Advertisement

Nanowire-Based Lasers

  • Wenna Du
  • Jie Chen
  • Qing Zhang
  • Xinfeng LiuEmail author
Chapter
Part of the Nanostructure Science and Technology book series (NST)

Abstract

Taking advantage of nanowires’ quasi-one-dimensional nature, flexibility in material choice and combination, and intrinsic optoelectronic properties, intensive research has been conducted in the use of nanowires for sub-wavelength laser systems. In this chapter, we discuss the lasing mechanisms in nanowire and latest, most effective materials for nanowire lasers. An exploration of wavelength tunability is followed by some of the latest methods in nanowire lasers. In order to improve the performance of the nanowire lasers furthermore, several new nanowire laser cavity structures, especially surface plasmon polariton lasers, are introduced later. Finally, exciting new reports of electrically pumped nanowire lasers with the potential for integrated optoelectronic applications are described.

Keywords

Nanowire laser Lasing mechanisms Wavelength tunability Surface plasmon polariton lasers Electrically pumped nanowire lasers 

References

  1. 1.
    Einstein A (1916) Strahlungs-Emission und ­Absorption nach der Quantentheorie, vol 18Google Scholar
  2. 2.
    Schawlow AL, Townes CH (1958) Infrared and optical masersCrossRefGoogle Scholar
  3. 3.
    Maiman TH (1960) Stimulated optical radiation in ruby. Nature 187(4736):493–494CrossRefGoogle Scholar
  4. 4.
    Ning CZ (2012) Semiconductor nanowire lasers. Semicond Semimetals 86:455–486CrossRefGoogle Scholar
  5. 5.
    Tong L, Dai L, Wu X, Guo X, Ma Y (2013) Semiconductor nanowire lasers. Adv Opt Photon 5(3):216–273CrossRefGoogle Scholar
  6. 6.
    Yan R, Gargas D, Yang P (2009) Nanowire photonics. Nat Photonics 3(3):569–576CrossRefGoogle Scholar
  7. 7.
    Huang MH, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P (2001) Room-temperature ultraviolet nanowire nanolasers. Science 292(5523):1897CrossRefGoogle Scholar
  8. 8.
    Huang MH, Wu Y, Feick H, Tran N, Weber E, Yang P (2001) Catalytic growth of zinc oxide nanowires by vapor transport. Adv Mater 13(2):113–116CrossRefGoogle Scholar
  9. 9.
    van Vugt LK, Rühle S, Vanmaekelbergh D (2006) Phase-correlated nondirectional laser emission from the end facets of a ZnO nanowire. Nano Lett 6(12):2707–2711CrossRefGoogle Scholar
  10. 10.
    Wiersig J (2002) Hexagonal dielectric resonators and microcrystal lasers. Phys Rev A 67(2):426–430Google Scholar
  11. 11.
    Barrelet CJ, Bao JM, Loncar M, Park HG, Capasso F, Lieber CM (2006) Hybrid single-nanowire photonic crystal and microresonator structures. Nano Lett 6(1):11–15.  https://doi.org/10.1021/nl0522983 CrossRefGoogle Scholar
  12. 12.
    Xiao Y, Meng C, Wang P, Ye Y, Yu H, Wang S, Gu F, Dai L, Tong L (2011) Single-nanowire single-mode laser. Nano Lett 11(3):1122CrossRefGoogle Scholar
  13. 13.
    Maslov AV, Ning CZ (2004) Modal gain in a semiconductor nanowire laser with anisotropic band structure. IEEE J Quantum Electron 40(10):1389–1397CrossRefGoogle Scholar
  14. 14.
    Li Q, Wright JB, Chow WW, Luk TS, Brener I, Lester LF, Wang GT (2012) Single-mode GaN nanowire lasers. Opt Express 20(16):17873CrossRefGoogle Scholar
  15. 15.
    Wang S, Hu Z, Yu H, Fang W, Qiu M, Tong L (2009) Endface reflectivities of optical nanowires. Opt Express 17(13):10881–10886CrossRefGoogle Scholar
  16. 16.
    Chen L, Towe E (2006) Nanowire lasers with distributed-Bragg-reflector mirrors. Appl Phys Lett 89(5):89Google Scholar
  17. 17.
    Wu X, Li H, Liu L, Xu L (2008) Unidirectional single-frequency lasing from a ring-spiral coupled microcavity laser. Appl Phys Lett 93(8):1710Google Scholar
  18. 18.
    Wu X, Sun Y, Suter JD, Fan X (2009) Single mode coupled optofluidic ring resonator dye lasers. Appl Phys Lett 94(24):381Google Scholar
  19. 19.
    Huang D, Xu E, Zhou L, Li X, Zhang X, Zhang Y, Yu Y (2010) Ultrahigh-Q microwave photonic filter with Vernier effect and wavelength conversion in a cascaded pair of active loops. Opt Lett 35(8):1242–1244CrossRefGoogle Scholar
  20. 20.
    Lang RJ, Yariv A (2002) An exact formulation of coupled-mode theory for coupled-cavity lasers. IEEE J Quantum Electron 24(1):66–72CrossRefGoogle Scholar
  21. 21.
    Seo MK, Yang JK, Jeong KY, Park HG, Qian F, Ee HS, No YS, Lee YH (2008) Modal characteristics in a single-nanowire cavity with a triangular cross section. Nano Lett 8(12):4534CrossRefGoogle Scholar
  22. 22.
    Röder R, Ploss D, Kriesch A, Buschlinger R, Geburt S, Peschel U, Ronning C (2014) Polarization features of optically pumped CdS nanowire lasers. J Phys D Appl Phys 47(39):394012CrossRefGoogle Scholar
  23. 23.
    Bernard MGA, Duraffourg G (2010) 10–laser conditions in semiconductors *. Essentials of Lasers 1(7):699–703Google Scholar
  24. 24.
    Couteau C, Larrue A, Wilhelm C, Soci C (2015) Nanowire lasers. Nano 4(1):90–107Google Scholar
  25. 25.
    Arnardottir KB, Kyriienko O, Portnoi ME, Shelykh IA (2013) One-dimensional Van Hove polaritons. Phys Rev B 87(12):125408CrossRefGoogle Scholar
  26. 26.
    Zhang Q, Liu X, Utama MI, Zhang J, De lMM, Arbiol J, Lu Y, Sum TC, Xiong Q (2012) Highly enhanced exciton recombination rate by strong electron-phonon coupling in single ZnTe nanobelt. Nano Lett 12(12):6420CrossRefGoogle Scholar
  27. 27.
    Maslov AV, Ning CZ (2003) Reflection of guided modes in a semiconductor nanowire laser. Appl Phys Lett 83(6):1237–1239CrossRefGoogle Scholar
  28. 28.
    Ning CZ, Ding K, Fan F, Liu ZC (2014) Semiconductor Nanolasers (a tutorial), Photonics Society Summer Topical Meeting Series, pp 23–24Google Scholar
  29. 29.
    Kayanuma Y (1988) Quantum-size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape. Phys Rev B Condens Matter 38(14):9797CrossRefGoogle Scholar
  30. 30.
    Wegscheider W, Pfeiffer LN, Dignam MM, Pinczuk A, West KW, Mccall SL, Hull R (1993) Lasing from excitons in quantum wires. Phys Rev Lett 71(24):4071CrossRefGoogle Scholar
  31. 31.
    Agarwal R, Barrelet CJ, Lieber CM (2005) Lasing in single cadmium sulfide nanowire optical cavities. Nano Lett 5(5):917CrossRefGoogle Scholar
  32. 32.
    Changhasnain CJ (2011) Nanolasers grown on silicon. Nat Photonics 5(3):170–175CrossRefGoogle Scholar
  33. 33.
    Lončar M, Zhang Y (2008) Ultra-high quality factor optical resonators based on semiconductor nanowires. Opt Express 16(22):17400CrossRefGoogle Scholar
  34. 34.
    Wang MQ, Huang YZ, Chen Q, Cai ZP (2006) Analysis of mode quality factors and mode reflectivities for nanowire cavity by FDTD technique. IEEE J Quantum Electron 42(2):146–151CrossRefGoogle Scholar
  35. 35.
    Li ZY, Ho KM (2005) Bloch mode reflection and lasing threshold in semiconductor nanowire laser arrays. Phys Rev B 71(4)Google Scholar
  36. 36.
    Ding Y, Motohisa J, Hua B, Shinjiroh Hara A, Fukui T (2007) Observation of microcavity modes and waveguides in InP nanowires fabricated by selective-area metalorganic vapor-phase epitaxy. Nano Lett 7(12):3598–3602CrossRefGoogle Scholar
  37. 37.
    Johnson JC, Yan HQ, Yang PD, Saykally RJ (2003) Optical cavity effects in ZnO nanowire lasers and waveguides. J Phys Chem B 107(34):8816–8828.  https://doi.org/10.1021/jp034482n CrossRefGoogle Scholar
  38. 38.
    Eaton SW, Fu A, Wong AB, Ning CZ, Yang PD (2016) Semiconductor nanowire lasers. Nat Rev Mater 1(6):Artn 16028.  https://doi.org/10.1038/Natrevmats.2016.28 CrossRefGoogle Scholar
  39. 39.
    Ning CZ (2013) What is laser threshold? Ieee J Sel Top Quant 19(4):Artn 1503604.  https://doi.org/10.1109/Jstqe.2013.2259222 CrossRefGoogle Scholar
  40. 40.
    Chow WW, Jahnke F, Gies C (2014) Emission properties of nanolasers during the transition to lasing. Light-Sci Appl 3:ARTN e201.  https://doi.org/10.1038/lsa.2014.82 CrossRefGoogle Scholar
  41. 41.
    Choi HJ, Johnson JC, He RR, Lee SK, Kim F, Pauzauskie P, Goldberger J, Saykally RJ, Yang PD (2003) Self-organized GaN quantum wire UV lasers. J Phys Chem B 107(34):8721–8725.  https://doi.org/10.1021/jp034734k CrossRefGoogle Scholar
  42. 42.
    Zhang CF, Dong ZW, You GJ, Qian SX, Deng H (2006) Multiphoton route to ZnO nanowire lasers. Opt Lett 31(22):3345–3347.  https://doi.org/10.1364/Ol.31.003345 CrossRefGoogle Scholar
  43. 43.
    Pan AL, Liu RB, Zhang QL, Wan Q, He PB, Zacharias M, Zou BS (2007) Fabrication and red-color lasing of individual highly uniform single-crystal CdSe nanobelts. J Phys Chem C 111(38):14253–14256.  https://doi.org/10.1021/jp0740548 CrossRefGoogle Scholar
  44. 44.
    Pan AL, Zhou WC, Leong ESP, Liu RB, Chin AH, Zou BS, Ning CZ (2009) Continuous alloy-composition spatial grading and Superbroad wavelength-tunable nanowire lasers on a single Chip. Nano Lett 9(2):784–788.  https://doi.org/10.1021/nl803456k CrossRefGoogle Scholar
  45. 45.
    Zapien JA, Jiang Y, Meng XM, Chen W, Au FCK, Lifshitz Y, Lee ST (2004) Room-temperature single nanoribbon lasers. Appl Phys Lett 84(7):1189–1191.  https://doi.org/10.1063/1.1647270 CrossRefGoogle Scholar
  46. 46.
    Gao HW, Fu A, Andrews SC, Yang PD (2013) Cleaved-coupled nanowire lasers. P Natl Acad Sci USA 110(3):865–869.  https://doi.org/10.1073/pnas.1217335110 CrossRefGoogle Scholar
  47. 47.
    Gradecak S, Qian F, Li Y, Park HG, Lieber CM (2005) GaN nanowire lasers with low lasing thresholds. Appl Phys Lett 87(17):Artn 173111.  https://doi.org/10.1063/1.2115087 CrossRefGoogle Scholar
  48. 48.
    Qian F, Li Y, Gradecak S, Park HG, Dong YJ, Ding Y, Wang ZL, Lieber CM (2008) Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. Nat Mater 7(9):701–706.  https://doi.org/10.1038/nmat2253 CrossRefGoogle Scholar
  49. 49.
    Saxena D, Mokkapati S, Parkinson P, Jiang N, Gao Q, Tan HH, Jagadish C (2013) Optically pumped room-temperature GaAs nanowire lasers. Nat Photonics 7(12):963–968.  https://doi.org/10.1038/Nphoton.2013.303 CrossRefGoogle Scholar
  50. 50.
    Mayer B, Rudolph D, Schnell J, Morkotter S, Winnerl J, Treu J, Muller K, Bracher G, Abstreiter G, Koblmuller G, Finley JJ (2013) Lasing from individual GaAs-AlGaAs core-shell nanowires up to room temperature. Nat Commun 4:Artn 2931.  https://doi.org/10.1038/Ncomms3931 CrossRefGoogle Scholar
  51. 51.
    Chin AH, Vaddiraju S, Maslov AV, Ning CZ, Sunkara MK, Meyyappan M (2006) Near-infrared semiconductor subwavelength-wire lasers. Appl Phys Lett 88(16):241CrossRefGoogle Scholar
  52. 52.
    Gao Q, Saxena D, Wang F, Fu L, Mokkapati S, Guo YA, Li L, Wong-Leung J, Caroff P, Tan HH, Jagadish C (2014) Selective-area epitaxy of pure Wurtzite InP nanowires: high quantum efficiency and room-temperature lasing. Nano Lett 14(9):5206–5211.  https://doi.org/10.1021/nl5021409 CrossRefGoogle Scholar
  53. 53.
    Zhang LJ, Luo JW, Zunger A, Akopian N, Zwiller V, Harmand JC (2010) Wide InP nanowires with Wurtzite/Zincblende Superlattice segments are type-II whereas narrower nanowires become type-I: an atomistic pseudopotential calculation. Nano Lett 10(10):4055–4060.  https://doi.org/10.1021/nl102109s CrossRefGoogle Scholar
  54. 54.
    Zhang CF, Zhang F, Xia T, Kumar N, Hahm JI, Liu J, Wang ZL, Xu J (2009) Low-threshold two-photon pumped ZnO nanowire lasers. Opt Express 17(10):7893–7900CrossRefGoogle Scholar
  55. 55.
    Duan XF, Huang Y, Agarwal R, Lieber CM (2003) Single-nanowire electrically driven lasers. Nature 421(6920):241–245.  https://doi.org/10.1038/nature01353 CrossRefGoogle Scholar
  56. 56.
    Green MA, Ho-Baillie A, Snaith HJ (2014) The emergence of perovskite solar cells. Nat Photonics 8(7):506–514.  https://doi.org/10.1038/Nphoton.2014.134 CrossRefGoogle Scholar
  57. 57.
    Snaith HJ (2013) Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J Phys Chem Lett 4(21):3623–3630.  https://doi.org/10.1021/jz4020162 CrossRefGoogle Scholar
  58. 58.
    Xing J, Liu XF, Zhang Q, Ha ST, Yuan YW, Shen C, Sum TC, Xiong QH (2015) Vapor phase synthesis of Organometal halide perovskite nanowires for tunable room-temperature Nanolasers. Nano Lett 15(7):4571–4577.  https://doi.org/10.1021/acs.nanolett.5b01166 CrossRefGoogle Scholar
  59. 59.
    Zhang Q, Su R, Liu XF, Xing J, Sum TC, Xiong QH (2016) High-quality whispering-gallery-mode lasing from cesium lead halide perovskite Nanoplatelets. Adv Funct Mater 26(34):6238–6245.  https://doi.org/10.1002/adfm.201601690 CrossRefGoogle Scholar
  60. 60.
    Liu XF, Niu L, Wu CY, Cong CX, Wang H, Zeng QS, He HY, Fu QD, Fu W, Yu T, Jin CH, Liu Z, Sum TC (2016) Periodic organic-inorganic halide perovskite microplatelet arrays on silicon substrates for room-temperature lasing. Adv Sci 3(11):Artn 1600137.  https://doi.org/10.1002/Advs.201600137 CrossRefGoogle Scholar
  61. 61.
    Zhu HM, Fu YP, Meng F, Wu XX, Gong ZZ, Ding Q, Gustafsson MV, Trinh MT, Jin S, Zhu XY (2015) Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat Mater 14(6):636–U115.  https://doi.org/10.1038/NMAT4271 CrossRefGoogle Scholar
  62. 62.
    Niu GD, Guo XD, Wang LD (2015) Review of recent progress in chemical stability of perovskite solar cells. J Mater Chem A 3(17):8970–8980.  https://doi.org/10.1039/c4ta04994b CrossRefGoogle Scholar
  63. 63.
    Conings B, Drijkoningen J, Gauquelin N, Babayigit A, D’Haen J, D’Olieslaeger L, Ethirajan A, Verbeeck J, Manca J, Mosconi E, De Angelis F, Boyen HG (2015) Intrinsic thermal instability of Methylammonium lead Trihalide perovskite. Adv Energy Mater 5(15):Artn 1500477.  https://doi.org/10.1002/Aenm.201500477 CrossRefGoogle Scholar
  64. 64.
    Lee JW, Kim DH, Kim HS, Seo SW, Cho SM, Park NG (2015) Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell. Adv Energy Mater 5(20):Artn 1501310.  https://doi.org/10.1002/Aenm.201501310 CrossRefGoogle Scholar
  65. 65.
    Eaton SW, Lai ML, Gibson NA, Wong AB, Dou LT, Ma J, Wang LW, Leone SR, Yang PD (2016) Lasing in robust cesium lead halide perovskite nanowires. P Natl Acad Sci USA 113(8):1993–1998.  https://doi.org/10.1073/pnas.1600789113 CrossRefGoogle Scholar
  66. 66.
    Li JB, Meng C, Liu Y, Wu XQ, Lu YZ, Ye Y, Dai L, Tong LM, Liu X, Yang Q (2013) Wavelength tunable CdSe nanowire lasers based on the absorption-emission-absorption process. Adv Mater 25(6):833–837.  https://doi.org/10.1002/adma.201203692 CrossRefGoogle Scholar
  67. 67.
    Liu XF, Zhang Q, Yip JN, Xiong QH, Sum TC (2013) Wavelength tunable single nanowire lasers based on surface Plasmon Polariton enhanced Burstein-Moss effect. Nano Lett 13(11):5336–5343.  https://doi.org/10.1021/nl402836x CrossRefGoogle Scholar
  68. 68.
    Pauzauskie PJ, Sirbuly DJ, Yang PD (2006) Semiconductor nanowire ring resonator laser. Phys Rev Lett 96(14):Artn 143903.  https://doi.org/10.1103/Physrevlett.96.143903 CrossRefGoogle Scholar
  69. 69.
    Liu XF, Zhang Q, Xiong QH, Sum TC (2013) Tailoring the lasing modes in semiconductor nanowire cavities using intrinsic self-absorption. Nano Lett 13(3):1080–1085.  https://doi.org/10.1021/nl304362u CrossRefGoogle Scholar
  70. 70.
    Liu YK, Zapien JA, Shan YY, Geng CY, Lee CS, Lee ST (2005) Wavelength-controlled lasing in ZnxCd1-xS single-crystal nanoribbons. Adv Mater 17(11):1372–1377.  https://doi.org/10.1002/adma.200401606 CrossRefGoogle Scholar
  71. 71.
    Kuykendall T, Ulrich P, Aloni S, Yang P (2007) Complete composition tunability of InGaN nanowires using a combinatorial approach. Nat Mater 6(12):951–956.  https://doi.org/10.1038/nmat2037 CrossRefGoogle Scholar
  72. 72.
    Pan AL, Liu RB, Sun MH, Ning CZ (2010) Spatial composition grading of quaternary ZnCdSSe alloy nanowires with tunable light emission between 350 and 710 nm on a single substrate. ACS Nano 4(2):671–680.  https://doi.org/10.1021/nn901699h CrossRefGoogle Scholar
  73. 73.
    Ma YG, Li XY, Yang ZY, Yu HK, Wang P, Tong LM (2010) Pigtailed CdS nanoribbon ring laser. Appl Phys Lett 97(15):Artn 153122.  https://doi.org/10.1063/1.3501969 CrossRefGoogle Scholar
  74. 74.
    Yang Q, Jiang XS, Guo X, Chen Y, Tong LM (2009) Hybrid structure laser based on semiconductor nanowires and a silica microfiber knot cavity. Appl Phys Lett 94(10):101108.  https://doi.org/10.1063/1.3093821 CrossRefGoogle Scholar
  75. 75.
    Wang GZ, Jiang XS, Zhao MX, Ma YG, Fan HB, Yang Q, Tong LM, Xiao M (2012) Microlaser based on a hybrid structure of a semiconductor nanowire and a silica microdisk cavity. Opt Express 20(28):29472–29478.  https://doi.org/10.1364/Oe.20.029472 CrossRefGoogle Scholar
  76. 76.
    Liu ZC, Yin LJ, Ning H, Yang ZY, Tong LM, Ning CZ (2013) Dynamical color-controllable lasing with extremely wide tuning range from red to green in a single alloy nanowire using nanoscale manipulation. Nano Lett 13(10):4945–4950.  https://doi.org/10.1021/nl4029686 CrossRefGoogle Scholar
  77. 77.
    Zhang T, Shan F (2014) Development and application of surface plasmon polaritons on optical amplification. J Nanomater:Artn 495381.  https://doi.org/10.1155/2014/495381 Google Scholar
  78. 78.
    Berini P, De Leon I (2012) Surface plasmon-polariton amplifiers and lasers. Nat Photonics 6(1):16–24.  https://doi.org/10.1038/nphoton.2011.285 CrossRefGoogle Scholar
  79. 79.
    Maslov AV, Ning CZ (2007) Size reduction of a semiconductor nanowire laser by using metal coating. Proc Spie 6468:Artn 64680i.  https://doi.org/10.1117/12.723786 CrossRefGoogle Scholar
  80. 80.
    Oulton RF, Sorger VJ, Genov DA, Pile DFP, Zhang X (2008) A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat Photonics 2(8):496–500.  https://doi.org/10.1038/nphoton.2008.131 CrossRefGoogle Scholar
  81. 81.
    Oulton RF, Sorger VJ, Zentgraf T, Ma RM, Gladden C, Dai L, Bartal G, Zhang X (2009) Plasmon lasers at deep subwavelength scale. Nature 461(7264):629–632.  https://doi.org/10.1038/nature08364 CrossRefGoogle Scholar
  82. 82.
    Lu YJ, Kim J, Chen HY, Wu CH, Dabidian N, Sanders CE, Wang CY, Lu MY, Li BH, Qiu XG, Chang WH, Chen LJ, Shvets G, Shih CK, Gwo S (2012) Plasmonic Nanolaser using Epitaxially grown silver film. Science 337(6093):450–453.  https://doi.org/10.1126/science.1223504 CrossRefGoogle Scholar
  83. 83.
    Zhang Q, Li GY, Liu XF, Qian F, Li Y, Sum TC, Lieber CM, Xiong QH (2014) A room temperature low-threshold ultraviolet plasmonic nanolaser. Nat Commun 5:Artn 4953.  https://doi.org/10.1038/Ncomms5953 CrossRefGoogle Scholar
  84. 84.
    Zhang Q, Shan XY, Feng X, Wang CX, Wang QQ, Jia JF, Xue QK (2011) Modulating resonance modes and Q value of a CdS nanowire cavity by single ag nanoparticles. Nano Lett 11(10):4270–4274.  https://doi.org/10.1021/nl2022674 CrossRefGoogle Scholar
  85. 85.
    Khurgin JB (2015) How to deal with the loss in plasmonics and metamaterials. Nat Nanotechnol 10(1):2–6.  https://doi.org/10.1038/nnano.2014.310 CrossRefGoogle Scholar
  86. 86.
    Hill MT, Oei YS, Smalbrugge B, Zhu Y, De Vries T, Van Veldhoven PJ, Van Otten FWM, Eijkemans TJ, Turkiewicz JP, De Waardt H, Geluk EJ, Kwon SH, Lee YH, Notzel R, Smit MK (2007) Lasing in metallic- coated nanocavities. Nat Photonics 1(10):589–594.  https://doi.org/10.1038/nphoton.2007.171 CrossRefGoogle Scholar
  87. 87.
    Li KH, Liu X, Wang Q, Zhao S, Mi Z (2015) Ultralow-threshold electrically injected AlGaN nanowire ultraviolet lasers on Si operating at low temperature. Nat Nanotechnol 10(2):140–144.  https://doi.org/10.1038/Nnano.2014.308 CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Division of Nanophotonics, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and TechnologyChinese Academy of SciencesBeijingChina
  2. 2.Department of Materials Science and Engineering, College of EngineeringPeking UniversityBeijingPeople’s Republic of China

Personalised recommendations