2008) Synthesis, contact printing, and device characterization of Ni-catalyzed, crystalline InAs nanowires. Nano Res 1(1):32–39CrossRefGoogle Scholar
  22. 22.
    Takahashi T, Takei K, Adabi E, Fan Z, Niknejad AM, Javey A (2010) Parallel array InAs nanowire transistors for mechanically bendable, ultrahigh frequency electronics. ACS Nano 4(10):5855–5860CrossRefGoogle Scholar
  23. 23.
    Long Y-Z, Yu M, Sun B, Gu C-Z, Fan Z (2012) Recent advances in large-scale assembly of semiconducting inorganic nanowires and nanofibers for electronics, sensors and photovoltaics. Chem Soc Rev 41(12):4560–4580CrossRefGoogle Scholar
  24. 24.
    Lee CH, Kim DR, Zheng X (2011) Fabrication of nanowire electronics on nonconventional substrates by water-assisted transfer printing method. Nano Lett 11(8):3435–3439CrossRefGoogle Scholar
  25. 25.
    Ju S, Facchetti A, Xuan Y, Liu J, Ishikawa F, Ye P, Zhou C, Marks TJ, Janes DB (2007) Fabrication of fully transparent nanowire transistors for transparent and flexible electronics. Nat Nanotechnol 2(6):378–384CrossRefGoogle Scholar
  26. 26.
    Cowley A, Sze S (1965) Surface states and barrier height of metal-semiconductor systems. J Appl Phys 36(10):3212–3220CrossRefGoogle Scholar
  27. 27.
    Han N, Wang F, Hou JJ, Xiu F, Yip S, Hui AT, Hung T, Ho JC (2012) Controllable p–n switching behaviors of GaAs nanowires via an interface effect. ACS Nano 6(5):4428–4433CrossRefGoogle Scholar
  28. 28.
    Rode D (1971) Electron transport in InSb, InAs, and InP. Phys Rev B 3(10):3287CrossRefGoogle Scholar
  29. 29.
    Dayeh SA, Soci C, Paul K, Edward TY, Wang D (2007) Transport properties of InAs nanowire field effect transistors: the effects of surface states. J Vac Sci Technol B 25(4):1432–1436CrossRefGoogle Scholar
  30. 30.
    Brews J (1975) Carrier-density fluctuations and the IGFET mobility near threshold. J Appl Phys 46(5):2193–2203CrossRefGoogle Scholar
  31. 31.
    Dayeh SA, Soci C, Paul K, Edward TY, Wang D (2007) Influence of surface states on the extraction of transport parameters from InAs nanowire field effect transistors. Appl Phys Lett 90(16):162112CrossRefGoogle Scholar
  32. 32.
    Oigawa H, Fan J-F, Nannichi Y, Sugahara H, Oshima M (1991) Universal passivation effect of (NH4) 2Sx treatment on the surface of III-V compound semiconductors. Jpn J Appl Phys 30(3A):L322CrossRefGoogle Scholar
  33. 33.
    Hang Q, Wang F, Carpenter PD, Zemlyanov D, Zakharov D, Stach EA, Buhro WE, Janes DB (2008) Role of molecular surface passivation in electrical transport properties of InAs nanowires. Nano Lett 8(1):49–55CrossRefGoogle Scholar
  34. 34.
    Gu J, Wang X, Wu H, Shao J, Neal A, Manfra M, Gordon R, Ye P (2012) 20–80nm Channel length InGaAs gate-all-around nanowire MOSFETs with EOT= 1.2 nm and lowest SS= 63mV/dec. In: Electron Devices Meeting (IEDM), 2012 I.E. International, 2012. IEEE, pp 27.6. 1–27.6. 4Google Scholar
  35. 35.
    Shen L-F, Yip S, Yang Z-x, Fang M, Hung T, Pun EY, Ho JC (2015) High-performance wrap-gated InGaAs nanowire field-effect transistors with sputtered dielectrics. Sci Rep 5:16871CrossRefGoogle Scholar
  36. 36.
    Cheung H-Y, Yip S, Han N, Dong G, Fang M, Yang Z-x, Wang F, Lin H, Wong C-Y, Ho JC (2015) Modulating electrical properties of InAs nanowires via molecular monolayers. ACS Nano 9(7):7545–7552CrossRefGoogle Scholar
  37. 37.
    Yang Z-x, Yip S, Li D, Han N, Dong G, Liang X, Shu L, Hung TF, Mo X, Ho JC (2015) Approaching the hole mobility limit of GaSb nanowires. ACS Nano 9(9):9268–9275CrossRefGoogle Scholar
  38. 38.
    Ek M, Borg BM, Johansson J, Dick KA (2013) Diameter limitation in growth of III-Sb-containing nanowire heterostructures. ACS Nano 7(4):3668–3675CrossRefGoogle Scholar
  39. 39.
    Shi X, Dong G, Fang M, Wang F, Lin H, Yen W-C, Chan KS, Chueh Y-L, Ho JC (2014) Selective n-type doping in graphene via the aluminium nanoparticle decoration approach. J Mater Chem C 2(27):5417–5421CrossRefGoogle Scholar
  40. 40.
    Shi Y, Huang J-K, Jin L, Hsu Y-T, Yu SF, Li L-J, Yang HY (2013) Selective decoration of Au nanoparticles on monolayer MoS2 single crystals. Sci Rep 3:1839CrossRefGoogle Scholar
  41. 41.
    Sreeprasad T, Nguyen P, Kim N, Berry V (2013) Controlled, defect-guided, metal-nanoparticle incorporation onto MoS2 via chemical and microwave routes: electrical, thermal, and structural properties. Nano Lett 13(9):4434–4441CrossRefGoogle Scholar
  42. 42.
    Chen C-Y, Retamal JRD, Wu I-W, Lien D-H, Chen M-W, Ding Y, Chueh Y-L, Wu C-I, He J-H (2012) Probing surface band bending of surface-engineered metal oxide nanowires. ACS Nano 6(11):9366–9372CrossRefGoogle Scholar
  43. 43.
    Chen M-W, Chen C-Y, Lien D-H, Ding Y, He J-H (2010) Photoconductive enhancement of single ZnO nanowire through localized Schottky effects. Opt Express 18(14):14836–14841CrossRefGoogle Scholar
  44. 44.
    Shokri Kojori H, Yun J-H, Paik Y, Kim J, Anderson WA, Kim SJ (2015) Plasmon field effect transistor for Plasmon to electric conversion and amplification. Nano Lett 16(1):250–254CrossRefGoogle Scholar
  45. 45.
    Miao J, Hu W, Guo N, Lu Z, Zou X, Liao L, Shi S, Chen P, Fan Z, Ho JC (2014) Single InAs nanowire room-temperature near-infrared photodetectors. ACS Nano 8(4):3628–3635CrossRefGoogle Scholar
  46. 46.
    Zou X, Wang J, Liu X, Wang C, Jiang Y, Wang Y, Xiao X, Ho JC, Li J, Jiang C (2013) Rational design of sub-parts per million specific gas sensors array based on metal nanoparticles decorated nanowire enhancement-mode transistors. Nano Lett 13(7):3287–3292CrossRefGoogle Scholar
  47. 47.
    Pan C, Yu R, Niu S, Zhu G, Wang ZL (2013) Piezotronic effect on the sensitivity and signal level of Schottky contacted proactive micro/nanowire nanosensors. ACS Nano 7(2):1803–1810CrossRefGoogle Scholar
  48. 48.
    Offermans P, Crego-Calama M, Brongersma SH (2010) Gas detection with vertical InAs nanowire arrays. Nano Lett 10(7):2412–2415CrossRefGoogle Scholar
  49. 49.
    Du J, Liang D, Tang H, Gao XP (2009) InAs nanowire transistors as gas sensor and the response mechanism. Nano Lett 9(12):4348–4351CrossRefGoogle Scholar
  50. 50.
    Zhang X, Fu M, Li X, Shi T, Ning Z, Wang X, Yang T, Chen Q (2015) Study on the response of InAs nanowire transistors to H 2 O and NO 2. Sensors Actuators B Chem 209:456–461CrossRefGoogle Scholar
  51. 51.
    Huang M, Chang Y, Chang C, Lee Y, Chang P, Kwo J, Wu T, Hong M (2005) Surface passivation of III-V compound semiconductors using atomic-layer-deposition-grown Al~ 2O~ 3. Appl Phys Lett 87(25):252104CrossRefGoogle Scholar
  52. 52.
    Moon T-H, Jeong M-C, Oh B-Y, Ham M-H, Jeun M-H, Lee W-Y, Myoung J-M (2006) Chemical surface passivation of HfO2 films in a ZnO nanowire transistor. Nanotechnology 17(9):2116CrossRefGoogle Scholar
  53. 53.
    Kim S, Carpenter PD, Jean RK, Chen H, Zhou C, Ju S, Janes DB (2012) Role of self-assembled monolayer passivation in electrical transport properties and flicker noise of nanowire transistors. ACS Nano 6(8):7352–7361CrossRefGoogle Scholar
  54. 54.
    Lloyd-Hughes J, Merchant S, Fu L, Tan H, Jagadish C, Castro-Camus E, Johnston M (2006) Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs. Appl Phys Lett 89(23):232102CrossRefGoogle Scholar
  55. 55.
    Chang C-C, Chi C-Y, Chen C-C, Huang N, Arab S, Qiu J, Povinelli ML, Dapkus PD, Cronin SB (2014) Carrier dynamics and doping profiles in GaAs nanosheets. Nano Res 7(2):163–170CrossRefGoogle Scholar
  56. 56.
    Joyce HJ, Docherty CJ, Gao Q, Tan HH, Jagadish C, Lloyd-Hughes J, Herz LM, Johnston MB (2013) Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy. Nanotechnology 24(21):214006CrossRefGoogle Scholar
  57. 57.
    Boland JL, Casadei A, Gz T, Matteini F, Davies CL, Jabeen F, Joyce HJ, Herz LM, Fontcuberta i Morral A, Johnston MB (2016) Increased photoconductivity lifetime in GaAs nanowires by controlled n-type and p-type doping. ACS Nano 10(4):4219–4227CrossRefGoogle Scholar
  58. 58.
    Gutsche C, Niepelt R, Gnauck M, Lysov A, Prost W, Ronning C, Tegude F-J (2012) Direct determination of minority carrier diffusion lengths at axial GaAs nanowire p–n junctions. Nano Lett 12(3):1453–1458CrossRefGoogle Scholar
  59. 59.
    Joyce HJ, Parkinson P, Jiang N, Docherty CJ, Gao Q, Tan HH, Jagadish C, Herz LM, Johnston MB (2014) Electron Mobilities approaching bulk limits in “surface-free” GaAs nanowires. Nano Lett 14(10):5989–5994CrossRefGoogle Scholar
  60. 60.
    Dai X, Zhang S, Wang Z, Adamo G, Liu H, Huang Y, Couteau C, Soci C (2014) GaAs/AlGaAs nanowire photodetector. Nano Lett 14(5):2688–2693CrossRefGoogle Scholar
  61. 61.
    Morkötter S, Jeon N, Rudolph D, Loitsch B, Spirkoska D, Hoffmann E, Döblinger M, Matich S, Finley J, Lauhon L (2015) Demonstration of confined electron gas and steep-slope behavior in delta-doped GaAs-AlGaAs core–shell nanowire transistors. Nano Lett 15(5):3295–3302CrossRefGoogle Scholar
  62. 62.
    Jiang X, Xiong Q, Nam S, Qian F, Li Y, Lieber CM (2007) InAs/InP radial nanowire heterostructures as high electron mobility devices. Nano Lett 7(10):3214–3218CrossRefGoogle Scholar
  63. 63.
    Van Tilburg J, Algra R, Immink W, Verheijen M, Bakkers E, Kouwenhoven L (2010) Surface passivated InAs/InP core/shell nanowires. Semicond Sci Technol 25(2):024011CrossRefGoogle Scholar
  64. 64.
    Osburn C, Bellur K (1998) Low parasitic resistance contacts for scaled ULSI devices. Thin Solid Films 332(1):428–436CrossRefGoogle Scholar
  65. 65.
    Olsson L, Andersson C, Håkansson M, Kanski J, Ilver L, Karlsson UO (1996) Charge accumulation at InAs surfaces. Phys Rev Lett 76(19):3626CrossRefGoogle Scholar
  66. 66.
    Bessolov V, Lebedev M (1998) Chalcogenide passivation of III–V semiconductor surfaces. Semiconductors 32(11):1141–1156CrossRefGoogle Scholar
  67. 67.
    Suyatin D, Thelander C, Björk M, Maximov I, Samuelson L (2007) Sulfur passivation for ohmic contact formation to InAs nanowires. Nanotechnology 18(10):105307CrossRefGoogle Scholar
  68. 68.
    Nadar S, Rolland C, Lampin J-F, Wallart X, Caroff P, Leturcq R (2015) Tunnel junctions in a III–V nanowire by surface engineering. Nano Res 8(3):980–989CrossRefGoogle Scholar
  69. 69.
    Ho JC, Ford AC, Chueh Y-L, Leu PW, Ergen O, Takei K, Smith G, Majhi P, Bennett J, Javey A (2009) Nanoscale doping of InAs via sulfur monolayers. Appl Phys Lett 95(7):072108CrossRefGoogle Scholar
  70. 70.
    Sourribes M, Isakov I, Panfilova M, Warburton P (2013) Minimization of the contact resistance between InAs nanowires and metallic contacts. Nanotechnology 24(4):045703CrossRefGoogle Scholar
  71. 71.
    Mann RW, Clevenger LA, Agnello PD, White FR (1995) Silicides and local interconnections for high-performance VLSI applications. IBM J Res Dev 39(4):403–417CrossRefGoogle Scholar
  72. 72.
    Chueh Y-L, Ford AC, Ho JC, Jacobson ZA, Fan Z, Chen C-Y, Chou L-J, Javey A (2008) Formation and characterization of Ni x InAs/InAs nanowire heterostructures by solid source reaction. Nano Lett 8(12):4528–4533CrossRefGoogle Scholar
  73. 73.
    Oxland R, Chang S, Li X, Wang S, Radhakrishnan G, Priyantha W, van Dal M, Hsieh C, Vellianitis G, Doornbos G (2012) An ultralow-resistance ultrashallow metallic source/drain contact scheme for III–V NMOS. IEEE Electron Device Lett 33(4):501–503CrossRefGoogle Scholar
  74. 74.
    Chen R, Dayeh SA (2015) Size and orientation effects on the kinetics and structure of Nickelide contacts to InGaAs fin structures. Nano Lett 15(6):3770–3779CrossRefGoogle Scholar
  75. 75.
    Czornomaz L, El Kazzi M, Hopstaken M, Caimi D, Mächler P, Rossel C, Bjoerk M, Marchiori C, Siegwart H, Fompeyrine J (2012) CMOS compatible self-aligned S/D regions for implant-free InGaAs MOSFETs. Solid State Electron 74:71–76CrossRefGoogle Scholar
  76. 76.
    Kim S, Yokoyama M, Taoka N, Nakane R, Yasuda T, Ichikawa O, Fukuhara N, Hata M, Takenaka M, Takagi S (2013) Sub-60-nm extremely thin body-on-insulator MOSFETs on Si with Ni-InGaAs metal S/D and MOS interface buffer engineering and its scalability. IEEE Trans Electron Devices 60(8):2512–2517CrossRefGoogle Scholar
  77. 77.
    Shi T, Fu M, Pan D, Guo Y, Zhao J, Chen Q (2015) Contact properties of field-effect transistors based on indium arsenide nanowires thinner than 16 nm. Nanotechnology 26(17):175202CrossRefGoogle Scholar
  78. 78.
    Berg M, Svensson J, Lind E, Wernersson L-E (2015) A transmission line method for evaluation of vertical InAs nanowire contacts. Appl Phys Lett 107(23):232102CrossRefGoogle Scholar
  79. 79.
    Ipser H, Richter KW (2003) Ni, Pd, or Pt as contact materials for GaSb and InSb semiconductors: phase diagrams. J Electron Mater 32(11):1136–1140CrossRefGoogle Scholar
  80. 80.
    Han N, Wang F, Yip S, Hou JJ, Xiu F, Shi X, Hui AT, Hung T, Ho JC (2012) GaAs nanowire Schottky barrier photovoltaics utilizing Au–Ga alloy catalytic tips. Appl Phys Lett 101(1):013105CrossRefGoogle Scholar
  81. 81.
    Suyatin DB, Jain V, Nebol’sin VA, Trägårdh J, Messing ME, Wagner JB, Persson O, Timm R, Mikkelsen A, Maximov I (2014) Strong Schottky barrier reduction at Au-catalyst/GaAs-nanowire interfaces by electric dipole formation and Fermi-level unpinning. Nat Commun 5:3221CrossRefGoogle Scholar
  82. 82.
    Timm R, Persson O, Engberg DL, Fian A, Webb JL, Wallentin J, Jönsson A, Borgström MT, Samuelson L, Mikkelsen A (2013) Current–voltage characterization of individual as-grown nanowires using a scanning tunneling microscope. Nano Lett 13(11):5182–5189CrossRefGoogle Scholar
  83. 83.
    Dick KA, Caroff P (2014) Metal-seeded growth of III–V semiconductor nanowires: towards gold-free synthesis. Nanoscale 6(6):3006–3021CrossRefGoogle Scholar
  84. 84.
    Dick KA, Thelander C, Samuelson L, Caroff P (2010) Crystal phase engineering in single InAs nanowires. Nano Lett 10(9):3494–3499CrossRefGoogle Scholar
  85. 85.
    Ullah A, Joyce HJ, Burke A, Wong-Leung J, Tan HH, Jagadish C, Micolich AP (2013) Electronic comparison of InAs wurtzite and zincblende phases using nanowire transistors. Physica status solidi (RRL)-rapid. Res Lett 7(10):911–914Google Scholar
  86. 86.
    Dayeh SA, Susac D, Kavanagh KL, Yu ET, Wang D (2009) Structural and room-temperature transport properties of zinc blende and Wurtzite InAs nanowires. Adv Funct Mater 19(13):2102–2108CrossRefGoogle Scholar
  87. 87.
    De A, Pryor CE (2010) Predicted band structures of III-V semiconductors in the wurtzite phase. Phys Rev B 81(15):155210CrossRefGoogle Scholar
  88. 88.
    Fu M, Tang Z, Li X, Ning Z, Pan D, Zhao J, Wei X, Chen Q (2016) Crystal phase-and orientation-dependent electrical transport properties of InAs nanowires. Nano Lett 16(4):2478–2484CrossRefGoogle Scholar
  89. 89.
    Wallentin J, Ek M, Wallenberg LR, Samuelson L, Borgström MT (2011) Electron trapping in InP nanowire FETs with stacking faults. Nano Lett 12(1):151–155CrossRefGoogle Scholar
  90. 90.
    Thelander C, Caroff P, Plissard S, Dey AW, Dick KA (2011) Effects of crystal phase mixing on the electrical properties of InAs nanowires. Nano Lett 11(6):2424–2429CrossRefGoogle Scholar
  91. 91.
    Schroer M, Petta J (2010) Correlating the nanostructure and electronic properties of InAs nanowires. Nano Lett 10(5):1618–1622CrossRefGoogle Scholar
  92. 92.
    Han N, Hou JJ, Wang F, Yip S, Yen Y-T, Yang Z-x, Dong G, Hung T, Chueh Y-L, Ho JC (2013) GaAs nanowires: from manipulation of defect formation to controllable electronic transport properties. ACS Nano 7(10):9138–9146CrossRefGoogle Scholar
  93. 93.
    Jeon N, Loitsch B, Morkoetter S, Abstreiter G, Finley J, Krenner HJ, Koblmueller G, Lauhon LJ (2015) Alloy fluctuations act as quantum dot-like emitters in GaAs-AlGaAs core–shell nanowires. ACS Nano 9(8):8335–8343CrossRefGoogle Scholar
  94. 94.
    Caroff P, Dick KA, Johansson J, Messing ME, Deppert K, Samuelson L (2009) Controlled polytypic and twin-plane superlattices in III–V nanowires. Nat Nanotechnol 4(1):50–55CrossRefGoogle Scholar
  95. 95.
    Zhang Z, Lu Z-Y, Chen P-P, Xu H-Y, Guo Y-N, Liao Z-M, Shi S-X, Lu W, Zou J (2013) Quality of epitaxial InAs nanowires controlled by catalyst size in molecular beam epitaxy. Appl Phys Lett 103(7):073109CrossRefGoogle Scholar
  96. 96.
    Shtrikman H, Popovitz-Biro R, Kretinin A, Houben L, Heiblum M, Bukała M, Galicka M, Buczko R, Kacman P (2009) Method for suppression of stacking faults in wurtzite III−V nanowires. Nano Lett 9(4):1506–1510CrossRefGoogle Scholar
  97. 97.
    Johansson J, Dick KA, Caroff P, Messing ME, Bolinsson J, Deppert K, Samuelson L (2010) Diameter dependence of the wurtzite−zinc blende transition in InAs nanowires. J Phys Chem C 114(9):3837–3842CrossRefGoogle Scholar
  98. 98.
    Shtrikman H, Popovitz-Biro R, Kretinin A, Heiblum M (2008) Stacking-faults-free zinc blende GaAs nanowires. Nano Lett 9(1):215–219CrossRefGoogle Scholar
  99. 99.
    Han N, Hou JJ, Wang F, Yip S, Lin H, Fang M, Xiu F, Shi X, Hung T, Ho JC (2012) Large-scale and uniform preparation of pure-phase wurtzite GaAs NWs on non-crystalline substrates. Nanoscale Res Lett 7(1):1CrossRefGoogle Scholar
  100. 100.
    Pan D, Fu M, Yu X, Wang X, Zhu L, Nie S, Wang S, Chen Q, Xiong P, von Molnár S (2014) Controlled synthesis of phase-pure InAs nanowires on Si (111) by diminishing the diameter to 10 nm. Nano Lett 14(3):1214–1220CrossRefGoogle Scholar
  101. 101.
    Xu H-y, Guo Y-n, Sun W, Liao Z-m, Burgess T, Lu H-f, Gao Q, Tan HH, Jagadish C, Zou J (2012) Quantitative study of GaAs nanowires catalyzed by Au film of different thicknesses. Nanoscale Res Lett 7(1):1CrossRefGoogle Scholar
  102. 102.
    Loitsch B, Rudolph D, Morkötter S, Döblinger M, Grimaldi G, Hanschke L, Matich S, Parzinger E, Wurstbauer U, Abstreiter G (2015) Tunable quantum confinement in ultrathin, optically active semiconductor nanowires via reverse-reaction growth. Adv Mater 27(13):2195–2202CrossRefGoogle Scholar
  103. 103.
    Dick KA, Caroff P, Bolinsson J, Messing ME, Johansson J, Deppert K, Wallenberg LR, Samuelson L (2010) Control of III–V nanowire crystal structure by growth parameter tuning. Semicond Sci Technol 25(2):024009CrossRefGoogle Scholar
  104. 104.
    Johansson J, Karlsson LS, Svensson CPT, Mårtensson T, Wacaser BA, Deppert K, Samuelson L, Seifert W (2006) Structural properties of〈 111〉 B-oriented III–V nanowires. Nat Mater 5(7):574–580CrossRefGoogle Scholar
  105. 105.
    Tchernycheva M, Harmand J, Patriarche G, Travers L, Cirlin GE (2006) Temperature conditions for GaAs nanowire formation by Au-assisted molecular beam epitaxy. Nanotechnology 17(16):4025CrossRefGoogle Scholar
  106. 106.
    Plante M, LaPierre R (2008) Control of GaAs nanowire morphology and crystal structure. Nanotechnology 19(49):495603CrossRefGoogle Scholar
  107. 107.
    Hiruma K, Yazawa M, Haraguchi K, Ogawa K, Katsuyama T, Koguchi M, Kakibayashi H (1993) GaAs free-standing quantum-size wires. J Appl Phys 74(5):3162–3171CrossRefGoogle Scholar
  108. 108.
    Borgström M, Deppert K, Samuelson L, Seifert W (2004) Size-and shape-controlled GaAs nano-whiskers grown by MOVPE: a growth study. J Cryst Growth 260(1):18–22CrossRefGoogle Scholar
  109. 109.
    Kim Y, Joyce HJ, Gao Q, Tan HH, Jagadish C, Paladugu M, Zou J, Suvorova AA (2006) Influence of nanowire density on the shape and optical properties of ternary InGaAs nanowires. Nano Lett 6(4):599–604CrossRefGoogle Scholar
  110. 110.
    Piccin M, Bais G, Grillo V, Jabeen F, De Franceschi S, Carlino E, Lazzarino M, Romanato F, Businaro L, Rubini S (2007) Growth by molecular beam epitaxy and electrical characterization of GaAs nanowires. Physica E 37(1):134–137CrossRefGoogle Scholar
  111. 111.
    Hou JJ, Han N, Wang FY, Xiu F, Yip SP, Hui AT, Hung TF, Ho JC (2012) Synthesis and characterizations of ternary InGaAs nanowires by a two-step growth method for high-performance electronic devices. ACS Nano 6(4):3624–3630CrossRefGoogle Scholar
  112. 112.
    Joyce HJ, Gao Q, Tan HH, Jagadish C, Kim Y, Zhang X, Guo Y, Zou J (2007) Twin-free uniform epitaxial GaAs nanowires grown by a two-temperature process. Nano Lett 7(4):921–926CrossRefGoogle Scholar
  113. 113.
    Hou JJ, Wang FY, Han N, Xiu F, Yip SP, Fang M, Lin H, Hung TF, Ho JC (2012) Stoichiometric effect on electrical, optical, and structural properties of composition-tunable InxGa1-xAs nanowires. ACS Nano 6(10):9320–9325CrossRefGoogle Scholar
  114. 114.
    Jimenez J, Martin E, Prieto AC, Torres A (1992) Raman microprobe analysis of chemically revealed extended defects in GaAs. Semicond Sci Technol 7(1A):A288CrossRefGoogle Scholar
  115. 115.
    Lei H, Leipner H, Engler N (2003) Why are arsenic clusters situated at dislocations in gallium arsenide? Appl Phys Lett 82(8):1218–1220CrossRefGoogle Scholar
  116. 116.
    Zhang F, Tu H, Wang Y, Qian J, Wang H, Wang J, Song P (2000) Study of as precipitates in LEC SI–GaAs wafer by Raman probe. Mater Sci Eng B 75(2):139–142CrossRefGoogle Scholar
  117. 117.
    Paiman S, Gao Q, Tan HH, Jagadish C, Pemasiri K, Montazeri M, Jackson HE, Smith LM, Yarrison-Rice JM, Zhang X (2009) The effect of V/III ratio and catalyst particle size on the crystal structure and optical properties of InP nanowires. Nanotechnology 20(22):225606CrossRefGoogle Scholar
  118. 118.
    Paiman S, Gao Q, Joyce HJ, Kim Y, Tan HH, Jagadish C, Zhang X, Guo Y, Zou J (2010) Growth temperature and V/III ratio effects on the morphology and crystal structure of InP nanowires. J Phys D Appl Phys 43(44):445402CrossRefGoogle Scholar
  119. 119.
    Joyce HJ, Gao Q, Tan HH, Jagadish C, Kim Y, Fickenscher MA, Perera S, Hoang TB, Smith LM, Jackson HE (2008) High purity GaAs nanowires free of planar defects: growth and characterization. Adv Funct Mater 18(23):3794–3800CrossRefGoogle Scholar
  120. 120.
    Joyce HJ, Wong-Leung J, Gao Q, Tan HH, Jagadish C (2010) Phase perfection in zinc blende and wurtzite III− V nanowires using basic growth parameters. Nano Lett 10(3):908–915CrossRefGoogle Scholar
  121. 121.
    Kuykendall TR, Altoe MVP, Ogletree DF, Aloni S (2014) Catalyst-directed crystallographic orientation control of GaN nanowire growth. Nano Lett 14(12):6767–6773CrossRefGoogle Scholar
  122. 122.
    Han N, Wang F, Hou JJ, Yip S, Lin H, Fang M, Xiu F, Shi X, Hung T, Ho JC (2012) Manipulated growth of GaAs nanowires: controllable crystal quality and growth orientations via a supersaturation-controlled engineering process. Cryst Growth Des 12(12):6243–6249CrossRefGoogle Scholar
  123. 123.
    Borgström MT, Wallentin J, Trägårdh J, Ramvall P, Ek M, Wallenberg LR, Samuelson L, Deppert K (2010) In situ etching for total control over axial and radial nanowire growth. Nano Res 3(4):264–270CrossRefGoogle Scholar
  124. 124.
    Thelander C, Dick KA, Borgström MT, Fröberg LE, Caroff P, Nilsson HA, Samuelson L (2010) The electrical and structural properties of n-type InAs nanowires grown from metal–organic precursors. Nanotechnology 21(20):205703CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Sen Po Yip
    • 1
  • Lifan Shen
    • 1
  • Edwin Y. B. Pun
    • 1
  • Johnny C. Ho
    • 1
  1. 1.Department of Materials Science and EngineeringCity University of Hong KongHong KongChina

Personalised recommendations