Advertisement

X-Ray Spectroscopic Analysis of Electronic Properties of One-Dimensional Nanostructured Materials

  • Han-Wei Chang
  • Chi Liang ChenEmail author
  • Sofia Ya Hsuan Liou
  • Chung-Li DongEmail author
Chapter
Part of the Nanostructure Science and Technology book series (NST)

Abstract

This work concerns nanostructured titania (TiO2) arrays (tubes and rods) and nanoflaky MnO2/functionalized carbon nanotubes (CNT), which exhibit excellent physical and chemical properties, including a high surface area, light absorption, and efficient separation of electrons/holes. Although these nanomaterials have been extensively studied, a detailed experimental investigation of the microscopic phenomena of electron-orbital interaction, lattice structure modulation, and especially how they respond to external stimuli is lacking. Synchrotron X-ray spectroscopic techniques (X-ray emission (XE), X-ray absorption (XA), and resonant inelastic X-ray scattering (RIXS)) were utilized to elucidate the fundamental atomic and electronic structures of the metal and oxygen ions around the Fermi level (EF) of these nanomaterials. They can also be used to examine in detail conduction/valence band structures, bandgaps, electron/hole transportation, structural symmetry, the fine structure of the crystal field splitting of the d orbital, and the symmetry of ligand p orbitals. In situ X-ray spectroscopy is used with microscopic measurements to provide more details of activity during the fabrication and catalytic reaction of these one-dimensional nanomaterials. These investigations reveal their fundamental atomic and electronic properties and promote the study of advanced nanomaterials with a view to develop the next generation of energy sources and innovative environmental solutions in the pursuit of a sustainable future.

Keywords

X-ray spectroscopy Titania arrays (Nano)energy material Atomic and electronic structures 

Notes

Acknowledgment

The authors would like to thank the Ministry of Science and Technology (MoST) of Taiwan for financially supporting these studies under contracts nos. MoST 104-2112-M-032-008-MY3, MoST 104-2923-M-032-001-MY3, and 105-2112-M-213-013-MY3. The authors are also grateful to NSRRC for providing beamtime and beamline support.

References

  1. 1.
    Cho IS, Chen Z, Forman AJ et al (2011) Branched TiO2 nanorods for photoelectrochemical hydrogen production. Nano Lett 11:4978–4984CrossRefGoogle Scholar
  2. 2.
    Hwang YJ, Hahn C, Liu B et al (2012) Photoelectrochemical properties of TiO2 nanowire arrays: a study of the dependence on length and atomic layer deposition coating. ACS Nano 6:5060–5069CrossRefGoogle Scholar
  3. 3.
    Wang G, Wang H, Ling Y et al (2011) Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett 11:3026–3033CrossRefGoogle Scholar
  4. 4.
    Park H, Choi W, Hoffmann MR (2008) Effects of the preparation method of the ternary CdS/TiO 2/Pt hybrid photocatalysts on visible light-induced hydrogen production. J Mater Chem 18:2379–2385CrossRefGoogle Scholar
  5. 5.
    Su D, Wang J, Tang Y et al (2011) Constructing WO 3/TiO 2 composite structure towards sufficient use of solar energy. Chem Commun 47:4231–4233CrossRefGoogle Scholar
  6. 6.
    Cao J, Luo B, Lin H et al (2012) Thermodecomposition synthesis of WO 3/H 2 WO 4 heterostructures with enhanced visible light photocatalytic properties. Appl Catal B 111:288–296CrossRefGoogle Scholar
  7. 7.
    Isimjan TT, He Q, Liu Y et al (2013) Nanocomposite catalyst with palladium nanoparticles encapsulated in a polymeric acid: a model for tandem environmental catalysis. ACS Sustain Chem Eng 1:381–388CrossRefGoogle Scholar
  8. 8.
    Fan S-Q, Kim D, Kim J-J et al (2009) Highly efficient CdSe quantum-dot-sensitized TiO 2 photoelectrodes for solar cell applications. Electrochem Commun 11:1337–1339CrossRefGoogle Scholar
  9. 9.
    Chen H, Fu W, Yang H et al (2010) Photosensitization of TiO2 nanorods with CdS quantum dots for photovoltaic devices. Electrochim Acta 56:919–924CrossRefGoogle Scholar
  10. 10.
    Liu B, Aydil ES (2009) Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J Am Chem Soc 131:3985–3990CrossRefGoogle Scholar
  11. 11.
    Wang G, Yang X, Qian F et al (2010) Double-sided CdS and CdSe quantum dot co-sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation. Nano Lett 10:1088–1092CrossRefGoogle Scholar
  12. 12.
    Guo W, Xue X, Wang S et al (2012) An integrated power pack of dye-sensitized solar cell and Li battery based on double-sided TiO2 nanotube arrays. Nano Lett 12:2520–2523CrossRefGoogle Scholar
  13. 13.
    Lei Z, Shi F, Lu L (2012) Incorporation of MnO2-coated carbon nanotubes between graphene sheets as supercapacitor electrode. ACS Appl Mater Interfaces 4:1058–1064CrossRefGoogle Scholar
  14. 14.
    Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828CrossRefGoogle Scholar
  15. 15.
    Wei W, Cui X, Chen W et al (2011) Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem Soc Rev 40:1697–1721CrossRefGoogle Scholar
  16. 16.
    Yu G, Hu L, Vosgueritchian M et al (2011) Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. Nano Lett 11:2905–2911CrossRefGoogle Scholar
  17. 17.
    Du L, Yang P, Yu X et al (2014) Flexible supercapacitors based on carbon nanotube/MnO 2 nanotube hybrid porous films for wearable electronic devices. J Mater Chem A 2:17561–17567CrossRefGoogle Scholar
  18. 18.
    Zhao X, Zhang L, Murali S et al (2012) Incorporation of manganese dioxide within ultraporous activated graphene for high-performance electrochemical capacitors. ACS Nano 6:5404–5412CrossRefGoogle Scholar
  19. 19.
    Jin Y, Chen H, Chen M et al (2013) Graphene-patched CNT/MnO2 nanocomposite papers for the electrode of high-performance flexible asymmetric supercapacitors. ACS Appl Mater Interfaces 5:3408–3416CrossRefGoogle Scholar
  20. 20.
    Zhao L, Yu X, Yu J et al (2014) Remarkably improved electrode performance of bulk MnS by forming a solid solution with FeS–understanding the Li storage mechanism. Adv Funct Mater 24:5557–5566CrossRefGoogle Scholar
  21. 21.
    Pan B, Feng Z, Sa N et al (2016) Advanced hybrid battery with a magnesium metal anode and a spinel LiMn 2 O 4 cathode. Chem Commun 52:9961–9964CrossRefGoogle Scholar
  22. 22.
    Xu J, Ma C, Balasubramanian M et al (2014) Understanding Na 2 Ti 3 O 7 as an ultra-low voltage anode material for a Na-ion battery. Chem Commun 50:12564–12567CrossRefGoogle Scholar
  23. 23.
    Lukatskaya MR, Bak SM, Yu X et al (2015) Probing the mechanism of high capacitance in 2D titanium carbide using in situ X-ray absorption spectroscopy. Adv Energy Mater 5:1500589CrossRefGoogle Scholar
  24. 24.
    Gorlin Y, Lassalle-Kaiser B, Benck JD et al (2013) In situ X-ray absorption spectroscopy investigation of a bifunctional manganese oxide catalyst with high activity for electrochemical water oxidation and oxygen reduction. J Am Chem Soc 135:8525–8534CrossRefGoogle Scholar
  25. 25.
    Chen CL, Dong CL, Chen CH et al (2015) Electronic properties of free-standing TiO2 nanotube arrays fabricated by electrochemical anodization. Phys Chem Chem Phys 17:22064–22071CrossRefGoogle Scholar
  26. 26.
    Kao LC, Liou SYH, Dong CL et al (2016) Tandem structure of QD cosensitized TiO2 nanorod arrays for solar light driven hydrogen generation. ACS Sustain Chem Eng 4:210–218CrossRefGoogle Scholar
  27. 27.
    Chang HW, Lu YR, Chen JL et al (2015) Nanoflaky MnO2/functionalized carbon nanotubes for supercapacitors: an in situ X-ray absorption spectroscopic investigation. Nanoscale 7:1725–1735CrossRefGoogle Scholar
  28. 28.
    Liu Z, Zhang X, Nishimoto S et al (2008) Efficient photocatalytic degradation of gaseous acetaldehyde by highly ordered TiO2 nanotube arrays. Environ Sci Technol 42:8547–8551CrossRefGoogle Scholar
  29. 29.
    Liu Z, Zhang X, Nishimoto S et al (2008) Highly ordered TiO2 nanotube arrays with controllable length for photoelectrocatalytic degradation of phenol. J Phys Chem C 112:253–259CrossRefGoogle Scholar
  30. 30.
    Shankar K, Basham JI, Allam NK et al (2009) Recent advances in the use of TiO2 nanotube and nanowire arrays for oxidative photoelectrochemistry. J Phys Chem C 113:6327–6359CrossRefGoogle Scholar
  31. 31.
    Nah YC, Paramasivam I, Schmuki P (2010) Doped TiO2 and TiO2 nanotubes: synthesis and applications. ChemPhysChem 11:2698–2713CrossRefGoogle Scholar
  32. 32.
    Lin C-J, Yu W-Y, Lu Y-T et al (2008) Fabrication of open-ended high aspect-ratio anodic TiO2 nanotube films for photocatalytic and photoelectrocatalytic applications. Chem Commun 45:6031–6033CrossRefGoogle Scholar
  33. 33.
    Ghicov A, Schmuki P (2009) Self-ordering electrochemistry: a review on growth and functionality of TiO2 nanotubes and other self-aligned MOx structures. Chem Commun 45:2791–2808CrossRefGoogle Scholar
  34. 34.
    Lin C-J, Yu W-Y, Chien S-H (2008) Rough conical-shaped TiO2-nanotube arrays for flexible back illuminated dye-sensitized solar cells. Appl Phys Lett 93:133107CrossRefGoogle Scholar
  35. 35.
    Lin C-J, Yu W-Y, Chien S-H (2010) Transparent electrodes of ordered opened-end TiO2-nanotube arrays for highly efficient dye-sensitized solar cells. J Mater Chem 20:1073–1077CrossRefGoogle Scholar
  36. 36.
    Zwilling V, Darque-Ceretti E, Boutry-Forveille A et al (1999) Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy. Surf Interface Anal 27:629–637CrossRefGoogle Scholar
  37. 37.
    Paulose M, Prakasam HE, Varghese OK et al (2007) TiO2 nanotube arrays of 1000 μm length by anodization of titanium foil: phenol red diffusion. J Phys Chem C 111:14992–14997CrossRefGoogle Scholar
  38. 38.
    Albu SP, Ghicov A, Macak JM et al (2007) Self-organized, free-standing TiO2 nanotube membrane for flow-through photocatalytic applications. Nano Lett 7:1286–1289CrossRefGoogle Scholar
  39. 39.
    Wang J, Lin Z (2008) Freestanding TiO2 nanotube arrays with ultrahigh aspect ratio via electrochemical anodization. Chem Mater 20:1257–1261CrossRefGoogle Scholar
  40. 40.
    Lin J, Chen J, Chen X (2010) Facile fabrication of free-standing TiO2 nanotube membranes with both ends open via self-detaching anodization. Electrochem Commun 12:1062–1065CrossRefGoogle Scholar
  41. 41.
    Albu SP, Ghicov A, Aldabergenova S et al (2008) Formation of double-walled TiO2 nanotubes and robust anatase membranes. Adv Mater 20:4135–4139Google Scholar
  42. 42.
    Ghicov A, Tsuchiya H, Macak JM et al (2006) Annealing effects on the photoresponse of TiO2 nanotubes. Phys Status Solidi 203:R28–R30CrossRefGoogle Scholar
  43. 43.
    Crocombette J, Jollet F (1994) Ti 2p X-ray absorption in titanium dioxides (TiO2): the influence of the cation site environment. J Phys Condens Matter 6:10811CrossRefGoogle Scholar
  44. 44.
    Ruus R, Kikas A, Saar A et al (1997) Ti 2p and O 1s X-ray absorption of TiO2 polymorphs. Solid State Commun 104:199–203CrossRefGoogle Scholar
  45. 45.
    Harada Y, Kinugasa T, Eguchi R et al (2000) Polarization dependence of soft-X-ray Raman scattering at the L edge of TiO 2. Phys Rev B 61:12854CrossRefGoogle Scholar
  46. 46.
    De Groot F, Fuggle J, Thole B et al (1990) 2p X-ray absorption of 3d transition-metal compounds: an atomic multiplet description including the crystal field. Phys Rev B 42:5459CrossRefGoogle Scholar
  47. 47.
    Kucheyev S, Van Buuren T, Baumann T et al (2004) Electronic structure of titania aerogels from soft X-ray absorption spectroscopy. Phys Rev B 69:245102CrossRefGoogle Scholar
  48. 48.
    Krüger P (2010) Multichannel multiple scattering calculation of L 2, 3-edge spectra of TiO2 and SrTiO3: importance of multiplet coupling and band structure. Phys Rev B 81:125121CrossRefGoogle Scholar
  49. 49.
    Thakur H, Kumar R, Thakur P et al (2011) Modifications in structural and electronic properties of TiO2 thin films using swift heavy ion irradiation. J Appl Phys 110:083718CrossRefGoogle Scholar
  50. 50.
    De Groot F, Faber J, Michiels J et al (1993) Oxygen 1s X-ray absorption of tetravalent titanium oxides: a comparison with single-particle calculations. Phys Rev B 48:2074CrossRefGoogle Scholar
  51. 51.
    Brydson R, Sauer H, Engel W et al (1989) Electron energy loss and X-ray absorption spectroscopy of rutile and anatase: a test of structural sensitivity. J Phys Condens Matter 1:797CrossRefGoogle Scholar
  52. 52.
    Matsubara M, Uozumi T, Kotani A et al (2002) Polarization dependence of resonant X-ray emission spectra in 3dn transition metal compounds with n = 0, 1, 2, 3. J Phys Soc Jpn 71:347–356CrossRefGoogle Scholar
  53. 53.
    Agui A, Uozumi T, Mizumaki M et al (2009) Intermetallic charge transfer in FeTiO3 probed by resonant inelastic soft X-ray scattering. Phys Rev B 79:092402CrossRefGoogle Scholar
  54. 54.
    Augustsson A, Henningsson A, Butorin S et al (2003) Lithium ion insertion in nanoporous anatase TiO2 studied with RIXS. J Chem Phys 119:3983–3987CrossRefGoogle Scholar
  55. 55.
    Kuznetsova A, Popova I, Yates JT et al (2001) Oxygen-containing functional groups on single-wall carbon nanotubes: NEXAFS and vibrational spectroscopic studies. J Am Chem Soc 123:10699–10704CrossRefGoogle Scholar
  56. 56.
    Zhong J, Song L, Meng J et al (2009) Bio–nano interaction of proteins adsorbed on single-walled carbon nanotubes. Carbon 47:967–973CrossRefGoogle Scholar
  57. 57.
    Zhou J, Fang H, Hu Y et al (2009) Immobilization of RuO2 on carbon nanotube: an X-ray absorption near-edge structure study. J Phys Chem C 113:10747–10750CrossRefGoogle Scholar
  58. 58.
    Jiang W, Zhang K, Wei L et al (2013) Hybrid ternary rice paper–manganese oxide–carbon nanotube nanocomposites for flexible supercapacitors. Nanoscale 5:11108–11117CrossRefGoogle Scholar
  59. 59.
    Liu M, Gan L, Xiong W et al (2014) Development of MnO2/porous carbon microspheres with a partially graphitic structure for high performance supercapacitor electrodes. J Mater Chem A 2:2555–2562CrossRefGoogle Scholar
  60. 60.
    Lee SW, Kim J, Chen S et al (2010) Carbon nanotube/manganese oxide ultrathin film electrodes for electrochemical capacitors. ACS Nano 4:3889–3896CrossRefGoogle Scholar
  61. 61.
    Lee S-W, Bak S-M, Lee C-W et al (2014) Structural changes in reduced graphene oxide upon MnO2 deposition by the redox reaction between carbon and permanganate ions. J Phys Chem C 118:2834–2843CrossRefGoogle Scholar
  62. 62.
    Zhou J, Zhou X, Sun X et al (2007) Interaction between Pt nanoparticles and carbon nanotubes–An X-ray absorption near edge structures (XANES) study. Chem Phys Lett 437:229–232CrossRefGoogle Scholar
  63. 63.
    Ma S-B, Ahn K-Y, Lee E-S et al (2007) Synthesis and characterization of manganese dioxide spontaneously coated on carbon nanotubes. Carbon 45:375–382CrossRefGoogle Scholar
  64. 64.
    Yoon W-S, Balasubramanian M, Chung KY et al (2005) Investigation of the charge compensation mechanism on the electrochemically Li-Ion deintercalated Li1-x Co1/3Ni1/3Mn1/3O2 electrode system by combination of soft and hard X-ray absorption spectroscopy. J Am Chem Soc 127:17479–17487CrossRefGoogle Scholar
  65. 65.
    Chang J-K, Lee M-T, Tsai W-T et al (2009) X-ray photoelectron spectroscopy and in situ X-ray absorption spectroscopy studies on reversible insertion/desertion of dicyanamide anions into/from manganese oxide in ionic liquid. Chem Mater 21:2688–2695CrossRefGoogle Scholar
  66. 66.
    Turner S, Buseck PR (1979) Manganese oxide tunnel structures and their intergrowths. Science 203:456–458CrossRefGoogle Scholar
  67. 67.
    Dnrrs VA (1992) Structural chemistry of Mn, Fe, Co, and Ni in manganese hydrous oxides: part I. Information from XANES spectroscopy. Am Mineral 77:1133–1143Google Scholar
  68. 68.
    Wortham E, Bonnet B, Jones DJ et al (2004) Birnessite-type manganese oxide–alkylamine mesophases obtained by intercalation and their thermal behaviour. J Mater Chem 14:121–126CrossRefGoogle Scholar
  69. 69.
    Shen XF, Ding YS, Liu J et al (2005) Control of nanometer-scale tunnel sizes of porous manganese oxide octahedral molecular sieve nanomaterials. Adv Mater 17:805–809CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of PhysicsTamkang UniversityTamsuiTaiwan
  2. 2.National Synchrotron Radiation Research CenterHsinchuTaiwan
  3. 3.Department of GeosciencesNational Taiwan UniversityTaipeiTaiwan

Personalised recommendations