Plasmapheresis in Pediatric Renal Disease

  • Daniella Levy-Erez
  • Haewon C. KimEmail author


Plasmapheresis or therapeutic plasma exchange has been known to be useful either as a first-line treatment or a second-line therapy in pediatric renal disease. Data is limited in children, and the vast majority of the data is extrapolated from adult-based evidence. Of the many kidney diseases in children, TPE may be beneficial in a small number of diseases. These include glomerular disease with a rapidly progressive form, such as ANCA-associated rapidly progressive glomerulonephritis; anti-glomerular basement membrane (anti-GBM) disease (Goodpasture’s syndrome); nephrotic syndrome such as focal segmental glomerulosclerosis (FSGS), specifically after recurrence in kidney transplant; thrombotic microangiopathy (primary or secondary; and ABO incompatible kidney transplant or antibody-mediated rejection. This chapter reviews therapeutic apheresis with emphasis on special technical considerations unique to pediatric patients, including securing adequate vascular access, maintaining desired intravascular volume and circulating red cell mass, and preventing complications by early recognition of adverse reactions. Clinical applications of plasmapheresis in pediatric patients with renal diseases are discussed on the basis of evidence utilizing the American Society for Apheresis (ASFA) guidelines. Furthermore, the most current data on plasmapheresis in renal diseases, the indications and plasmapheresis treatment approach, as well as specific technical considerations in children are presented.


Plasma exchange Plasmapheresis Therapeutic plasma exchange Photopheresis Extracorporeal photopheresis Rapidly progressive glomerulonephritis Thrombotic microangiopathy ANCA-associated glomerulonephritis Anti-GBM glomerulonephritis Focal segmental glomerulosclerosis (FSGS) Antibody-mediated renal allograft rejection Sepsis Multiorgan failure 


  1. 1.
    Schwartz J, Padmanabhan A, Aqui N, et al. Guidelines on the use of therapeutic apheresis in clinical practice-evidence-based approach from the writing committee of the American society for apheresis: the seventh special issue. J Clin Apher. 2016;31(3):149–62.PubMedGoogle Scholar
  2. 2.
    Galacki DM. An overview of therapeutic apheresis in pediatrics. J Clin Apher. 1997;12(1):1–3.PubMedCrossRefGoogle Scholar
  3. 3.
    Friedman D, Kim H. Apheresis (chapter 38). In: Warady B, Alexander R, Fine RN, Schaefer F, editors. Pediatric dialysis. Dordrecht: Kluwer Academic Publishers; 2004. p. 629–48.CrossRefGoogle Scholar
  4. 4.
    Wong EC, Balogun RA. Therapeutic apheresis in pediatrics: technique adjustments, indications and nonindications, a plasma exchange focus. J Clin Apher. 2012;27(3):132–7.PubMedCrossRefGoogle Scholar
  5. 5.
    Kim H. Therapeutic apheresis in pediatric patients. In: McLeod B, Szczepiorkowski Z, Weinstein R, Winters J, editors. Apheresis: principles and practice. 3rd ed. Bethesda: AABB Press; 2010. p. 445–64.Google Scholar
  6. 6.
    Kim H. Pediatric apheresis. In: Crookston K, editor. Therapeutic apheresis. A physician’s handbook. 6th ed. Bethesda: AABB Press; 2017. p. 231–71.Google Scholar
  7. 7.
    Kim HC. Red cell exchange: special focus on sickle cell disease. Hematology Am Soc Hematol Educ Program. 2014;2014(1):450–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Eguiguren JM, Schell MJ, Crist WM, Kunkel K, Rivera GK. Complications and outcome in childhood acute lymphoblastic leukemia with hyperleukocytosis. Blood. 1992;79(4):871–5.PubMedGoogle Scholar
  9. 9.
    Ganzel C, Becker J, Mintz PD, Lazarus HM, Rowe JM. Hyperleukocytosis, leukostasis and leukapheresis: practice management. Blood Rev. 2012;26(3):117–22.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Inaba H, Fan Y, Pounds S, et al. Clinical and biologic features and treatment outcome of children with newly diagnosed acute myeloid leukemia and hyperleukocytosis. Cancer. 2008;113(3):522–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Giles FJ, Shen Y, Kantarjian HM, et al. Leukapheresis reduces early mortality in patients with acute myeloid leukemia with high white cell counts but does not improve long- term survival. Leuk Lymphoma. 2001;42(1-2):67–73.PubMedCrossRefGoogle Scholar
  12. 12.
    Stegmayr B, Ptak J, Wikstrom B, et al. World apheresis registry 2003-2007 data. Transfus Apher Sci. 2008;39(3):247–54.PubMedCrossRefGoogle Scholar
  13. 13.
    De Silvestro G, Tison T, Vicarioto M, Bagatella P, Stefanutti C, Marson P. The Italian registry of pediatric therapeutic apheresis: a report on activity during 2005. J Clin Apher. 2009;24(1):1–5.PubMedCrossRefGoogle Scholar
  14. 14.
    Delaney M, Capocelli KE, Eder AF, et al. An international survey of pediatric apheresis practice. J Clin Apher. 2014;29(2):120–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Goto H, Matsuo H, Nakane S, et al. Plasmapheresis affects T helper type-1/T helper type-2 balance of circulating peripheral lymphocytes. Ther Apher. 2001;5(6):494–6.PubMedCrossRefGoogle Scholar
  16. 16.
    Mohammad AJ, Jacobsson LT, Westman KW, Sturfelt G, Segelmark M. Incidence and survival rates in wegener’s granulomatosis, microscopic polyangiitis, churg-strauss syndrome and polyarteritis nodosa. Rheumatology (Oxford). 2009;48(12):1560–5.CrossRefGoogle Scholar
  17. 17.
    Watts RA, Al-Taiar A, Scott DG, Macgregor AJ. Prevalence and incidence of wegener’s granulomatosis in the UK general practice research database. Arthritis Rheum. 2009;61(10):1412–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Kamesh L, Harper L, Savage CO. ANCA-positive vasculitis. J Am Soc Nephrol. 2002;13(7):1953–60.PubMedCrossRefGoogle Scholar
  19. 19.
    Kouri AM, Andreoli SP. Clinical presentation and outcome of pediatric ANCA-associated glomerulonephritis. Pediatr Nephrol. 2017;32(3):449–55.PubMedCrossRefGoogle Scholar
  20. 20.
    Stone JH, Merkel PA, Spiera R, et al. Rituximab versus cyclophosphamide for ANCA-associated vasculitis. N Engl J Med. 2010;363(3):221–32.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Walsh M, Catapano F, Szpirt W, et al. Plasma exchange for renal vasculitis and idiopathic rapidly progressive glomerulonephritis: a meta-analysis. Am J Kidney Dis. 2011;57(4):566–74.PubMedCrossRefGoogle Scholar
  22. 22.
    Jayne DR, Gaskin G, Rasmussen N, et al. Randomized trial of plasma exchange or high-dosage methylprednisolone as adjunctive therapy for severe renal vasculitis. J Am Soc Nephrol. 2007;18(7):2180–8.PubMedCrossRefGoogle Scholar
  23. 23.
    McAdoo SP, Pusey CD. Anti-glomerular basement membrane disease. Clin J Am Soc Nephrol. 2017;12(7):1162–72.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Lerner RA, Glassock RJ, Dixon FJ. The role of anti-glomerular basement membrane antibody in the pathogenesis of human glomerulonephritis. J Exp Med. 1967;126(6):989–1004.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Clark WF, Huang SS, Walsh MW, Farah M, Hildebrand AM, Sontrop JM. Plasmapheresis for the treatment of kidney diseases. Kidney Int. 2016;90(5):974–84.PubMedCrossRefGoogle Scholar
  26. 26.
    Levy JB, Turner AN, Rees AJ, Pusey CD. Long-term outcome of anti-glomerular basement membrane antibody disease treated with plasma exchange and immunosuppression. Ann Intern Med. 2001;134(11):1033–42.PubMedCrossRefGoogle Scholar
  27. 27.
    Bayat A, Kamperis K, Herlin T. Characteristics and outcome of goodpasture’s disease in children. Clin Rheumatol. 2012;31(12):1745–51.PubMedCrossRefGoogle Scholar
  28. 28.
    van Daalen EE, Jennette JC, McAdoo SP, et al. Predicting outcome in patients with anti-GBM glomerulonephritis. Clin J Am Soc Nephrol. 2018;13(1):63–72.PubMedCrossRefGoogle Scholar
  29. 29.
    Hellmark T, Johansson C, Wieslander J. Characterization of anti-GBM antibodies involved in goodpasture’s syndrome. Kidney Int. 1994;46(3):823–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Hellmark T, Segelmark M. Diagnosis and classification of goodpasture’s disease (anti-GBM). J Autoimmun. 2014;48–49:108–12.PubMedCrossRefGoogle Scholar
  31. 31.
    Williamson SR, Phillips CL, Andreoli SP, Nailescu C. A 25-year experience with pediatric anti-glomerular basement membrane disease. Pediatr Nephrol. 2011;26(1):85–91.PubMedCrossRefGoogle Scholar
  32. 32.
    Johnson JP, Moore J Jr, Austin HA 3rd, Balow JE, Antonovych TT, Wilson CB. Therapy of anti-glomerular basement membrane antibody disease: analysis of prognostic significance of clinical, pathologic and treatment factors. Medicine (Baltimore). 1985;64(4):219–27.CrossRefGoogle Scholar
  33. 33.
    Zhang YY, Tang Z, Chen DM, Gong DH, Ji DX, Liu ZH. Comparison of double filtration plasmapheresis with immunoadsorption therapy in patients with anti-glomerular basement membrane nephritis. BMC Nephrol. 2014;15:128.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Tonelli M, Wiebe N, Knoll G, et al. Systematic review: kidney transplantation compared with dialysis in clinically relevant outcomes. Am J Transplant. 2011;11(10):2093–109.PubMedCrossRefGoogle Scholar
  35. 35.
    Gillen DL, Stehman-Breen CO, Smith JM, et al. Survival advantage of pediatric recipients of a first kidney transplant among children awaiting kidney transplantation. Am J Transplant. 2008;8(12):2600–6.PubMedCrossRefGoogle Scholar
  36. 36.
    Saran R, Li Y, Robinson B, et al. US renal data system 2015 annual data report: epidemiology of kidney disease in the United States. Am J Kidney Dis. 2016;67(3 Suppl 1):Svii, S1–305.Google Scholar
  37. 37.
    Jordan SC, Vo AA, Tyan D, Nast CC, Toyoda M. Current approaches to treatment of antibody-mediated rejection. Pediatr Transplant. 2005;9(3):408–15.PubMedCrossRefGoogle Scholar
  38. 38.
    Mohan S, Palanisamy A, Tsapepas D, et al. Donor-specific antibodies adversely affect kidney allograft outcomes. J Am Soc Nephrol. 2012;23(12):2061–71.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Fuchinoue S, Ishii Y, Sawada T, et al. The 5-year outcome of ABO-incompatible kidney transplantation with rituximab induction. Transplantation. 2011;91(8):853–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Genberg H, Kumlien G, Wennberg L, Berg U, Tyden G. ABO-incompatible kidney transplantation using antigen-specific immunoadsorption and rituximab: a 3-year follow-up. Transplantation. 2008;85(12):1745–54.PubMedCrossRefGoogle Scholar
  41. 41.
    Montgomery RA, Lonze BE, King KE, et al. Desensitization in HLA-incompatible kidney recipients and survival. N Engl J Med. 2011;365(4):318–26.PubMedCrossRefGoogle Scholar
  42. 42.
    Jordan SC, Tyan D, Stablein D, et al. Evaluation of intravenous immunoglobulin as an agent to lower allosensitization and improve transplantation in highly sensitized adult patients with end-stage renal disease: report of the NIH IG02 trial. J Am Soc Nephrol. 2004;15(12):3256–62.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Ejaz NS, Shields AR, Alloway RR, et al. Randomized controlled pilot study of B cell-targeted induction therapy in HLA sensitized kidney transplant recipients. Am J Transplant. 2013;13(12):3142–54.PubMedCrossRefGoogle Scholar
  44. 44.
    Schweitzer EJ, Wilson JS, Fernandez-Vina M, et al. A high panel-reactive antibody rescue protocol for cross-match-positive live donor kidney transplants. Transplantation. 2000;70(10):1531–6.PubMedCrossRefGoogle Scholar
  45. 45.
    Stegall MD, Gloor J, Winters JL, Moore SB, Degoey S. A comparison of plasmapheresis versus high-dose IVIG desensitization in renal allograft recipients with high levels of donor specific alloantibody. Am J Transplant. 2006;6(2):346–51.PubMedCrossRefGoogle Scholar
  46. 46.
    Adamusiak AM, Stojanovic J, Shaw O, et al. Desensitization protocol enabling pediatric crossmatch-positive renal transplantation: successful HLA-antibody-incompatible renal transplantation of two highly sensitized children. Pediatr Nephrol. 2017;32(2):359–64.PubMedCrossRefGoogle Scholar
  47. 47.
    Velidedeoglu E, Cavaille-Coll MW, Bala S, Belen OA, Wang Y, Albrecht R. Summary of 2017 FDA public workshop: antibody mediated rejection in kidney transplantation. Transplantation. 2018;102(6):e257–64.PubMedCrossRefGoogle Scholar
  48. 48.
    Wan SS, Ying TD, Wyburn K, Roberts DM, Wyld M, Chadban SJ. The treatment of antibody-mediated rejection in kidney transplantation: an updated systematic review and meta-analysis. Transplantation. 2018;102(4):557–68.PubMedCrossRefGoogle Scholar
  49. 49.
    Lefaucheur C, Nochy D, Andrade J, et al. Comparison of combination plasmapheresis/IVIg/anti-CD20 versus high-dose IVIg in the treatment of antibody-mediated rejection. Am J Transplant. 2009;9(5):1099–107.PubMedCrossRefGoogle Scholar
  50. 50.
    Kiffel J, Rahimzada Y, Trachtman H. Focal segmental glomerulosclerosis and chronic kidney disease in pediatric patients. Adv Chronic Kidney Dis. 2011;18(5):332–8.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Trachtman R, Sran SS, Trachtman H. Recurrent focal segmental glomerulosclerosis after kidney transplantation. Pediatr Nephrol. 2015;30(10):1793–802.PubMedCrossRefGoogle Scholar
  52. 52.
    Gallon L, Leventhal J, Skaro A, Kanwar Y, Alvarado A. Resolution of recurrent focal segmental glomerulosclerosis after retransplantation. N Engl J Med. 2012;366(17):1648–9.PubMedCrossRefGoogle Scholar
  53. 53.
    Baum MA, Ho M, Stablein D, Alexander SR, North American Pediatric Renal Transplant Cooperative Study. Outcome of renal transplantation in adolescents with focal segmental glomerulosclerosis. Pediatr Transplant. 2002;6(6):488–92.PubMedCrossRefGoogle Scholar
  54. 54.
    Garcia CD, Bittencourt VB, Tumelero A, Antonello JS, Malheiros D, Garcia VD. Plasmapheresis for recurrent posttransplant focal segmental glomerulosclerosis. Transplant Proc. 2006;38(6):1904–5.PubMedCrossRefGoogle Scholar
  55. 55.
    Cleper R, Krause I, Bar Nathan N, et al. Focal segmental glomerulosclerosis in pediatric kidney transplantation: 30 years’ experience. Clin Transpl. 2016;30(10):1324–31.CrossRefGoogle Scholar
  56. 56.
    George JN, Nester CM. Syndromes of thrombotic microangiopathy. N Engl J Med. 2014;371(19):1847–8.PubMedGoogle Scholar
  57. 57.
    Jodele S, Laskin BL, Dandoy CE, et al. A new paradigm: diagnosis and management of HSCT-associated thrombotic microangiopathy as multi-system endothelial injury. Blood Rev. 2015;29(3):191–204.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Jodele S, Licht C, Goebel J, et al. Abnormalities in the alternative pathway of complement in children with hematopoietic stem cell transplant-associated thrombotic microangiopathy. Blood. 2013;122(12):2003–7.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Christidou F, Athanasiadou A, Kalogiannidis P, et al. Therapeutic plasma exchange in patients with grade 2-3 hematopoietic stem cell transplantation-associated thrombotic thrombocytopenic purpura: a ten-year experience. Ther Apher Dial. 2003;7(2):259–62.PubMedCrossRefGoogle Scholar
  60. 60.
    Jodele S, Laskin BL, Goebel J, et al. Does early initiation of therapeutic plasma exchange improve outcome in pediatric stem cell transplant-associated thrombotic microangiopathy? Transfusion. 2013;53(3):661–7.PubMedCrossRefGoogle Scholar
  61. 61.
    Bohl SR, Kuchenbauer F, von Harsdorf S, et al. Thrombotic microangiopathy after allogeneic stem cell transplantation: a comparison of eculizumab therapy and conventional therapy. Biol Blood Marrow Transplant. 2017;23(12):2172–7.PubMedCrossRefGoogle Scholar
  62. 62.
    Reese JA, Muthurajah DS, Kremer Hovinga JA, Vesely SK, Terrell DR, George JN. Children and adults with thrombotic thrombocytopenic purpura associated with severe, acquired Adamts13 deficiency: comparison of incidence, demographic and clinical features. Pediatr Blood Cancer. 2013;60(10):1676–82.PubMedCrossRefGoogle Scholar
  63. 63.
    Tsai HM, Lian EC. Antibodies to von willebrand factor-cleaving protease in acute thrombotic thrombocytopenic purpura. N Engl J Med. 1998;339(22):1585–94.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Sarode R, Bandarenko N, Brecher ME, et al. Thrombotic thrombocytopenic purpura: 2012 American society for apheresis (ASFA) consensus conference on classification, diagnosis, management, and future research. J Clin Apher. 2014;29(3):148–67.PubMedCrossRefGoogle Scholar
  65. 65.
    Bell WR, Braine HG, Ness PM, Kickler TS. Improved survival in thrombotic thrombocytopenic purpura-hemolytic uremic syndrome. Clinical experience in 108 patients. N Engl J Med. 1991;325(6):398–403.PubMedCrossRefGoogle Scholar
  66. 66.
    Dellinger RP, Levy MM, Rhodes A, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med. 2013;39(2):165–228.PubMedCrossRefGoogle Scholar
  67. 67.
    Wilkinson JD, Pollack MM, Glass NL, Kanter RK, Katz RW, Steinhart CM. Mortality associated with multiple organ system failure and sepsis in pediatric intensive care unit. J Pediatr. 1987;111(3):324–8.PubMedCrossRefGoogle Scholar
  68. 68.
    Stegmayr B, Ramlow W, Balogun RA. Beyond dialysis: current and emerging blood purification techniques. Semin Dial. 2012;25(2):207–13.PubMedCrossRefGoogle Scholar
  69. 69.
    Hamishehkar H, Beigmohammadi MT, Abdollahi M, et al. Pro-inflammatory cytokine profile of critically ill septic patients following therapeutic plasma exchange. Transfus Apher Sci. 2013;48(1):75–8.PubMedCrossRefGoogle Scholar
  70. 70.
    Busund R, Koukline V, Utrobin U, Nedashkovsky E. Plasmapheresis in severe sepsis and septic shock: a prospective, randomised, controlled trial. Intensive Care Med. 2002;28(10):1434–9.PubMedCrossRefGoogle Scholar
  71. 71.
    Reeves JH, Butt WW, Shann F, et al. Continuous plasmafiltration in sepsis syndrome. Plasma filtration in sepsis study group. Crit Care Med. 1999;27(10):2096–104.PubMedCrossRefGoogle Scholar
  72. 72.
    Nguyen TC, Han YY, Kiss JE, et al. Intensive plasma exchange increases a disintegrin and metalloprotease with thrombospondin motifs-13 activity and reverses organ dysfunction in children with thrombocytopenia-associated multiple organ failure. Crit Care Med. 2008;36(10):2878–87.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Michon B, Moghrabi A, Winikoff R, et al. Complications of apheresis in children. Transfusion. 2007;47(10):1837–42.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Division of NephrologyThe Children’s Hospital of PhiladelphiaPhiladelphiaUSA
  2. 2.Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUSA
  3. 3.Department of PediatricsThe Children’s Hospital of PhiladelphiaPhiladelphiaUSA
  4. 4.Department of Pathology and Laboratory MedicineThe Children’s Hospital of PhiladelphiaPhiladelphiaUSA

Personalised recommendations