Advertisement

Manipulation of Microalgal Lipid Production: A Genetic Engineering Aspect

  • Su Chern FooEmail author
  • Nicholas M. H. Khong
  • Fatimah Md. Yusoff
Chapter

Abstract

Interests in microalgal lipids as green and renewable energy sources are piquing as cheap hydrocarbon fossil fuels reach their limit. Lipids from microalgae have important human uses, i.e., energy, food, and pharmaceuticals, depending on its quantity and quality. Genetic engineering is the introduction or suppression of a target gene for the selective expression of a bio-product, e.g., hydrocarbons for fuel or polyunsaturated fatty acids (PUFAs) for food, at a favorable quantity. Past studies like nitrogen starvation or salinity stress have shown to increase lipid contents of microalgae; however, studies on the molecular mechanisms underlying these stress-induced lipid productions remain limited. Next, complementing environmental stress manipulation with genetic engineering would potentially be a better and more effective approach to increase microalgae lipid production and accumulation. There are generally two approaches to enhance microalgae lipid production on a molecular level: firstly, overexpression and improvement of key enzymes involved in fatty acid and isoprenoid biosynthesis and, secondly, repression of lipid catabolic and competitive pathways such as beta-oxidation and starch synthesis. This review provides an update of microalgae lipid research findings to date and aims to address recent system biology discoveries and approaches on microalgae lipid production, the roadblocks encountered, and help needed to realize the ultimate goal, that is, microalgal lipids as sustainable resources for energy and high-value products.

Keywords

Microalgae Lipid content System biology Genes manipulation Genetic engineering 

References

  1. Adenan NS, Yusoff FM, Shariff M. Effect of salinity and temperature on the growth of diatoms and green algae. J Fish Aquat Sci. 2013;8(2):397–404.CrossRefGoogle Scholar
  2. Ahmad I, Sharma AK, Daniell H, Kumar S. Altered lipid composition and enhanced lipid production in green microalga by introduction of brassica diacylglycerol acyltransferase 2. Plant Biotechnol J. 2015;13(4):540–50.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Allen DK, Bates PD, Tjellström H. Tracking the metabolic pulse of plant lipid production with isotopic labeling and flux analyses: past, present and future. Prog Lipid Res. 2015;58:97–120. PubMedCrossRefPubMedCentralGoogle Scholar
  4. Andrew J, Ismail NW, Djama M. An overview of genetically modified crop governance, issues and challenges in Malaysia. J Sci Food Agric. 2018;98(1):12–7.PubMedCrossRefPubMedCentralGoogle Scholar
  5. Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, Zhou S, Allen AE, Apt KE, Bechner M. The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science. 2004;306(5693):79–86. PubMedCrossRefPubMedCentralGoogle Scholar
  6. Asamizu E, Miura K, Kucho K, Inoue Y, Fukuzawa H, Ohyama K, Nakamura Y, Tabata S. Generation of expressed sequence tags from low-CO2 and high-CO2 adapted cells of Chlamydomonas reinhardtii. DNA Res. 2000;7(5):305–307. Google Scholar
  7. Aslam A, Thomas-Hall SR, Manzoor M, Jabeen F, Iqbal M, uz Zaman Q, Schenk PM, Tahir MA. Mixed microalgae consortia growth under higher concentration of CO2 from unfiltered coal fired flue gas: fatty acid profiling and biodiesel production. J Photochem Photobiol B Biol. 2018;179:126–33. CrossRefGoogle Scholar
  8. Begum H, Yusoff FMD, Banerjee S, Khatoon H, Shariff M. Availability and utilization of pigments from microalgae. Crit Rev Food Sci Nutr. 2016;56(13):2209–22. CrossRefGoogle Scholar
  9. Bellou S, Baeshen MN, Elazzazy AM, Aggeli D, Sayegh F, Aggelis G. Microalgal lipids biochemistry and biotechnological perspectives. Biotechnol Adv. 2014;32(8):1476–93. PubMedCrossRefPubMedCentralGoogle Scholar
  10. Bentley FK, Zurbriggen A, Melis A. Heterologous expression of the mevalonic acid pathway in cyanobacteria enhances endogenous carbon partitioning to isoprene. Mol Plant. 2014;7(1):71–86. PubMedCrossRefPubMedCentralGoogle Scholar
  11. Breuer G, Lamers PP, Martens DE, Draaisma RB, Wijffels RH. Effect of light intensity, pH, and temperature on triacylglycerol (TAG) accumulation induced by nitrogen starvation in Scenedesmus obliquus. Bioresour Technol. 2013;143:1–9.PubMedCrossRefPubMedCentralGoogle Scholar
  12. Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A, Maheswari U, Martens C, Maumus F, Otillar RP. The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature. 2008;456. Google Scholar
  13. Campbell NA, Reece JB. Biology. 6th ed. San Francisco: Benjamin Cummings; 2002.Google Scholar
  14. Cao J, Yuan H, Li B, Yang J. Significance evaluation of the effects of environmental factors on the lipid accumulation of Chlorella minutissima UTEX 2341 under low-nutrition heterotrophic condition. Bioresour Technol. 2014;152:177–84. PubMedCrossRefPubMedCentralGoogle Scholar
  15. Chen B, Wan C, Mehmood MA, Chang J-S, Bai F, Zhao X. Manipulating environmental stresses and stress tolerance of microalgae for enhanced production of lipids and value-added products-a review. Bioresour Technol. 2017;244:1198–206. PubMedCrossRefPubMedCentralGoogle Scholar
  16. Chinnasamy S, Bhatnagar A, Hunt RW, Das KC. Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresour Technol. 2010;101(9):3097–105.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Collet P, Lardon L, Hélias A, Bricout S, Lombaert-Valot I, Perrier B, Lépine O, Steyer J-P, Bernard O. Biodiesel from microalgae–life cycle assessment and recommendations for potential improvements. Renew Energy. 2014;71:525–33. CrossRefGoogle Scholar
  18. D’Souza C, Quazi A. The dynamics of exploring future market potential of genetically modified foods. Nutr Food Sci. 2005;35(2):95–108.CrossRefGoogle Scholar
  19. Daboussi F, Leduc S, Marechal A, Dubois G, Guyot V, Perez-Michaut C, Amato A, Falciatore A, Juillerat A, Beurdeley M, Voytas DF, Cavarec L, Duchateau P. Genome engineering empowers the diatom Phaeodactylum tricornutum for biotechnology. Nat Commun. 2014;5:3831.PubMedCrossRefPubMedCentralGoogle Scholar
  20. Dahmen-Ben Moussa I, Chtourou H, Karray F, Sayadi S, Dhouib A. Nitrogen or phosphorus repletion strategies for enhancing lipid or carotenoid production from Tetraselmis marina. Bioresour Technol. 2017;238:325–32.PubMedCrossRefPubMedCentralGoogle Scholar
  21. De Bhowmick G, Koduru L, Sen R. Metabolic pathway engineering towards enhancing microalgal lipid biosynthesis for biofuel application—a review. Renew Sust Energ Rev. 2015;50:1239–53. Google Scholar
  22. de Jaeger L, Verbeek REM, Draaisma RB, Martens DE, Springer J, Eggink G, Wijffels RH. Superior triacylglycerol (TAG) accumulation in starchless mutants of Scenedesmus obliquus: (I) mutant generation and characterization. Biotechnol Biofuels. 2014;7(1):69.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Doron L, Segal NA, Shapira M. Transgene expression in microalgae—from tools to applications. Front Plant Sci. 2016;7:505.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Dunahay TG, Jarvis EE, Dais SS, Roessler PG. Manipulation of microalgal lipid production using genetic engineering. Appl Biochem Biotechnol. 1996;57–8:223–31.CrossRefGoogle Scholar
  25. Eaton-Rye JJ. Construction of gene interruptions and gene deletions in the cyanobacterium Synechocystis sp. strain PCC 6803. Photosynthesis research protocols: Springer; 2011.Google Scholar
  26. EIA, U. S. The International Energy Outlook 2016 (IEO2016) [Online]. U.S.A: U.S Energy information administration (2017). Accessed 9 March 2018.Google Scholar
  27. Escribá PV. Membrane-lipid therapy: A historical perspective of membrane-targeted therapies—from lipid bilayer structure to the pathophysiological regulation of cells. Biochim Biophys Acta Biomembr. 2017;1859:1493–506. Google Scholar
  28. Foo SC, Yusoff FM, Ismail M, Basri M, Yau SK, Khong NMH, Chan KW, Ebrahimi M. Antioxidant capacities of fucoxanthin-producing algae as influenced by their carotenoid and phenolic contents. J Biotechnol. 2017;241:175–83.PubMedCrossRefPubMedCentralGoogle Scholar
  29. Fuhrmann M, Oertel W, Hegemann P. A synthetic gene coding for the green fluorescent protein (GFP) is a versatile reporter in Chlamydomonas reinhardtii. Plant J. 1999;19(3):353–61. PubMedCrossRefPubMedCentralGoogle Scholar
  30. George KW, Alonso-Gutierrez J, Keasling JD, Lee TS. Isoprenoid drugs, biofuels, and chemicals—artemisinin, farnesene, and beyond. In: Schrader J, Bohlmann J, editors. Biotechnology of isoprenoids. New York: Springer; 2015. p. 355–89.CrossRefGoogle Scholar
  31. Guo Y, Yuan Z, Xu J, Wang Z, Yuan T, Zhou W, Xu J, Liang C, Xu H, Liu S. Metabolic acclimation mechanism in microalgae developed for CO2 capture from industrial flue gas. Algal Res. 2017;26:225–33. CrossRefGoogle Scholar
  32. Hena S, Abida N, Tabassum S. Screening of facultative strains of high lipid producing microalgae for treating surfactant mediated municipal wastewater. RSC Adv. 2015;5(120):98805–13.CrossRefGoogle Scholar
  33. Hena S, Znad H, Heong KT, Judd S. Dairy farm wastewater treatment and lipid accumulation by Arthrospira platensis. Water Res. 2018;128:267–77.PubMedCrossRefPubMedCentralGoogle Scholar
  34. Hildebrand M, Manandhar-Shrestha K, Abbriano R. Effects of chrysolaminarin synthase knockdown in the diatom Thalassiosira pseudonana: Implications of reduced carbohydrate storage relative to green algae. Algal Res. 2017;23:66–77.CrossRefGoogle Scholar
  35. Ho S-H, Nakanishi A, Kato Y, Yamasaki H, Chang J-S, Misawa N, Hirose Y, Minagawa J, Hasunuma T, Kondo A. Dynamic metabolic profiling together with transcription analysis reveals salinity-induced starch-to-lipid biosynthesis in alga Chlamydomonas sp0 JSC4. Sci Rep. 2017;7:45471.Google Scholar
  36. Hockin NL, Mock T, Mulholland F, Kopriva S, Malin G. The response of diatom central carbon metabolism to nitrogen starvation is different from that of green algae and higher plants. Plant Physiol. 2012;158:299–312.CrossRefGoogle Scholar
  37. Hong S-J, Lee C-G. Microalgal systems biology for biofuel production. In: Algal biorefineries. New York: Springer; 2015. p. 3–21.CrossRefGoogle Scholar
  38. Hood L, Perlmutter RM. The impact of systems approaches on biological problems in drug discovery. Nat Biotechnol. 2004;22(10):1215. PubMedCrossRefPubMedCentralGoogle Scholar
  39. Inaba Y, Nakahigashi K, Ito T, Tomita M. Alteration of fatty acid chain length of Chlamydomonas reinhardtii by simultaneous expression of medium-chain-specific thioesterase and acyl carrier protein. Phycol Res. 2017;65(1):94–9. CrossRefGoogle Scholar
  40. Jeon K, Suresh A, Kim Y-C. Highly efficient molecular delivery into Chlamydomonas reinhardtii by electroporation. Korean J Chem Eng. 2013;30(8):1626–30.CrossRefGoogle Scholar
  41. Jeong BR, Wu-Scharf D, Zhang CM, Cerutti H. Suppressors of transcriptional transgenic silencing in Chlamydomonas are sensitive to DNA-damaging agents and reactivate transposable elements. Proc Natl Acad Sci U S A. 2002;99(2):1076–81.PubMedCentralCrossRefGoogle Scholar
  42. Ji F, Hao R, Liu Y, Li G, Zhou Y, Dong R. Isolation of a novel microalgae strain Desmodesmus sp. and optimization of environmental factors for its biomass production. Bioresour Technol. 2013;148:249–54. PubMedCrossRefPubMedCentralGoogle Scholar
  43. Jin Y, Qiu S, Shao N, Zheng J. Fucoxanthin and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) synergistically promotes apoptosis of human cervical cancer cells by targeting PI3K/Akt/NF-κB signaling pathway. Med Sci Monit: Int Med J Exp Clin Res. 2018;24:11.CrossRefGoogle Scholar
  44. Khozin-Goldberg I, Cohen Z. Unraveling algal lipid metabolism: recent advances in gene identification. Biochimie. 2011;93(1):91–100.PubMedCrossRefPubMedCentralGoogle Scholar
  45. Kim Y, Yoo W, Lee S, Lee M. Proteomic analysis of cadmium-induced protein profile alterations from marine alga Nannochloropsis oculata. Ecotoxicology. 2005;14(6):589–96.PubMedCrossRefPubMedCentralGoogle Scholar
  46. Kim E-J, Ma X, Cerutti H. Gene silencing in microalgae: mechanisms and biological roles. Bioresour Technol. 2015;184:23–32.PubMedCrossRefPubMedCentralGoogle Scholar
  47. Knight John G, Mather Damien W, Holdsworth David K. Genetically modified crops and country image of food exporting countries. Br Food J. 2005;107(9):653–62.CrossRefGoogle Scholar
  48. Kuo J, Khosla C. The initiation ketosynthase (FabH) is the sole rate-limiting enzyme of the fatty acid synthase of Synechococcus sp. PCC 7002. Metab Eng. 2014;22:53–9. PubMedPubMedCentralCrossRefGoogle Scholar
  49. Kuzuyama T, Seto H. Two distinct pathways for essential metabolic precursors for isoprenoid biosynthesis. Proc Jpn Acad Ser B. 2012;88(3):41–52. CrossRefGoogle Scholar
  50. Lenka SK, Carbonaro N, Park R, Miller SM, Thorpe I, Li YT. Current advances in molecular, biochemical, and computational modeling analysis of microalgal triacylglycerol biosynthesis. Biotechnol Adv. 2016;34(5):1046–63.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Li Y, Han D, Hu G, Sommerfeld M, Hu Q. Inhibition of starch synthesis results in overproduction of lipids in Chlamydomonas reinhardtii. Biotechnol Bioeng. 2010;107(2):258–68.PubMedCrossRefPubMedCentralGoogle Scholar
  52. Lichtenthaler HK. Evolution of carotenoid and isoprenoid biosynthesis in photosynthetic and non-photosynthetic organisms; 2004.Google Scholar
  53. Lin H, Lee YK. Genetic engineering of medium-chain-length fatty acid synthesis in Dunaliella tertiolecta for improved biodiesel production. J Appl Phycol. 2017;29(6):2811–9. PubMedPubMedCentralCrossRefGoogle Scholar
  54. Lindberg P, Park S, Melis A. Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metab Eng. 2010;12(1):70–9. PubMedCrossRefPubMedCentralGoogle Scholar
  55. Manandhar-Shrestha K, Hildebrand M. Characterization and manipulation of a DGAT2 from the diatom Thalassiosira pseudonana: improved TAG accumulation without detriment to growth, and implications for chloroplast TAG accumulation. Algal Res-Biomass Biofuels Bioprod. 2015;12:239–48.Google Scholar
  56. Matsuzaki M, Misumi O, Shin-i T, Maruyama S, Takahara M, Miyagishima S-Y, Mori T, Nishida K, Yagisawa F, Nishida K. Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae. Nature. 2004;428(6983):653. PubMedCrossRefPubMedCentralGoogle Scholar
  57. Medipally SR, Yusoff FM, Banerjee S, Shariff M. Microalgae as sustainable renewable energy feedstock for biofuel production. Biomed Res Int. 2015;2015:519513.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Misra N, Panda PK, Parida BK, Mishra BK. Phylogenomic study of lipid genes involved in microalgal biofuel production—candidate gene mining and metabolic pathway analyses. Evol Bioinforma. 2012;8:545–64. EBO. S10159CrossRefGoogle Scholar
  59. Miyagawa A, Okami T, Kira N, Yamaguchi H, Ohnishi K, Adachi M. Research note: high efficiency transformation of the diatom Phaeodactylum tricornutum with a promoter from the diatom Cylindrotheca fusiformis. Phycol Res. 2009;57(2):142–6. CrossRefGoogle Scholar
  60. Mock T, Krell A, Glöckner G, Kolukisaoglu Ü, Valentin K. Analysis of expressed sequence tags (ESTs) from the polar diatom Fragilariopsis cylindrus. J Phycol. 2006;42(1):78–85. CrossRefGoogle Scholar
  61. Möller A, Norrby A-M, Gustafsson K, Jansson J. Luminometry and PCR-based monitoring of gene-tagged cyanobacteria in Baltic Sea microcosms. FEMS Microbiol Lett. 1995;129(1):43–9. PubMedCrossRefPubMedCentralGoogle Scholar
  62. Nguyen HM, Baudet M, Cuine S, Adriano JM, Barthe D, Billon E, Bruley C, Beisson F, Peltier G, Ferro M. Proteomic profiling of oil bodies isolated from the unicellular green microalga Chlamydomonas reinhardtii: with focus on proteins involved in lipid metabolism. Proteomics. 2011;11(21):4266–73.PubMedCrossRefPubMedCentralGoogle Scholar
  63. Paniagua-Michel J, Olmos-Soto J, Ruiz MA. Pathways of carotenoid biosynthesis in bacteria and microalgae. In: Barredo J-L, editor. Microbial carotenoids from bacteria and microalgae: methods and protocols. New York: Humana Press; 2012. p. 1–12. Google Scholar
  64. Peccia J, Haznedaroglu B, Gutierrez J, Zimmerman JB. Nitrogen supply is an important driver of sustainable microalgae biofuel production. Trends Biotechnol. 2013;31(3):134–8. PubMedCrossRefPubMedCentralGoogle Scholar
  65. Phulara SC, Chaturvedi P, Gupta P. Isoprenoid-based biofuels: homologous expression and heterologous expression in prokaryotes. Appl Environ Microbiol. 2016;82:5730–40. PubMedPubMedCentralCrossRefGoogle Scholar
  66. Pogson M, Hastings A, Smith P. How does bioenergy compare with other land-based renewable energy sources globally? GCB Bioenerg. 2013;5(5):513–24. CrossRefGoogle Scholar
  67. Pratheesh P, Vineetha M, Kurup GM. An efficient protocol for the Agrobacterium-mediated genetic transformation of microalga Chlamydomonas reinhardtii. Mol Biotechnol. 2014;56(6):507–15.CrossRefGoogle Scholar
  68. Radakovits R, Jinkerson RE, Fuerstenberg SI, Tae H, Settlage RE, Boore JL, Posewitz MC. Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropsis gaditana. Nat Commun. 2013;4  https://doi.org/10.1038/ncomms3356.
  69. Roessler PG, Ohlrogge JB. Cloning and characterization of the gene that encodes acetyl-coenzyme A carboxylase in the alga Cyclotella cryptica. J Biol Chem. 1993;268(26):19254–9. Google Scholar
  70. Rohr J, Sarkar N, Balenger S, Jeong Br, Cerutti H. Tandem inverted repeat system for selection of effective transgenic RNAi strains in Chlamydomonas. Plant J. 2004;40(4):611–21. PubMedCrossRefPubMedCentralGoogle Scholar
  71. Salama E-S, Kurade MB, Abou-Shanab RAI, El-Dalatony MM, Yang I-S, Min B, Jeon B-H. Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation. Renew Sust Energ Rev. 2017;79:1189–211.CrossRefGoogle Scholar
  72. Sankari M, Rao PR, Hemachandran H, Pullela PK, Tayubi IA, Subramanian B, Gothandam KM, Singh P, Ramamoorthy S. Prospects and progress in the production of valuable carotenoids: insights from metabolic engineering, synthetic biology, and computational approaches. J Biotechnol. 2017;266:89–101. PubMedCrossRefPubMedCentralGoogle Scholar
  73. Sarno V, Malgeri Manzo R. Italian companies’ attitude towards GM crops. Nutr Food Sci. 2016;46(5):685–94.CrossRefGoogle Scholar
  74. Schwender J, Gemünden C, Lichtenthaler HK. Chlorophyta exclusively use the 1-deoxyxylulose 5-phosphate/2-C-methylerythritol 4-phosphate pathway for the biosynthesis of isoprenoids. Planta. 2001;212(3):416–23. PubMedCrossRefPubMedCentralGoogle Scholar
  75. Shah TR, Misra A. Proteomics. In: Misra A, editor. Challenges in delivery of therapeutic genomics and proteomics. London: Elsevier; 2011. p. 387–427.CrossRefGoogle Scholar
  76. Shang C, Xu X, Yuan Z, Wang Z, Hu L, Alam MA, Xie J. Cloning and differential expression analysis of geranylgeranyl diphosphate synthase gene from Dunaliella parva. J Appl Phycol. 2016;28:2397–405.CrossRefGoogle Scholar
  77. Shang C, Wang W, Zhu S, Wang Z, Qin L, Alam MA, Xie J, Yuan Z. The responses of two genes encoding phytoene synthase (Psy) and phytoene desaturase (Pds) to nitrogen limitation and salinity up-shock with special emphasis on carotenogenesis in Dunaliella parva. Algal Res. 2018;32:1–10.CrossRefGoogle Scholar
  78. Shemesh Z, Leu S, Khozin-Goldberg I, Didi-Cohen S, Zarka A, Boussiba S. Inducible expression of Haematococcus oil globule protein in the diatom Phaeodactylum tricornutum: association with lipid droplets and enhancement of TAG accumulation under nitrogen starvation. Algal Res-Biomass Biofuels Bioprod. 2016;18:321–31.CrossRefGoogle Scholar
  79. Singh P, Kumari S, Guldhe A, Misra R, Rawat I, Bux F. Trends and novel strategies for enhancing lipid accumulation and quality in microalgae. Renew Sust Energ Rev. 2016;55:1–16. CrossRefGoogle Scholar
  80. Tan KWM, Lee YK. Expression of the heterologous Dunaliella tertiolecta fatty acyl-ACP thioesterase leads to increased lipid production in Chlamydomonas reinhardtii. J Biotechnol. 2017;247:60–7. PubMedCrossRefPubMedCentralGoogle Scholar
  81. Terashima M, Specht M, Naumann B, Hippler M. Characterizing the anaerobic response of Chlamydomonas reinhardtii by quantitative proteomics. Mol Cell Proteomics. 2010;9(7):1514–32.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Thanh T, Chi VTQ, Abdullah MP, Omar H, Noroozi M, Ky H, Napis S. Construction of cDNA library and preliminary analysis of expressed sequence tags from green microalga Ankistrodesmus convolutus Corda. Mol Biol Rep. 2011;38(1):177–82. PubMedCrossRefPubMedCentralGoogle Scholar
  83. Trentacoste EM, Shrestha RP, Smith SR, Glé C, Hartmann AC, Hildebrand M, Gerwick WH. Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without compromising growth. Proc Natl Acad Sci. 2013;110(49):19748–53. CrossRefGoogle Scholar
  84. Unnithan VV, Unc A, Smith GB. Role of Nannochloropsis salina for the recovery and persistence of MS2 virus in wastewater. Algal Res. 2014;4(1):70–5.CrossRefGoogle Scholar
  85. Wang S-B, Hu Q, Sommerfeld M, Chen F. An optimized protocol for isolation of soluble proteins from microalgae for two-dimensional gel electrophoresis analysis. J Appl Phycol. 2003;15(6):485–96.CrossRefGoogle Scholar
  86. Wang S-B, Chen F, Sommerfeld M, Hu Q. Proteomic analysis of molecular response to oxidative stress by the green alga Haematococcus pluvialis (Chlorophyceae). Planta. 2004a;220(1):17–29.PubMedCrossRefPubMedCentralGoogle Scholar
  87. Wang SB, Hu Q, Sommerfeld M, Chen F. Cell wall proteomics of the green alga Haematococcus pluvialis (Chlorophyceae). Proteomics. 2004b;4(3):692–708.PubMedCrossRefPubMedCentralGoogle Scholar
  88. WHO. Human genomics in global health. In: W.H. Organization, editor. Human genetics programme, vol. 2018. Geneva: World Health Organization; 2018.Google Scholar
  89. Winck FV, Melo DOP, Barrios AFG. Carbon acquisition and accumulation in microalgae Chlamydomonas: insights from “omics” approaches. J Proteome. 2013;94:207–18. PubMedCrossRefPubMedCentralGoogle Scholar
  90. Yang B, Liu J, Liu B, Sun PP, Ma XN, Jiang Y, Wei D, Chen F. Development of a stable genetic system for Chlorella vulgaris-a promising green alga for CO2 biomitigation. Algal Res-Biomass Biofuels Bioprod. 2015;12:134–41.Google Scholar
  91. Yang J, Pan Y, Bowler C, Zhang L, Hu H. Knockdown of phosphoenolpyruvate carboxykinase increases carbon flux to lipid synthesis in Phaeodactylum tricornutum. Algal Res. 2016;15:50–8. CrossRefGoogle Scholar
  92. Zhang L, Liu J. Enhanced fatty acid accumulation in Isochrysis galbana by inhibition of the mitochondrial alternative oxidase pathway under nitrogen deprivation. Bioresour Technol. 2016;211:783–6.PubMedCrossRefPubMedCentralGoogle Scholar
  93. Zhu B-H, Shi H-P, Yang G-P, Lv N-N, Yang M, Pan K-H. Silencing UDP-glucose pyrophosphorylase gene in Phaeodactylum tricornutum affects carbon allocation. New Biotechnol. 2016;33(1):237–44. PubMedCrossRefPubMedCentralGoogle Scholar
  94. Zienkiewicz K, Du Z-Y, Ma W, Vollheyde K, Benning C. Stress-induced neutral lipid biosynthesis in microalgae—molecular, cellular and physiological insights. Biochimica et Biophysica Acta (BBA)-Mol Cell Biol Lipids. 2016;1861(9):1269–81. Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Su Chern Foo
    • 1
    Email author
  • Nicholas M. H. Khong
    • 2
  • Fatimah Md. Yusoff
    • 2
  1. 1.School of ScienceMonash University MalaysiaBandar SunwayMalaysia
  2. 2.Institute of BioscienceUniversiti Putra MalaysiaSerdangMalaysia

Personalised recommendations