A Correlated Study of Nanotube/Nanowire Transistor Between TEM Inspection and Electrical Characterization

  • Yann-Wen LanEmail author
  • Po-Chun Chen
Part of the Nanostructure Science and Technology book series (NST)


In this chapter, we introduce a novel method for a correlated study of nanowire/nanotube based on electrical measurements and electron microscope imaging. Two kinds of chip platforms are used, which named as the through-hole chip and the membrane chip, respectively. These kinds of chip platforms allow a physical correlation to be established for transmission electron microscopy inspection and electrical characterization. In order to demonstrate the correlated study, we conduct a few nanomaterials, including carbon nanotube, nanowire, and graphene derivatives, which are placed on top of the specific chips by manipulators. The results strongly indicate that the electrical property in the quasi-one-dimensional nanomaterials is sensitive to their structure such defect, contamination, and adsorption from environment.


Nanowire Carbon nanotube Transmission electron microscopy Graphene Nanomaterials 


  1. 1.
    Yann-Wen L, Wen-Hao C et al (2012) Effects of oxygen bonding on defective semiconducting and metallic single-walled carbon nanotube bundles. Carbon 50:4619–4627CrossRefGoogle Scholar
  2. 2.
    Yu-Chen L, Yu-Lun C et al (2007) P-type a-Fe2O3 nanowire and their n-type transition in a reductive ambient. Small 3:1356–1361CrossRefGoogle Scholar
  3. 3.
    Yen-Chun H, Po-Yuan C et al (2014) Using binary resistors to achieve multilevel resistive switching in multilayer NiO/Pt nanowire arrays. NPG Asia Materials 6:e85CrossRefGoogle Scholar
  4. 4.
    Yuzvinsky TD, Fennimore AM et al (2005) A. Precision cutting of nanotubes with a low-energy electron beam. Appl Phys Lett 86:053109CrossRefGoogle Scholar
  5. 5.
    Li Z, Wang CY et al (2009) First-principles study for transport properties of defective carbon nanotubes with oxygen adsorption. Eur Phys J B 69:375–382CrossRefGoogle Scholar
  6. 6.
    Lee SM, Lee YH et al (1999) Defect-induced oxidation of graphite. Phys Rev Lett 82:217–220CrossRefGoogle Scholar
  7. 7.
    Chan SP, Chen G et al (2003) Oxidation of carbon nanotubes by singlet O2. Phys Rev Lett 90086403:419–501Google Scholar
  8. 8.
    Pumera M (2009) Imaging of oxygen-containing groups on walls of carbon nanotubes. Chem Asian J 4:250–253CrossRefGoogle Scholar
  9. 9.
    Grujicic M, Cao G et al (2003) The effect of topological defects and oxygen adsorption on the electronic transport properties of single-walled carbon-nanotubes. Appl Surf Sci 211:166–183CrossRefGoogle Scholar
  10. 10.
    Barone V, Heyd J et al (2004) Effect of oxygen chemisorption on the energy band gap of a chiral semiconducting singlewalled carbon nanotube. Chem Phy Lett 389:289–292CrossRefGoogle Scholar
  11. 11.
    Kamimura T, Yamamoto K et al (2005) N-type doping for single-walled carbon nanotubes by oxygen ion implantation with 25eV ultralow-energy ion beam. Jpn J Appl Phys 44:8237–8239CrossRefGoogle Scholar
  12. 12.
    Yamamoto K, Kamimura T et al (2012) Electrical transport characteristic of carbon nanotube after mass-separated ultra-low-energy oxygen ion beams irradiation. Appl Surf Sci 252:5579–5582CrossRefGoogle Scholar
  13. 13.
    Huang CW, Wu HC et al (2007) Hydrogen storage in platelet graphite nanofibers. Sep Purif Technol 58:219–223CrossRefGoogle Scholar
  14. 14.
    Lan YW, Chang WH et al (2014) Stacking fault induced tunnel barrier in platelet graphite nanofiber. Appl Phys Lett 105:103505CrossRefGoogle Scholar
  15. 15.
    Grabert H, Devoret MH et al (2012) Single charge tunneling: coulomb blockade phenomena in nanostructures. NATO ASI Ser. B: Phys 294:65–90Google Scholar
  16. 16.
    Moriyama S, Toratani K, Tsuya D et al (2004) Electrical transport in semiconducting carbon nanotubes. Phys E 24:46–49CrossRefGoogle Scholar
  17. 17.
    Lan Y-W, Aravind K, Wu C-S, Kuan C-H, Chang-Liao K-S, Chen C-D (2012) Spin-orbit interaction in a single-walled carbon nanotube probed by Kondo resonance. Carbon 50:3748–3752CrossRefGoogle Scholar
  18. 18.
    Aravind K, Su YW et al (2012) Magnetic-field and temperature dependence of the energy gap in InN nanobelt. AIP Adv 2:012155CrossRefGoogle Scholar
  19. 19.
    Lan YW, Torres CM et al (2016) Self-aligned graphene oxide nanoribbon stack with gradient bandgap for visible-light photodetection. Nano Energy 27:114–120CrossRefGoogle Scholar
  20. 20.
    Sun CL, Chen LC et al (2011) Microwave-assisted synthesis of a core-shell MWCNT/GONR heterostructure for the electrochemical detection of ascorbic acid, dopamine, and uric acid. ACS Nano 5:7788–7795CrossRefGoogle Scholar
  21. 21.
    Zhu Y, Li X et al (2012) Quantitative analysis of structure and bandgap changes in graphene oxide nanoribbons during thermal annealing. JACS 134:11774–11780CrossRefGoogle Scholar
  22. 22.
    Dhakate SR, Chauhan N et al (2011) The production of multilayer graphene nanoribbons from thermally reduced unzipped multi-walled carbon nanotubes. Carbon 49:4170–4178CrossRefGoogle Scholar
  23. 23.
    Lan YW, Kuan CH, Nguyen LN et al (2011) Identification of embedded charge defects in suspended silicon nanowires using a carbon-nanotube cantilever gate. Appl Phys Lett 99:053104–1–053104-3Google Scholar
  24. 24.
    Nguyen L-N, Lin M-C, Chen H-S, Lan Y-W, Wu C-S, Chang-Liao K-S, Chen C-D (2012) Photoresponse of a nanopore device with a single embedded ZnO nano- particle. Nanotechnology 23:165201CrossRefGoogle Scholar
  25. 25.
    Liao Z-M, Xu J et al (2008) Photovoltaic effect and charge storage in single ZnO nanowires. Appl Phys Lett 93:023111–1–023111-3CrossRefGoogle Scholar
  26. 26.
    Fan Z, Lu JG (2005) Electrical properties of ZnO nanowire field effect transistors characterized with scanning probes. Appl Phys Lett 86:032111–1–032111-3Google Scholar
  27. 27.
    Nguyen L-N, Lan Y-W et al (2014) Resonant tunneling through discrete quantum states in stacked atomic-layered MoS2. Nano Lett 14:2381–2386CrossRefGoogle Scholar
  28. 28.
    Schwierz F (2010) Graphene transistors. Nat Nanotechnol 5:487–496CrossRefGoogle Scholar
  29. 29.
    Chiang WH, Lin TC et al (2010) Toward bandgap tunable graphene oxide nanoribbons by plasma-assisted reduction and defect restoration at low temperature. RSC Adv 6:2270–2278CrossRefGoogle Scholar
  30. 30.
    Han MY, Ozyilmaz B et al (2007) Energy band-gap engineering of graphene nanoribbons. Phys Rev Lett 98:206805–1–206805-4Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of PhysicsNational Taiwan Normal UniversityTaipeiTaiwan

Personalised recommendations