Stress Response of Microalgae and Its Manipulation for Development of Robust Strains

  • Chun Wan
  • Bai-Ling Chen
  • Xin-Qing ZhaoEmail author
  • Feng-Wu Bai


Microalgae are promising producers of lipids and various valuable chemicals. Improved production titers and productivities of the desired products will reduce the production cost and subsequently benefit industrialization of microalgal biorefinery. Accumulation of lipids and valuable products in microalgae is commonly triggered by various stress factors. However, microalgal growth is compromised under stress conditions. Therefore, understanding stress response of microalgae and manipulation of stress conditions may enable development of robust microalgae strains that efficiently produce target molecules. In this chapter, recent advances in manipulating environmental stresses for lipids and pigment accumulation in microalgae are summarized, and development of superior microalgal strains as the efficient microbial cell factories based on omics approaches are highlighted.


Microalgae Biorefinery Stress response Omics analysis Adaptive laboratory evolution 


  1. Ajjawi I, Verruto J, Aqui M, et al. Lipid production in Nannochloropsis gaditana is doubled by decreasing expression of a single transcriptional regulator. Nat Biotechnol. 2017;35(7):647–52.PubMedCrossRefGoogle Scholar
  2. An M, Mou S, Zhang X, et al. Temperature regulates fatty acid desaturases at a transcriptional level and modulates the fatty acid profile in the Antarctic microalga Chlamydomonas sp. ICE-L. Bioresour Technol. 2013;134:151–7.PubMedCrossRefGoogle Scholar
  3. Bajhaiya AK, Dean AP, Driver T, et al. High-throughput metabolic screening of microalgae genetic variation in response to nutrient limitation. Metabolomics. 2016a;12(1):9.PubMedCrossRefGoogle Scholar
  4. Bajhaiya AK, Dean AP, Zeef LA, et al. PSR1 is a global transcriptional regulator of phosphorus deficiency responses and carbon storage metabolism in Chlamydomonas reinhardtii. Plant Physiol. 2016b;170(3):1216–34.PubMedGoogle Scholar
  5. Bajhaiya AK, Ziehe Moreira J, Pittman JK. Transcriptional engineering of microalgae: prospects for high-value chemicals. Trends Biotechnol. 2017;35(2):95–9.PubMedCrossRefGoogle Scholar
  6. Banerjee A, Maiti SK, Guria C, et al. Metabolic pathways for lipid synthesis under nitrogen stress in Chlamydomonas and Nannochloropsis. Biotechnol Lett. 2017;39(1):1–11.PubMedCrossRefGoogle Scholar
  7. Bartley ML, Boeing WJ, Corcoran AA, et al. Effects of salinity on growth and lipid accumulation of biofuel microalga Nannochloropsis salina and invading organisms. Biomass Bioenergy. 2013;54:83–8.CrossRefGoogle Scholar
  8. Bonnefond H, Moelants N, Talec A, et al. Coupling and uncoupling of triglyceride and beta-carotene production by Dunaliella salina under nitrogen limitation and starvation. Biotechnol Biofuels. 2017;10:25.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Cakmak T, Angun P, Demiray YE, et al. Differential effects of nitrogen and sulfur deprivation on growth and biodiesel feedstock production of Chlamydomonas reinhardtii. Biotechnol Bioeng. 2012;109(8):1947–57.PubMedCrossRefGoogle Scholar
  10. Chen B, Wan C, Mehmood MA, et al. Manipulating environmental stresses and stress tolerance of microalgae for enhanced production of lipids and value-added products – a review. Bioresour Technol. 2017;244(Pt 2):1198–2206.PubMedCrossRefGoogle Scholar
  11. Chen CY, Nagarajan D, Cheah WY. Eicosapentaenoic acid production from Nannochloropsis oceanica CY2 using deep sea water in outdoor plastic-bag type photobioreactors. Bioresour Technol. 2018;253:1–7.PubMedCrossRefGoogle Scholar
  12. Cheng J, Lu HX, Huang Y, et al. Enhancing growth rate and lipid yield of Chlorella with nuclear irradiation under high salt and CO2 stress. Bioresour Technol. 2016;203:220–7.PubMedCrossRefGoogle Scholar
  13. Chew KW, Yap JY, Show PL, et al. Microalgae biorefinery: high value products perspectives. Bioresour Technol. 2017;229:53–62.PubMedCrossRefGoogle Scholar
  14. Chia SR, Chew KW, Show PL et al. Analysis of economic and environmental aspects of microalgae biorefinery for biofuels production: a review. Biotechnol J. 2018.
  15. Chisti Y. Biodiesel from microalgae. Biotechnol Adv. 2007;25(3):294–306.PubMedCrossRefGoogle Scholar
  16. Chiu SY, Kao CY, Tsai MT, et al. Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresour Technol. 2009;100(2):833–8.PubMedCrossRefGoogle Scholar
  17. Chokshi K, Pancha I, Ghosh A, et al. Nitrogen starvation-induced cellular crosstalk of ROS-scavenging antioxidants and phytohormone enhanced the biofuel potential of green microalga Acutodesmus dimorphus. Biotechnol Biofuels. 2017;10(1):60.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Chu FF, Chu PN, Cai PJ, et al. Phosphorus plays an important role in enhancing biodiesel productivity of Chlorella vulgaris under nitrogen deficiency. Bioresour Technol. 2013;134:341–6.PubMedCrossRefGoogle Scholar
  19. Costa BS, Jungandreas A, Jakob T, et al. Blue light is essential for high light acclimation and photoprotection in the diatom Phaeodactylum tricornutum. J Exp Bot. 2013;64(2):483–93.CrossRefGoogle Scholar
  20. Del Campo JA, Rodriguez H, Moreno J, et al. Accumulation of astaxanthin and lutein in Chlorella zofingiensis (Chlorophyta). Appl Microbiol Biotechnol. 2004;64(6):848–54.PubMedCrossRefGoogle Scholar
  21. Dragosits M, Mattanovich D. Adaptive laboratory evolution – principles and applications for biotechnology. Microb Cell Factories. 2013;12:64.CrossRefGoogle Scholar
  22. El-Baky HA. Overproduction of phycocyanin pigment in blue green alga Spirulina sp. and it’s inhibitory effect on growth of ehrlich ascites carcinoma cells. J Med Sci. 2003;3(4):314–24.CrossRefGoogle Scholar
  23. Eloka-Eboka AC, Inambao FL. Effects of CO2 sequestration on lipid and biomass productivity in microalgal biomass production. Appl Energy. 2017;195:1100–11.CrossRefGoogle Scholar
  24. Feng D, Chen Z, Xue S, et al. Increased lipid production of the marine oleaginous microalgae Isochrysis zhangjiangensis (Chrysophyta) by nitrogen supplement. Bioresour Technol. 2011;102(12):6710–6.PubMedCrossRefGoogle Scholar
  25. Fu W, Gudmundsson O, Feist AM, et al. Maximizing biomass productivity and cell density of Chlorella vulgaris by using light-emitting diode-based photobioreactor. J Biotechnol. 2012;161(3):242–9.PubMedCrossRefGoogle Scholar
  26. Fu W, Guethmundsson O, Paglia G, et al. Enhancement of carotenoid biosynthesis in the green microalga Dunaliella salina with light-emitting diodes and adaptive laboratory evolution. Appl Microbiol Biotechnol. 2013;97(6):2395–403.PubMedCrossRefGoogle Scholar
  27. Gao Z, Li Y, Wu G, et al. Transcriptome analysis in Haematococcus pluvialis: astaxanthin induction by salicylic acid (SA) and jasmonic acid (JA). PLoS One. 2015;10(10):e0140609.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Ge F, Huang W, Chen Z, et al. Methylcrotonyl-CoA carboxylase regulates triacylglycerol accumulation in the model diatom Phaeodactylum tricornutum. Plant Cell. 2014;26(4):1681–97.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Gimpel JA, Henriquez V, Mayfield SP. In metabolic engineering of eukaryotic microalgae: potential and challenges come with great diversity. Front Microbiol. 2015;6:1376.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Goncalves EC, Wilkie AC, Kirst M, et al. Metabolic regulation of triacylglycerol accumulation in the green algae: identification of potential targets for engineering to improve oil yield. Plant Biotechnol J. 2016;14(8):1649–60.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Guarnieri MT, Pienkos PT. Algal omics: unlocking bioproduct diversity in algae cell factories. Photosynth Res. 2015;123(3):255–63.PubMedCrossRefGoogle Scholar
  32. Guihéneuf F, Khan A, Tran LS. Genetic engineering: a promising tool to engender physiological, biochemical, and molecular stress resilience in green microalgae. Front Plant Sci. 2016;7:400.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Han F, Pei H, Hu W, et al. Beneficial changes in biomass and lipid of microalgae Anabaena variabilis facing the ultrasonic stress environment. Bioresour Technol. 2016;209:16–22.PubMedCrossRefGoogle Scholar
  34. He Q, Yang H, Wu L, et al. Effect of light intensity on physiological changes, carbon allocation and neutral lipid accumulation in oleaginous microalgae. Bioresour Technol. 2015;191:219–28.PubMedCrossRefGoogle Scholar
  35. Hejazi MA, Holwerda E, Wijffels RH. Milking microalga Dunaliella salina for beta-carotene production in two-phase bioreactors. Biotechnol Bioeng. 2004;85(5):475–81.PubMedCrossRefGoogle Scholar
  36. Ho SH, Ye X, Hasunuma T, et al. Perspectives on engineering strategies for improving biofuel production from microalgae – a critical review. Biotechnol Adv. 2014;32(8):1448–59.PubMedCrossRefGoogle Scholar
  37. Ho SH, Nakanishi A, Ye X, et al. Dynamic metabolic profiling of the marine microalga Chlamydomonas sp. JSC4 and enhancing its oil production by optimizing light intensity. Biotechnol Biofuels. 2015;8:48.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Ho SH, Nakanishi A, Kato Y, et al. Dynamic metabolic profiling together with transcription analysis reveals salinity-induced starch-to-lipid biosynthesis in alga Chlamydomonas sp. JSC4. Sci Rep. 2017;7:45471.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Hockin NL, Mock T, Mulholland F, et al. The response of diatom central carbon metabolism to nitrogen starvation is different from that of green algae and higher plants. Plant Physiol. 2012;158(1):299–312.PubMedCrossRefGoogle Scholar
  40. Hu Q, Sommerfeld M, Jarvis E, et al. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J. 2008;54:621–39.PubMedCrossRefGoogle Scholar
  41. Huang L, Xu J, Li T, et al. Effects of additional Mg2+ on the growth, lipid production, and fatty acid composition of Monoraphidium sp. FXY-10 under different culture conditions. Ann Microbiol. 2013;64(3):1247–56.CrossRefGoogle Scholar
  42. Iwai M, Ikeda K, Shimojima M, et al. Enhancement of extraplastidic oil synthesis in Chlamydomonas reinhardtii using a type-2 diacylglycerol acyltransferase with a phosphorus starvation-inducible promoter. Plant Biotechnol J. 2014;12(6):808–19.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Iwai M, Hori K, Sasakisekimoto Y, et al. Manipulation of oil synthesis in Nannochloropsis strain NIES-2145 with a phosphorus starvation-inducible promoter from Chlamydomonas reinhardtii. Front Microbiol. 2015;6:912.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Lippmeier J, Wynn J, Fichtali J et al. Production of high levels of DHA in microalgae using modified amounts of chlorides and potassium. Australia. AU 2010202691B2. 2010.Google Scholar
  45. Jinkerson RE, Jonikas MC. Molecular techniques to interrogate and edit the Chlamydomonas nuclear genome. Plant J. 2015;82(3):393–412.PubMedCrossRefGoogle Scholar
  46. Kamalanathan M, Pierangelini M, Shearman LA, et al. Impacts of nitrogen and phosphorus starvation on the physiology of Chlamydomonas reinhardtii. J Appl Phycol. 2015;28(3):1509–20.CrossRefGoogle Scholar
  47. Kang NK, Seungjib J, Sohee K, et al. Effects of overexpression of a bHLH transcription factor on biomass and lipid production in Nannochloropsis salina. Biotechnol Biofuels. 2015;8(1):200.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Kato Y, Ho SH, Vavricka CJ, et al. Evolutionary engineering of salt-resistant Chlamydomonas sp. strains reveals salinity stress-activated starch-to-lipid biosynthesis switching. Bioresour Technol. 2017;245(Pt B):1484–90.PubMedCrossRefGoogle Scholar
  49. Kim S, Kim H, Ko D, et al. Rapid induction of lipid droplets in Chlamydomonas reinhardtii and Chlorella vulgaris by Brefeldin A. PLoS One. 2013a;8(12):e81978.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Kim SH, Liu KH, Lee SY, et al. Effects of light intensity and nitrogen starvation on glycerolipid, glycerophospholipid, and carotenoid composition in Dunaliella tertiolecta culture. PLoS One. 2013b;8(9):e72415.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Lamers PP, van de Laak CC, Kaasenbrood PS, et al. Carotenoid and fatty acid metabolism in light-stressed Dunaliella salina. Biotechnol Bioeng. 2010;106(4):638–48.PubMedCrossRefGoogle Scholar
  52. Li D, Wang L, Zhao Q, et al. Improving high carbon dioxide tolerance and carbon dioxide fixation capability of Chlorella sp. by adaptive laboratory evolution. Bioresour Technol. 2015;185:269–75.PubMedCrossRefGoogle Scholar
  53. Liang MH, Jiang JG. Analysis of carotenogenic genes promoters and WRKY transcription factors in response to salt stress in Dunaliella bardawil. Sci Rep. 2017;7:37025.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Liu J, Mao X, Zhou W, et al. Simultaneous production of triacylglycerol and high-value carotenoids by the astaxanthin-producing oleaginous green microalga Chlorella zofingiensis. Bioresour Technol. 2016;214:319–27.PubMedCrossRefGoogle Scholar
  55. Longworth J, Wu D, Huete-Ortega M, et al. Proteome response of Phaeodactylum tricornutum, during lipid accumulation induced by nitrogen depletion. Algal Res. 2016;18:213–24.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Lu N, Wei D, Chen F, et al. Lipidomic profiling reveals lipid regulation in the snow alga Chlamydomonas nivalis in response to nitrate or phosphate deprivation. Process Biochem. 2013;48(4):605–13.CrossRefGoogle Scholar
  57. Markou G, Nerantzis E. Microalgae for high-value compounds and biofuels production: a review with focus on cultivation under stress conditions. Biotechnol Adv. 2013;31(8):1532–42.PubMedCrossRefGoogle Scholar
  58. Martin GJ, Hill DR, Olmstead IL, et al. Lipid profile remodeling in response to nitrogen deprivation in the microalgae Chlorella sp. (Trebouxiophyceae) and Nannochloropsis sp. (Eustigmatophyceae). PLoS One. 2014;9(8):e103389.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Matthijs M, Fabris M, Broos S, et al. Profiling of the early nitrogen stress response in the diatom Phaeodactylum tricornutum reveals a novel family of RING-domain transcription factors. Plant Physiol. 2016;170(1):489–98.PubMedCrossRefGoogle Scholar
  60. McClure DD, Luiz A, Gerber B, et al. An investigation into the effect of culture conditions on fucoxanthin production using the marine microalgae Phaeodactylum tricornutum. Algal Res. 2018;29:41–8.CrossRefGoogle Scholar
  61. Minhas AK, Hodgson P, Barrow CJ, et al. A review on the assessment of stress conditions for simultaneous production of microalgal lipids and carotenoids. Front Microbiol. 2016;7:546.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Naduthodi MIS, Barbosa MJ, van der Oost J. Progress of CRISPR-Cas based genome editing in photosynthetic microbes. Biotechnol J. 2018;13:e1700591. Scholar
  63. Nagarajan S, Chou SK, Cao S, et al. An updated comprehensive techno-economic analysis of algae biodiesel. Bioresour Technol. 2013;145:150–6.PubMedCrossRefGoogle Scholar
  64. Ngan CY, Wong CH, Choi C, et al. Lineage-specific chromatin signatures reveal a regulator of lipid metabolism in microalgae. Nat Plants. 2015;1:15107.PubMedCrossRefGoogle Scholar
  65. Nogueira DPK, Silva AF, Araújo OQF, et al. Impact of temperature and light intensity on triacylglycerol accumulation in marine microalgae. Biomass Bioenergy. 2014;72:280–7.CrossRefGoogle Scholar
  66. Pancha I, Chokshi K, Maurya R, et al. Salinity induced oxidative stress enhanced biofuel production potential of microalgae Scenedesmus sp. CCNM 1077. Bioresour Technol. 2015;189:341–8.PubMedCrossRefGoogle Scholar
  67. Peng H, Wei D, Chen G, et al. Transcriptome analysis reveals global regulation in response to CO2 supplementation in oleaginous microalga Coccomyxa subellipsoidea C-169. Biotechnol Biofuels. 2016;9:151.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Perrineau MM, Zelzion E, Gross J, et al. Evolution of salt tolerance in a laboratory reared population of Chlamydomonas reinhardtii. Environ Microbiol. 2014;16(6):1755–66.PubMedCrossRefGoogle Scholar
  69. Praveenkumar R, Kim B, Lee J, et al. Mild pressure induces rapid accumulation of neutral lipid (triacylglycerol) in Chlorella spp. Bioresour Technol. 2016;220:661–5.PubMedCrossRefGoogle Scholar
  70. Remmers IM, Martens DE, Wijffels RH, et al. Dynamics of triacylglycerol and EPA production in Phaeodactylum tricornutum under nitrogen starvation at different light intensities. PLoS One. 2017;12(4):e0175630.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Ren HY, Liu BF, Kong F, et al. Enhanced lipid accumulation of green microalga Scenedesmus sp. by metal ions and EDTA addition. Bioresour Technol. 2014;169:763–7.PubMedCrossRefGoogle Scholar
  72. Rodolfi L, Chini Zittelli G, Bassi N, et al. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng. 2009;102(1):100–12.PubMedCrossRefGoogle Scholar
  73. Rubio V, Linhares F, Solano R, et al. A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes Dev. 2001;15:2122–33.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Saeki K, Aburai N, Aratani S, et al. Salt-stress and plant hormone-like responses for selective reactions of esterified xanthophylls in the aerial microalga Coelastrella sp. KGU-Y002. J Appl Phycol. 2016;29(1):115–22.CrossRefGoogle Scholar
  75. Santos AM, Janssen M, Lamers PP, et al. Growth of oil accumulating microalga Neochloris oleoabundans under alkaline-saline conditions. Bioresour Technol. 2012;104:593–9.PubMedCrossRefGoogle Scholar
  76. Shang C, Bi G, Yuan Z, et al. Discovery of genes for production of biofuels through transcriptome sequencing of Dunaliella parva. Algal Res. 2016;13:318–26.CrossRefGoogle Scholar
  77. Shang C, Zhu S, Wang Z, et al. Proteome response of Dunaliella parva induced by nitrogen limitation. Algal Res. 2017;23:196–202.CrossRefGoogle Scholar
  78. Shemesh Z, Leu S, Khozin-Goldberg I, et al. Inducible expression of Haematococcus oil globule protein in the diatom Phaeodactylum tricornutum: association with lipid droplets and enhancement of TAG accumulation under nitrogen starvation. Algal Res. 2016;18:321–31.CrossRefGoogle Scholar
  79. Shen XF, Chu FF, Lam PKS, et al. Biosynthesis of high yield fatty acids from Chlorella vulgaris NIES-227 under nitrogen starvation stress during heterotrophic cultivation. Water Res. 2015;81:294–30.PubMedCrossRefGoogle Scholar
  80. Skrupski B, Wilson KE, Goff KL, et al. Effect of pH on neutral lipid and biomass accumulation in microalgal strains native to the Canadian prairies and the Athabasca oil sands. J Appl Phycol. 2012;25(4):937–49.CrossRefGoogle Scholar
  81. Srivastava G, Nishchal, Goud VV. Salinity induced lipid production in microalgae and cluster analysis (ICCB 16-BR_047). Bioresour Technol. 2017;242:244–52.PubMedCrossRefGoogle Scholar
  82. Su Y, Song K, Zhang P, et al. Progress of microalgae biofuel’s commercialization. Renew Sust Energ Rev. 2017;74:402–11.CrossRefGoogle Scholar
  83. Subhash GV, Rohit MV, Devi MP, et al. Temperature induced stress influence on biodiesel productivity during mixotrophic microalgae cultivation with wastewater. Bioresour Technol. 2014;169:789–93.CrossRefGoogle Scholar
  84. Sun X, Cao Y, Xu H, et al. Effect of nitrogen-starvation, light intensity and iron on triacylglyceride/carbohydrate production and fatty acid profile of Neochloris oleoabundans HK-129 by a two-stage process. Bioresour Technol. 2014;155:204–12.PubMedCrossRefGoogle Scholar
  85. Trentacoste EM, Shrestha RP, Smith SR, et al. Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without compromising growth. Proc Natl Acad Sci U S A. 2013;110(49):19748–53.PubMedPubMedCentralCrossRefGoogle Scholar
  86. Tsai CH, Warakanont J, Takeuchi T, et al. The protein compromised hydrolysis of triacylglycerols 7 (CHT7) acts as a repressor of cellular quiescence in Chlamydomonas. Proc Natl Acad Sci U S A. 2014;111(44):15833–8.PubMedPubMedCentralCrossRefGoogle Scholar
  87. Vieler A, Wu G, Tsai CH, et al. Genome, functional gene annotation, and nuclear transformation of the heterokont oleaginous alga Nannochloropsis oceanica CCMP1779. PLoS Genet. 2012;8(11):e1003064.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Vítová M, Goecke F, Sigler K, et al. Lipidomic analysis of the extremophilic red alga Galdieria sulphuraria in response to changes in pH. Algal Res. 2016;13:218–26.CrossRefGoogle Scholar
  89. Wan C, Bai F-W, Zhao X-Q. Effects of nitrogen concentration and media replacement on cell growth and lipid production of oleaginous marine microalga Nannochloropsis oceanica DUT01. Biochem Eng J. 2013;78:32–8.CrossRefGoogle Scholar
  90. Wang D, Ning K, Li J, et al. Nannochloropsis genomes reveal evolution of microalgal oleaginous traits. PLoS Genet. 2014;10(1):e1004094.PubMedPubMedCentralCrossRefGoogle Scholar
  91. Wang C, Peng X, Wang J, et al. A β-carotene ketolase gene (bkt1) promoter regulated by sodium acetate and light in a model green microalga Chlamydomonas reinhardtii. Algal Res. 2016a;20:61–9.CrossRefGoogle Scholar
  92. Wang T, Ge H, Liu T, et al. Salt stress induced lipid accumulation in heterotrophic culture cells of Chlorella protothecoides: mechanisms based on the multi-level analysis of oxidative response, key enzyme activity and biochemical alteration. J Biotechnol. 2016b;228:18–27.PubMedCrossRefGoogle Scholar
  93. Wijffels RH, Barbosa MJ. An outlook on microalgal biofuels. Science. 2010;329(5993):796–9.PubMedCrossRefGoogle Scholar
  94. Wu S, Zhou J, Xin Y, et al. Nutritional stress effects under different nitrogen sources on the genes in microalga Isochrysis zhangjiangensis and the assistance of Alteromonas macleodii in releasing the stress of amino acid deficiency. J Phycol. 2015;51(5):885–95.PubMedCrossRefGoogle Scholar
  95. Xi T, Kim DG, Roh SW, et al. Enhancement of astaxanthin production using Haematococcus pluvialis with novel LED wavelength shift strategy. Appl Microbiol Biotechnol. 2016;100(14):6231–8.PubMedCrossRefGoogle Scholar
  96. Xie Y, Ho SH, Chen CN, et al. Phototrophic cultivation of a thermo-tolerant Desmodesmus sp. for lutein production: effects of nitrate concentration, light intensity and fed-batch operation. Bioresour Technol. 2013;144:435–44.PubMedCrossRefGoogle Scholar
  97. Yang J, Cao J, Xing G, et al. Lipid production combined with biosorption and bioaccumulation of cadmium, copper, manganese and zinc by oleaginous microalgae Chlorella minutissima UTEX2341. Bioresour Technol. 2014;175C:537–44.Google Scholar
  98. Yoo C, La HJ, Kim SC, et al. Simple processes for optimized growth and harvest of Ettlia sp. by pH control using CO2 and light irradiation. Biotechnol Bioeng. 2015;112(2):288–96.PubMedCrossRefGoogle Scholar
  99. Yu S, Zhao Q, Miao X, et al. Enhancement of lipid production in low-starch mutants Chlamydomonas reinhardtii by adaptive laboratory evolution. Bioresour Technol. 2013;147:499–507.PubMedCrossRefGoogle Scholar
  100. Zalogin TR, Pick U. Azide improves triglyceride yield in microalgae. Algal Res. 2014;3:8–16.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Chun Wan
    • 1
  • Bai-Ling Chen
    • 1
  • Xin-Qing Zhao
    • 1
    Email author
  • Feng-Wu Bai
    • 1
  1. 1.State Key Laboratory of Microbial Metabolism and School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations