Somatic Hybridization for Microalgae Domestication

  • Mohammed SabarEmail author
  • Rachid Benhamman


Microalgae biotechnology represents a new era for investigation in the human future concerning bioenergy, food, and environment relief. This emerging technology is still under investigation to suit the expected beneficial outcomes conditional to selection of high-yielding strains through domestication as major food crops we know today that are best exemplified by the long selective breeding walk from teosinte to modern high-yielding seed corn. Somatic hybridization has a potential to generate thousands of new combinations of genetic variations and new contexts for gene expression, thanks to its ability to overcome the incompatibility barriers between unrelated species and its nature to allow both nuclei and cytoplasmic genome exchanges. Application of somatic hybridization to microalgae biotechnology would certainly revive this old forgotten approach, biased by modern recombinant DNA technology, as a natural and powerful mean for asexual breeding.


  1. Abomohra AE-F, El-Sheekh M, Hanelt D. Protoplast fusion and genetic recombination between Ochromonas danica (Chrysophyta) and Haematococcus pluvialis (Chlorophyta). Phycologia. 2016;55:65–71.CrossRefGoogle Scholar
  2. Alam MA, Wang Z, Yuan Z. Generation and harvesting of microalgae biomass for biofuel production. In: Tripathi BN, Kumar D, editors. Prospects and challenges in algal biotechnology. Singapore: Springer; 2017. p. 89–111.CrossRefGoogle Scholar
  3. Bauer-Weston B, Keller W, Webb J, Gleddie S. Production and characterization of asymmetric somatic hybrids between Arabidopsis thaliana and Brassica napus. Theor Appl Genet. 1993;86:150–8.CrossRefGoogle Scholar
  4. Bernstein AM, Ding EL, Willett WC, Rimm EB. A meta-analysis shows that docosahexaenoic acid from algal oil reduces serum triglycerides and increases HDL-cholesterol and LDL-cholesterol in persons without coronary heart disease. J Nutr. 2012;142:99–104.CrossRefGoogle Scholar
  5. Bhojwani SS, Cocking EC. Isolation of protoplasts from pollen tetrads. Nat New Biol. 1972;239:29–30.CrossRefGoogle Scholar
  6. Bohra A, Jha UC, Adhimoolam P, Bisht D, Singh NP. Cytoplasmic male sterility (CMS) in hybrid breeding in field crops. Plant Cell Rep. 2016;35:967–93.CrossRefGoogle Scholar
  7. Brown DC, Thorpe TA. Crop improvement through tissue culture. World J Microbiol Biotechnol. 1995;11:409–15.CrossRefGoogle Scholar
  8. Chen L, Liu YG. Male sterility and fertility restoration in crops. Annual Review of Plant. 2014;65:579–606.CrossRefGoogle Scholar
  9. Chisti Y. Constraints to commercialization of algal fuels. J Biotechnol. 2013;167:201–14.CrossRefGoogle Scholar
  10. CRK R, Fujita Y, YPS B. Somatic hybridization in algae. In: YPS B, editor. Biotechnology in agriculture and forestry, Somatic hybridization in crop improvement I, vol. 27. Heidelberg/Berlin: Springer-Verlag; 1994. p. 483–502.Google Scholar
  11. Durieu P, Ochatt SJ. Efficient intergeneric fusion of pea (Pisum sativum L.) and grass pea (Lathyrus sativus L.) protoplasts. J Exp Bot. 2000;51:1237–42.PubMedGoogle Scholar
  12. Eeckhaut T, Lakshmanan PS, Deryckere D, Van Bockstaele E, Van Huylenbroeck J. Progress in plant protoplast research. Planta. 2013;238:991–1003.CrossRefGoogle Scholar
  13. Ferenczy L, Kevei F, Zsolt J. Fusion of fungal protoplasts. Nature. 1974;248:793–4.CrossRefGoogle Scholar
  14. Fu CC, Hung TC, Chen JY, Su CH, Wu WT. Hydrolysis of microalgae cell walls for production of reducing sugar and lipid extraction. Bioresour Technol. 2010;101:8750–4.CrossRefGoogle Scholar
  15. Galun E. Protoplast-fusion-derived cybrids in Solanaceae. In: Terzi M, Cella R, Falavigna A, editors. Current issues in plant molecular and cellular biology. Dordrecht/Boston: Kluwer Academic Publishers; 1995. p. 161–9.CrossRefGoogle Scholar
  16. Gleba YY, Sytnik KM. Protoplast fusion. Berlin/Heidelberg/New York/Tokyo: Springer-Verlag; 1984. p. 1–220.Google Scholar
  17. Gleba Y, Kolesnik NN, Meshkene IV, Cherep NN, Parokonny AS. Transmission genetics of the somatic hybridization process in Nicotiana: 1. Hybrids and cybrids among the regenerates from cloned protoplast fusion products. Theor Appl Genet. 1984;69:121–8.CrossRefGoogle Scholar
  18. Gleba YY, Shlumukov LR. Selection of somatic hybrids. In: Dix PJ, editor. Plant cell line selection: procedures and applications. Weinheim/New York/Basel/Cambridge: VCH; 1990. p. 257–86.Google Scholar
  19. Glimelius K, Fahlesson J, Landgren M, Sjödin C, Sundberg E. Gene transfer via somatic hybridization in plants. Trends Biotechnol. 1991;1:24–30.CrossRefGoogle Scholar
  20. Gokhale DV, Puntambekar US, Deobagkar DN. Protoplast fusion: a tool for intergeneric gene transfer in bacteria. Biotechnol Adv. 1993;11:199–217.CrossRefGoogle Scholar
  21. Greulich KO, Pilarczyk G, Hoffmann A, Meyer Zu Horste G, Schafer B, Uhl V, Monajembashi S. Micromanipulation by laser microbeam and optical tweezers: from plant cells to single molecules. J Microsc. 2000;198:182–7.CrossRefGoogle Scholar
  22. Grosser JW, Gmitter FG. Protoplast fusion for production of tetraploids and triploids: applications for scion and rootstock breeding in citrus. Plant Cell Tissue Org Cult (PCTOC). 2011;104:343–57.CrossRefGoogle Scholar
  23. Grosser JW, Ollitrault P, Olivares-Fuster O. Somatic hybridization in citrus: an effective tool to facilitate variety improvement. In Vitro Cell Dev Biol Plant. 2000;36:434–49.CrossRefGoogle Scholar
  24. Guo WW, Cai XD, Grosser JW. Somatic cell cybrids and hybrids in plant improvement. In: Daniell H, Chase C, editors. Molecular biology and biotechnology of plant organelles: chloroplasts and mitochondria. Dordrecht: Springer; 2004a. p. 635–59.CrossRefGoogle Scholar
  25. Guo WW, Prasad D, Cheng YJ, Serrano P, Deng XX, Grosser JW. Targeted cybridization in citrus: transfer of Satsuma cytoplasm to seedy cultivars for potential seedlessness. Plant Cell Rep. 2004b;22:752–8.CrossRefGoogle Scholar
  26. Hansen LN, Earle ED. Somatic hybrids between Brassica oleracea L. and Sinapis alba L. with resistance to Alternaria brassicae (Berk.) Sacc. Theor Appl Genet. 1997;94:1078–85.CrossRefGoogle Scholar
  27. Holmes M. Somatic hybridization. Hist Stud Nat Sci. 2018;48:1.CrossRefGoogle Scholar
  28. Islam A, Mak M, Rasul G, Bashar K, Tuj-Johora F. Development of component lines (CMS, maintainer and restorer lines) and their maintenance using Diversed Cytosources of Rice. J Rice Res. 2015;3:140.
  29. Jiang L, Cai Y, Xia G, Xiang F. Introgression of the heterologous nuclear DNAs and efficacious compositions from Swertia tetraptera Maxim. into Bupleurum scorzonerifolium Willd. via somatic hybridization. Protoplasma. 2012;249:737–45.CrossRefGoogle Scholar
  30. Jogdand S. Protoplast technology, gene biotechnology, vol. 3. New Delhi: Himalaya Publishing House; 2001. p. 171–86.Google Scholar
  31. Johnson AAT, Veilleux RE. Somatic hybridization and applications in plant breeding. Plant Breeding Reviews. 2001;20:167–225.Google Scholar
  32. Jourdan PS, Earle ED, Mutschler MA. Atrazine-resistant cauliflower obtained by somatic hybridization between Brassica oleracea and ATR-B. napus. Theor Appl Genet. 1989;78:271–9.CrossRefGoogle Scholar
  33. Kevei F, Peberdy J. Interspecific hybridization between Aspergillus nidulans and Aspergillus rugulosus by fusion of somatic protoplasts. J Gen Microbiol. 1977;102:255–62.CrossRefGoogle Scholar
  34. Lee Y-K, Tan H. Interphylum protoplast fusion and genetic recombination of the algae Porphyridium cruentum and Dunaliella spp. J Gen Microbiol. 1988;134:635–41.Google Scholar
  35. Liu J, Xu X, Deng X. Intergeneric somatic hybridization and its application to crop genetic improvement. Plant Cell Tissue Organ Cult. 2005;82:19–44.CrossRefGoogle Scholar
  36. Lörz H, Paszkowski J, Dierks-Ventling C, Potrykus I. Isolation and characterization of cytoplasts and miniprotoplasts derived from protoplasts of cultured cells. Physiol Plant. 2006;53:385–91.CrossRefGoogle Scholar
  37. Matagne R, Deltour R, Ledoux L. Somatic fusion between cell wall mutants of Chlamydomonas reinhardi. Nature. 1979;278:344–6.CrossRefGoogle Scholar
  38. Okanishi M, Suzuki K, Umezawa H. Formation and reversion of Streptomycete protoplasts: cultural condition and morphological study. J Gen Microbiol. 1974;80:389–400.CrossRefGoogle Scholar
  39. Park RF, Wellings CR. Somatic hybridization in the Uredinales. Annu Rev Phytopathol. 2011;50:219–39.CrossRefGoogle Scholar
  40. Pati PK, Sharma M, Ahuja PS. Rose protoplast isolation and culture and heterokaryon selection by immobilization in extra thin alginate film. Protoplasma. 2008;233:165–71.CrossRefGoogle Scholar
  41. Peberdy JF. Protoplast fusion—a tool for genetic manipulation and breeding in industrial microorganisms. Enzym Microb Technol. 1980;2:23–9.CrossRefGoogle Scholar
  42. Peberdy JF. Presidential address: fungi without coats—protoplasts as tools for mycological research. Mycol Res. 1989;93:ii–20.CrossRefGoogle Scholar
  43. Rodrigues MA, da Silva Bon EP. Evaluation of Chlorella (Chlorophyta) as source of fermentable sugars via cell wall enzymatic hydrolysis. Enzyme Research. 2011;2011:405603.CrossRefGoogle Scholar
  44. Rose R. Factors that influence the yield, stability in culture and cell wall regeneration of spinach mesophyll protoplasts. J Plant Physiol. 1980;7:713–25.Google Scholar
  45. Sakomoto K, Taguchi T. Regeneration of intergeneric somatic hybrid plants between Lycopersicon esculentum and Solanum muricatum. Theor Appl Genet. 1991;81:509–13.CrossRefGoogle Scholar
  46. Schieder O. Chapter 12 – Somatic hybridization: a new method for plant improvement A2 – Vasil, Indra K. In: Scowcroft WR, Frey KJ, editors. Plant improvement and somatic cell genetics. New York: Academic; 1982. p. 239–53.CrossRefGoogle Scholar
  47. Shahin MM. Regeneration of protoplasts in Saccharomyces. Can J Microbiol. 1972;18:1773–5.CrossRefGoogle Scholar
  48. Sheehan J, Dunahay T, Benemann J, Roessler P. Look Back at the U.S. department of energy’s aquatic species program: biodiesel from algae; close-out report. (United States: N. p). 1998.Google Scholar
  49. Sigeno A, Arad M. Intraspecific transfer of herbicide resistance in the red microalga Porphyridium sp. (Rhodophyceae) via protoplast fusion. J Phycol. 1998;34:706–11.CrossRefGoogle Scholar
  50. Sigeno A, Hayashi S, Terachi T, Yamagishi H. Introduction of transformed chloroplasts from tobacco into petunia by asymmetric cell fusion. Plant Cell Rep. 2009;28:1633–40.CrossRefGoogle Scholar
  51. Singh SP, Singh SP, Pandey T, Singh RR, Sawant SV. A novel male sterility-fertility restoration system in plants for hybrid seed production. Sci Rep. 2015;5:11274.CrossRefGoogle Scholar
  52. Sivan A, Thomas JC, Dubacq JP, Moppes Dv, Arad S. Protoplast fusion and genetic complementation of pigment mutations in the red microalga Porphyrzdzum sp. J Phycol. 1995;31:167–72.CrossRefGoogle Scholar
  53. Sundberg E, Glimelius K. A method for production of interspecific hybrids within Brassicaceae via somatic hybridization, using resynthesis of Brassica napus as a model. Plant Sci. 1986;43:155–62.CrossRefGoogle Scholar
  54. Sutiojono EMI, Nonhebel HM, Kantharajah AS. Factors affecting protoplast culture of Cucumis melo ‘Green Delica’. Ann Bot. 1998;81:775–7.CrossRefGoogle Scholar
  55. Taski-Ajdukovic K, Vasic D, Nagl N. Regeneration of interspecific somatic hybrids between Helianthus annuus L. and Helianthus maximiliani (Schrader) via protoplast electrofusion. Plant Cell Rep. 2006;25:698–704.CrossRefGoogle Scholar
  56. Tiwari S, Dickinson N, Saville DJ, Wratten SD. Host plant selection by the wheat bug, Nysius huttoni (Hemiptera: Lygaeidae) on a range of potential trap plant species. J Econ Entomol. 2018;111:586–94. toy017-toy017CrossRefGoogle Scholar
  57. Tomar UK, Dantu PK. Protoplast culture and somatic hybridization. In: Tripathi G, editor. Cellular and biochemical sciences. New Delhi: I. K. International Publishing House Pvt Ltd.; 2010. p. 876–91.Google Scholar
  58. Tran D-T, Chen C-L, Chang J-S. Effect of solvents and oil content on direct transesterification of wet oil-bearing microalgal biomass of Chlorella vulgaris ESP-31 for biodiesel synthesis using immobilized lipase as the biocatalyst. Bioresour Technol. 2013;135:213–21.CrossRefGoogle Scholar
  59. Varotto S, Nenz E, Lucchin M, Parrini P. Production of asymmetric somatic hybrid plants between Cichorium intybus L. and Helianthus annuus L. Theor Appl Genet. 2001;102:950–6.CrossRefGoogle Scholar
  60. Viaud M, Couteaudier Y, Riba G. Molecular analysis of hypervirulent somatic hybrids of the entomopathogenic fungi Beauveria bassiana and Beauveria sulfurescens. Appl Environ Microbiol. 1998;64:88–93.Google Scholar
  61. Waara S, Glimelius K. The potential of somatic hybridization in crop breeding. Euphytica. 1995;85:217–33.CrossRefGoogle Scholar
  62. Waara S, Tegelström H, Wallin A, Eriksson T. Somatic hybridization between anther-derived dihaploid clones of potato (Solanum tuberosum L.) and the identification of hybrid plants by isozyme analysis. Theor Appl Genet. 1989;77:49–56.CrossRefGoogle Scholar
  63. Wallin A, Glimelius K, Eriksson T. Enucleation of plant protoplasts by cytochalasin B. Z Pflanzenphysiol. 1978;87:333–40.CrossRefGoogle Scholar
  64. Wang J, Zhao C, Liu C, Xia G, Xiang F. Introgression of Swertia mussotii gene into Bupleurum scorzonerifolium via somatic hybridization. BMC Plant Biol. 2011;11:71.CrossRefGoogle Scholar
  65. Wei W, Wu K, Qin Y, Xie Z, Zhu X. Intergeneric protoplast fusion between Kluyveromyces and Saccharomyces cerevisiae – to produce sorbitol from Jerusalem artichokes. Biotechnol Lett. 2001;23:799–803.CrossRefGoogle Scholar
  66. Xia G, Xiang F, Zhou A, Wang H, Chen H. Asymmetric somatic hybridization between wheat (Triticum aestivum L.) and Agropyron elongatum (Host) Nevishi. Theor Appl Genet. 2003;107:299–305.CrossRefGoogle Scholar
  67. Xia ZA, An XS, FD W, Ye XF. Somatic hybridisation between tomato (Nicotiana tabacum L.) and black nightshade (Solanum nigrum L.) and selection of a new strain 694-L. In: Agriculture Biotechnology. Beijing: China Science and Technology Press; 1992. p. 505–8.Google Scholar
  68. Xiang F, Xia G, Zhi D, Wang J, Nie H, Chen M. Regeneration of somatic hybrids in relation to the nuclear and cytoplasmic genomes of wheat and Setaria italica. Genome. 2004;47:680–8.CrossRefGoogle Scholar
  69. Xiao W, Huang X, Gong Q, Dai X, Zhao J, Wei Y, Huang X. Somatic hybrids obtained by asymmetric protoplast fusion between Musa silk cv. Guoshanxiang (AAB) and Musa acuminata cv. Mas (AA). Plant Cell Tissue Org Cult. 2009;97:313–21.CrossRefGoogle Scholar
  70. Yemets AI, Kundel’chuk OP, Smertenko AP, Solodushko VG, Rudas VA, Gleba YY, Blume YB. Transfer of amiprophosmethyl resistance from a Nicotiana plumbaginifolia mutant by somatic hybridization. Theor Appl Genet. 2000;100:847–57.CrossRefGoogle Scholar
  71. Yu Y, Li Z, Wang P, Xiang F. Genetic and biochemical characterization of somatic hybrids between Bupleurum scorzonerifolium and Gentianopsis paludosa. Protoplasma. 2012;249:1029–35.CrossRefGoogle Scholar
  72. Zhang F, Wang P, Ji D, Kang G, Xiang F. Asymmetric somatic hybridization between Bupleurum scorzonerifolium Willd and Taxus chinensis var. mairei. Plant Cell Rep. 2011;30:1857–64.CrossRefGoogle Scholar
  73. Zubko M, Zubko E, Yu Gleba Y. Self-fertile cybrids Nicotiana tabacum (+Hyoscyamus aureus) with a nucleo-plastome incompatibility. Theor Appl Genet. 2002;105:822–8.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of BiologyMcGill UniversityMontrealCanada
  2. 2.Institut de Recherche en Biologie Végétale, Département des Sciences BiologiquesUniversité de MontréalMontrealCanada

Personalised recommendations