Advertisement

An Overview of SLAM

  • Sufang Wang
  • Zheng Wu
  • Weicun Zhang
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 528)

Abstract

Simultaneous Localization and Mapping (SLAM) based on LIDAR and Visual SLAM (VSLAM) are key technologies for mobile robot navigation. In this paper, the SLAM algorithm based on these two types of sensors is described, and their advantages and disadvantages are comprehensively analyzed and compared. In order to better achieve active navigation and positioning, path planning and obstacle avoidance, the advantages of both should be brought into full play. In the end, the future development direction of mobile robot is discussed.

Keywords

SLAM Mobile robot Navigation Sensor 

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 61520106010; 61741302).

References

  1. 1.
    J.J. Leonard, H.F. Durrant-Whyte, I.J. Cox, Dynamic map building for an autonomous mobile robot, vol. 11, no. 4 (Sage Publications Inc., 1992), pp. 286–298Google Scholar
  2. 2.
    W. Chen, F. Zhang, Review on the achievements in simultaneous localization and map building for mobile robot. Control Theory Appl. 22(3), 455–457 (2005)Google Scholar
  3. 3.
    M. Csorba, Simultaneous Localization and Mapping (University of Oxford, 1997), pp. 56–89Google Scholar
  4. 4.
    M. Montemerlo, S. Thrun, D. Koller, Fast SLAM (Simultaneous Localization And Mapping), in Proceedings of the AAAI National Conference on Artificial Intelligence (Menlo Park, CA, USA, 2002), pp. 593–598Google Scholar
  5. 5.
    H. Durrant-Whyte, Where am I? A tutorial on mobile vehicle localization. Ind. Robot 21(2), 11–16 (1994)CrossRefGoogle Scholar
  6. 6.
    S. Yavuz, Z. Kurt, M.S. Bicer, Simultaneous localization and mapping using extended Kalman filter. in 2009 IEEE 17th Signal Processing and Communications Applications Conference (IEEE, Antalya, 2009), pp. 700–703Google Scholar
  7. 7.
    Y. Wei, Z. Zuo, Improvement of the simultaneous localization and map building algorithm applying scaled unscented transformation, in International Conference on Industrial Mechatronics and Automation, 2009, ICIMA 2009 (IEEE, Chengdu, 2009), pp. 371–374Google Scholar
  8. 8.
    J.G. Kang, W.S. Choi, S.Y. An et al., Augmented EKF based SLAM method for improving the accuracy of the feature map, in 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, Taipei, 2010), pp. 3725–3731Google Scholar
  9. 9.
    D. Wang, H. Liang, T. Mei, Lidar scan matching EKF-SLAM using the differential model of vehicle motion, in Intelligent Vehicles Symposium (IV), 2013 IEEE, vol. 36, no. 1 (IEEE, Gold Coast, QLD, 2013), pp. 908–912Google Scholar
  10. 10.
    S.J. Julier, J.K. Uhlmann, A counter example to the theory of simultaneous localization and map building. in IEEE International Conference on Robotics and Automation (Seoul, Korea: [s. n.], 2001), pp. 4238–4243Google Scholar
  11. 11.
    S.J. Julier, The spherical simplex unscented transformation, in Proceedings of the American Control Conference (Denver: [s. n.], 2003), pp. 2430–2434Google Scholar
  12. 12.
    M.S. Arulampalam, S. Maskell et al., A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 50(2), 174–188 (2002)CrossRefGoogle Scholar
  13. 13.
    K. Murphy, Bayesian map learning in dynamic environments. Adv. Neural Inform. Process. Syst. 12, 1015–1021 (2008)Google Scholar
  14. 14.
    K. Murphy, S. Russell, Rao-Blackwellised particle filtering for dynamic bayesian networks, vol. 43, no. 2 (Springer New York, 2001), pp. 499–515Google Scholar
  15. 15.
    M. Montemerlo, S. Thrun, D. Koller, Fast SLAM (Simultaneous Localization And Mapping), in Proceedings of the AAAI National Conference on Artificial Intelligence (AAAI, Menlo Park, CA, USA, 2002), pp. 593–598Google Scholar
  16. 16.
    E. Wu, X. Zhiyu, M. Shen, J. Liu, Robot SLAM algorithm based on laser range finder for large scale environment. J. Zhejiang Univ. 41(12), 1982–1986 (2007)zbMATHGoogle Scholar
  17. 17.
    S. Thrun, D. Fox, W. Burgard, F. Dallaert, Robust Monte Carlo localization for mobile robots. Artif. Intell. 128(1–2), 99–141 (2001)CrossRefGoogle Scholar
  18. 18.
    X. Gao, T. Zhang, Y. Liu, Q. Yan, Visual SLAM Fourteen Lectures: From Theory to Practice (Publishing House of Electronics Industry, Beijing, 2017), pp. 132–204Google Scholar
  19. 19.
    A.J. Davison, I.D. Reid, N.D. Molton, O. Stasse, Monoslam: real-time single camera SLAM. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 1052–1067 (2007)CrossRefGoogle Scholar
  20. 20.
    M. Quan, S. Piao, L. Guo, An overview of visual SLAM. CAAI Trans. Intell. Syst. 11(6), 768–776 (2016)Google Scholar
  21. 21.
    G. Klein, D. Murray, Parallel tracking and mapping for small AR workspaces, in IEEE and ACM Intemational Symposium on Mixed and Augmented Reality (Nara, Japan, 2007), pp. 225–234Google Scholar
  22. 22.
    R. Mur-Artal, J.D. Tardós, Fast relocalisation and loop closing in keyframe-based SLAM, in IEEE International Conference on Robotics and Automation (New Orleans, LA, 2014), pp. 846–853Google Scholar
  23. 23.
    R. Mur-Artal, J.M.M. Montiel, J.D. Tardós, ORB-SLAM: a versatile and accurate monocular SLAM system. IEEE Trans. Rob. 31(5), 1147–1163 (2015)CrossRefGoogle Scholar
  24. 24.
    P. Henry, M. Krainin, E. Herbst et al., RGB-D mapping: using depth cameras for dense 3D modeling of indoor environments, vol. 31, no. 5 (Springer Berlin Heidelberg, 2014), pp. 647–663Google Scholar
  25. 25.
    K. Zhu, H. Liu, Q. Xia, Survey on monocular visual SLAM algorithms. Appl. Res. Comput. 35(1), 1–6 (2018)Google Scholar
  26. 26.
    L. Shifei, P. Wang, S. Zhenkang, A survey of iterative closest point algorithm. Sig. Process. 25(10), 1582–1588 (2009)Google Scholar
  27. 27.
    M. Irani, P. Anandan, About direct methods, in International Workshop on Vision Algorithms: Theory & Practice (1999), pp. 267–277Google Scholar
  28. 28.
    G. Silveira, E. Malis, P. Rives, An efficient direct approach to visual slam. IEEE Trans. Rob. (IEEE Press) 24(5), 969–979 (2008)Google Scholar
  29. 29.
    C. Forster, M. Pizzoli, D. Scaramuzza, SVO: fast semi-direct monocular visual odometry. in IEEE International Conference on Robotics and Automation (ICRA) (2014), pp. 15–22Google Scholar
  30. 30.
    J. Engel, T. Schöps, D. Cremers, LSD-SLAM: large-scale direct monocular SLAM, in Computer Vision-ECCV 2014 (Springer International Publishing, 2014), pp. 834–849Google Scholar
  31. 31.
    J. Engel, J. Sturm, D. Cremers, Semi-dense visual odometry for a monocular camera, in Proceedings of the IEEE International Conference on Computer Vision (2013), pp. 1449–1456Google Scholar
  32. 32.
    J. Engel, V. Koltun, D. Cremers, Direct sparse odometry. IEEE Trans. Pattern Anal. Mach. Intell. PP(99), 1 (2017)Google Scholar
  33. 33.
    V. Usenko, J. Engel, J. Stückler, D. Cremers, Direct visual-inertial odometry with stereo cameras, in IEEE International Conference on Robotics and Automation (ICRA) (2016), pp. 1885–1892Google Scholar
  34. 34.
    R.A. Newcombe, S. Izadi, O. Hilliges et al., KinectFusion: real-time dense surface mapping and tracking, in IEEE International Symposium on Mixed and Augmented Reality (2011), pp. 127–136Google Scholar
  35. 35.
    P. Henry, M. Krainin, E. Herbst et al., RGB-D mapping: using kinect-style depth cameras for dense 3D modeling of indoor environments. Int. J. Rob. Res. 31(5), 647–663 (2012)CrossRefGoogle Scholar
  36. 36.
    C. Kerl, J. Sturm, D. Cremers, Dense visual SLAM for RGB-D cameras, in IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 8215, no. 2 (2014), pp. 2100–2106Google Scholar
  37. 37.
    M. Wu, J. Sun, Extended Kalman filter based moving object tracking by mobile robot in unknown environment. ROBOT 32(3), 334–343 (2010)CrossRefGoogle Scholar
  38. 38.
    W. Zhang, Research on Autonomous Navigation Method for Indoor Robots Based on Multisensor Fusion (University of Science and Technology of China, 2017)Google Scholar
  39. 39.
    Q. Lai, S. Yu, S. Ding, Mobile robot SLAM and path planning system. Comput. Knowl. Technol. 33(13), 24–37 (2017)Google Scholar
  40. 40.
    Y. Zhao, G. Liu, G. Tian et al., A survey of visual SLAM based on deep learning. ROBOT 39(6), 889–896 (2017)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of Automation and Electrical EngineeringUniversity of Science and Technology BeijingBeijingChina
  2. 2.Youer (Beijing) Robot Technology Ltd.BeijingChina

Personalised recommendations