Design Considerations of Microalgal Culture Ponds and Photobioreactors for Wastewater Treatment and Biomass Cogeneration

  • Truong Giang Le
  • Dang-Thuan Tran
  • Thi Cam Van Do
  • Van Tuyen Nguyen


Despite highly potential feedstock for biofuel production, high microalgal biomass production cost has been a major obstacle for commercialization of microalgal bioenergy. Coupling cultivation of microalgal in wastewater for simultaneous nutrients/pollutants removal and biomass cogeneration has been considered as a feasible solution for reducing microalgal production cost. Microalgae are photosynthetic microorganisms which require large amount of nitrogen and phosphorus for their growth and releases oxygen during photosynthesis process. Nevertheless, it is hard to maintain pure cultures of these algae in wastewater treatment processes. Therefore, the utilization of natural and artificial microalga consortia including either microalgae solo or microalgae and bacteria has been studied by several groups. Whatever the mode of culture of microalgae such as single or poly-culture of algae, algae-bacteria, algae-yeast, algae-fungi in wastewater, its production is based on the sample principles such as light availability, appropriate mass and heat transfer, and adequate control of operational parameters. This chapter is aimed at taking consideration of these principles in designing microalgal culture ponds and photobioreactors for wastewater treatment and biomass production. Different emerging designs and important factors and the parameters influencing their performance are reviewed. Mechanism of microorganism interactions and reactor designs used for polyculture cultivation in wastewaters to achieving win-win benefit are also discussed.


Microalgae Microalgal consortia Irradiance Mass transfer Heat transfer Open photobioreactors Closed photobioreactors 



This research is funded by Graduate University of Science and Technology under the grant number GUST.STS.ĐT2017-ST03.


  1. Abdel-Raouf N, Al-Homaidan AA, Ibraheem IBM. Microalgae and wastewater treatment. Saudi J Biol Sci. 2012;19:257–75.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Acién Fernández FG, Fernández Sevilla JM, Molina Grima E. Photobioreactors for the production of microalgae. Rev Environ Sci Biotechnol. 2013;12:131–51.CrossRefGoogle Scholar
  3. Acien FG, Fernandez JM, Magan JJ, Molina E. Production cost of a real microalgae production plant and strategies to reduce it. Biotechnol Adv. 2012;30:1344–53.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Acien FG, Gomez-Serrano C, Morales-Amaral MM, Fernandez-Sevilla JM, Molina-Grima E. Wastewater treatment using microalgae: how realistic a contribution might it be to significant urban wastewater treatment? Appl Microbiol Biotechnol. 2016;100:9013–22.PubMedCrossRefPubMedCentralGoogle Scholar
  5. Acién FG, Molina E, Reis A, Torzillo G, Zittelli GC, Sepúlveda C, et al. 1 – Photobioreactors for the production of microalgae A2 – Gonzalez-Fernandez, Cristina. In: Muñoz R, editor. Microalgae-based biofuels and bioproducts. Kindlington: Woodhead Publishing; 2017. p. 1–44.Google Scholar
  6. Amavizca E, Bashan Y, Ryu CM, Farag MA, Bebout BM, de-Bashan LE. Enhanced performance of the microalga Chlorella sorokiniana remotely induced by the plant growth-promoting bacteria Azospirillum brasilense and Bacillus pumilus. Sci Rep. 2017;7:41310.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Amin SA, Green DH, Hart MC, Küpper FC, Sunda WG, Carrano CJ. Photolysis of iron–siderophore chelates promotes bacterial–algal mutualism. Proc Natl Acad Sci. 2009;106:17071–6.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Apel AC, Pfaffinger CE, Basedahl N, Mittwollen N, Göbel J, Sauter J, et al. Open thin-layer cascade reactors for saline microalgae production evaluated in a physically simulated Mediterranean summer climate. Algal Res. 2017;25:381–90.CrossRefGoogle Scholar
  9. Ask J, Karlsson J, Persson L, Ask P, Byström P, Jansson M. Whole-lake estimates of carbon flux through algae and bacteria in benthic and pelagic habitats of clear-water lakes. Ecology. 2009;90:1923–32.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Aslan S, Kapdan IK. Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecol Eng. 2006;28:64–70.CrossRefGoogle Scholar
  11. Bacellar Mendes LB, Vermelho AB. Allelopathy as a potential strategy to improve microalgae cultivation. Biotechnol Biofuels. 2013;6:152.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Barsanti L, Gualtieri P. Algae: anatomy, biochemistry, and biotechnology. Boca Raton: CRC; 2005.CrossRefGoogle Scholar
  13. Bashan Y, de-Bashan LE. Chapter 2: How the plant growth-promoting bacterium Azospirillum promotes plant growth—a critical assessment. In: Sparks DL, editor. Advances in agronomy. Cambridge: Academic; 2010. p. 77–136.Google Scholar
  14. Boonma S, Chaiklangmuang S, Chaiwongsar S, Pekkoh J, Pumas C, Ungsethaphand T, et al. Enhanced carbon dioxide fixation and bio-oil production of a microalgal consortium. Clean (Weinh). 2015;43:761–6.Google Scholar
  15. Borowitzka MA. Limits to growth. In: Wong Y-S, Tam NFY, editors. Wastewater treatment with algae. Berlin/Heidelberg: Springer Berlin Heidelberg; 1998. p. 203–26.CrossRefGoogle Scholar
  16. Borowitzka MA. Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol. 1999;70:313–21.CrossRefGoogle Scholar
  17. Bosma R, van Zessen E, Reith JH, Tramper J, Wijffels RH. Prediction of volumetric productivity of an outdoor photobioreactor. Biotechnol Bioeng. 2007;97:1108–20.PubMedCrossRefPubMedCentralGoogle Scholar
  18. Brennan L, Owende P. Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev. 2010;14:557–77.CrossRefGoogle Scholar
  19. Brindley C, Acién Fernández FG, Fernández-Sevilla JM. Analysis of light regime in continuous light distributions in photobioreactors. Bioresour Technol. 2011;102:3138–48.PubMedCrossRefPubMedCentralGoogle Scholar
  20. Cai S, Hu C, Du S. Comparisons of growth and biochemical composition between mixed culture of alga and yeast and monocultures. J Biosci Bioeng. 2007;104:391–7.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Cai T, Park SY, Li Y. Nutrient recovery from wastewater streams by microalgae: status and prospects. Renew Sust Energ Rev. 2013;19:360–9.CrossRefGoogle Scholar
  22. Carney LT, Lane TW. Parasites in algae mass culture. Front Microbiol. 2014;5:278.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Carvalho AP, Malcata FX. Kinetic modeling of the autotrophic growth of Pavlova lutheri: study of the combined influence of light and temperature. Biotechnol Prog. 2003;19:1128–35.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Cembella AD. Chemical ecology of eukaryotic microalgae in marine ecosystems. Phycologia. 2003;42:420–47.CrossRefGoogle Scholar
  25. Cheirsilp B, Suwannarat W, Niyomdecha R. Mixed culture of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris for lipid production from industrial wastes and its use as biodiesel feedstock. New Biotechnol. 2011;28:362–8.CrossRefGoogle Scholar
  26. Chen CY, Yeh KL, Aisyah R, Lee DJ, Chang JS. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol. 2011;102:71–81.CrossRefGoogle Scholar
  27. Chen G, Zhao L, Qi Y. Enhancing the productivity of microalgae cultivated in wastewater toward biofuel production: a critical review. Appl Energy. 2015;137:282–91.CrossRefGoogle Scholar
  28. Cheng P, Ji B, Gao L, Zhang W, Wang J, Liu T. The growth, lipid and hydrocarbon production of Botryococcus braunii with attached cultivation. Bioresour Technol. 2013;138:95–100.PubMedCrossRefPubMedCentralGoogle Scholar
  29. Chinnasamy S, Bhatnagar A, Hunt RW, Das KC. Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresour Technol. 2010;101:3097.PubMedCrossRefPubMedCentralGoogle Scholar
  30. Cho D-H, Ramanan R, Heo J, Lee J, Kim B-H, Oh H-M, et al. Enhancing microalgal biomass productivity by engineering a microalgal–bacterial community. Bioresour Technol. 2015;175:578–85.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Choix FJ, de-Bashan LE, Bashan Y. Enhanced accumulation of starch and total carbohydrates in alginate-immobilized Chlorella spp. induced by Azospirillum brasilense: I. Autotrophic conditions. Enzym Microb Technol. 2012;51:294–9.CrossRefGoogle Scholar
  32. Choix FJ, Bashan Y, Mendoza A, de-Bashan LE. Enhanced activity of ADP glucose pyrophosphorylase and formation of starch induced by Azospirillum brasilense in Chlorella vulgaris. J Biotechnol. 2014;177:22–34.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Chojnacka K, Chojnacki A, Górecka H. Trace element removal by Spirulina sp. from copper smelter and refinery effluents. Hydrometallurgy. 2004;73:147–53.CrossRefGoogle Scholar
  34. Choudhary P, Prajapati SK, Kumar P, Malik A, Pant KK. Development and performance evaluation of an algal biofilm reactor for treatment of multiple wastewaters and characterization of biomass for diverse applications. Bioresour Technol. 2017;224:276–84.PubMedCrossRefPubMedCentralGoogle Scholar
  35. Christenson L, Sims R. Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol Adv. 2011;29:686–702.CrossRefGoogle Scholar
  36. Cornet JF, Dussap CG. A simple and reliable formula for assessment of maximum volumetric productivities in photobioreactors. Biotechnol Prog. 2009;25:424–35.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Craggs RJ, Lundquist TJ, Benemann JR. Wastewater treatment and algal biofuel production. In: Borowitzka MA, Moheimani NR, editors. Algae for biofuels and energy. Dordrecht: Springer Netherlands; 2013. p. 153–63.CrossRefGoogle Scholar
  38. Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, Smith AG. Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature. 2005;438:90–3.PubMedCrossRefPubMedCentralGoogle Scholar
  39. Czarena LC, Michael M, Xinyi E, Aubrey PS, Mark C, Rodney A. Influence of media composition on the growth rate of Chlorella vulgaris and Scenedesmus acutus utilized for CO2 mitigation. J Biochem Technol. 2012;4(2):589–94.Google Scholar
  40. de la Noüe J, Laliberté G, Proulx D. Algae and waste water. J Appl Phycol. 1992;4:247–54.CrossRefGoogle Scholar
  41. de-Bashan LE, Bashan Y, Moreno M, Lebsky VK, Bustillos JJ. Increased pigment and lipid content, lipid variety, and cell and population size of the microalgae Chlorella spp. when co-immobilized in alginate beads with the microalgae-growth-promoting bacterium Azospirillum brasilense. Can J Microbiol. 2002;48:514–21.PubMedCrossRefPubMedCentralGoogle Scholar
  42. de-Bashan LE, Hernandez J-P, Morey T, Bashan Y. Microalgae growth-promoting bacteria as “helpers” for microalgae: a novel approach for removing ammonium and phosphorus from municipal wastewater. Water Res. 2004;38:466–74.PubMedCrossRefPubMedCentralGoogle Scholar
  43. De-Bashan LE, Antoun H, Bashan Y. Involvement of indole-3-acetic acid produced by the growth-promoting bacterium Azospirillium spp. in promoting growth of Chlorella vulgaris. J Phycol. 2008a;44:938–47.Google Scholar
  44. De-Bashan LE, Magallon P, Antoun H, Bashan Y. Role of glutamate dehydrogenase and glutamine synthetase in Chlorella vulgaris during assimilation of ammonium when jointly immobilized with the microalgae-growth-promoting bacterium Aospirillum brasilense. J Phycol. 2008b;44:1188–96.PubMedCrossRefPubMedCentralGoogle Scholar
  45. de-Bashan LE, Schmid M, Rothballer M, Hartmann A, Bashan Y. Cell-cell interaction in the eukaryote-prokaryote model of the microalgae Chlorella vulgaris and the bacterium Azospirillum brasilense immobilized in polymer beads. J Phycol. 2011;47:1350–9.PubMedCrossRefPubMedCentralGoogle Scholar
  46. de-Bashan LE, Mayali X, Bebout BM, Weber PK, Detweiler AM, Hernandez J-P, et al. Establishment of stable synthetic mutualism without co-evolution between microalgae and bacteria demonstrated by mutual transfer of metabolites (NanoSIMS isotopic imaging) and persistent physical association (Fluorescent in situ hybridization). Algal Res. 2016;15:179–86.CrossRefGoogle Scholar
  47. Delgadillo-Mirquez L, Lopes F, Taidi B, Pareau D. Nitrogen and phosphate removal from wastewater with a mixed microalgae and bacteria culture. Biotechnol Rep. 2016;11:18–26.CrossRefGoogle Scholar
  48. Doucha J, Lívanský K. Productivity, CO2/O2 exchange and hydraulics in outdoor open high density microalgal (Chlorella sp.) photobioreactors operated in a Middle and Southern European climate. J Appl Phycol. 2006;18:811–26.CrossRefGoogle Scholar
  49. Doucha J, Lívanský K. Outdoor open thin-layer microalgal photobioreactor: potential productivity. J Appl Phycol. 2009;21:111–7.CrossRefGoogle Scholar
  50. Doucha J, Straka F, Lívanský K. Utilization of flue gas for cultivation of microalgae Chlorella sp. in an outdoor open thin-layer photobioreactor. J Appl Phycol. 2005;17:403–12.CrossRefGoogle Scholar
  51. Durham BP, Sharma S, Luo H, Smith CB, Amin SA, Bender SJ, et al. Cryptic carbon and sulfur cycling between surface ocean plankton. Proc Natl Acad Sci. 2015;112:453–7.PubMedCrossRefPubMedCentralGoogle Scholar
  52. Fergola P, Cerasuolo M, Pollio A, Pinto G, DellaGreca M. Allelopathy and competition between Chlorella vulgaris and Pseudokirchneriella subcapitata: experiments and mathematical model. Ecol Model. 2007;208:205–14.CrossRefGoogle Scholar
  53. Fernández I, Acién FG, Guzmán JL, Berenguel M, Mendoza JL. Dynamic model of an industrial raceway reactor for microalgae production. Algal Res. 2016;17:67–78.CrossRefGoogle Scholar
  54. Ferrero EM, de Godos I, Rodríguez EM, García-Encina PA, Muñoz R, Bécares E. Molecular characterization of bacterial communities in algal–bacterial photobioreactors treating piggery wastewaters. Ecol Eng. 2012;40:121–30.CrossRefGoogle Scholar
  55. Fouilland E. Biodiversity as a tool for waste phycoremediation and biomass production. Rev Environ Sci Biotechnol. 2012;11:1–4.CrossRefGoogle Scholar
  56. Fouilland E, Vasseur C, Leboulanger C, Le Floc’h E, Carré C, Marty B, et al. Coupling algal biomass production and anaerobic digestion: production assessment of some native temperate and tropical microalgae. Biomass Bioenergy. 2014;70:564–9.CrossRefGoogle Scholar
  57. Fuentes JL, Garbayo I, Cuaresma M, Montero Z, Gonzalez-Del-Valle M, Vilchez C. Impact of microalgae-bacteria interactions on the production of algal biomass and associated compounds. Mar Drugs. 2016;14:100.PubMedCentralCrossRefGoogle Scholar
  58. Gao F, Yang ZH, Li C, Zeng GM, Ma DH, Zhou L. A novel algal biofilm membrane photobioreactor for attached microalgae growth and nutrients removal from secondary effluent. Bioresour Technol. 2015;179:8–12.PubMedCrossRefPubMedCentralGoogle Scholar
  59. Genin SN, Stewart Aitchison J, Grant Allen D. Design of algal film photobioreactors: material surface energy effects on algal film productivity, colonization and lipid content. Bioresour Technol. 2014;155:136–43.PubMedCrossRefPubMedCentralGoogle Scholar
  60. Genin SN, Aitchison JS, Allen DG. Novel waveguide reactor design for enhancing algal biofilm growth. Algal Res. 2015;12:529–38.CrossRefGoogle Scholar
  61. Gómez-Pérez CA, Espinosa J, Montenegro Ruiz LC, van Boxtel AJB. CFD simulation for reduced energy costs in tubular photobioreactors using wall turbulence promoters. Algal Res. 2015;12:1–9.CrossRefGoogle Scholar
  62. Gómez-Pérez CA, Espinosa Oviedo JJ, Montenegro Ruiz LC, van Boxtel AJB. Twisted tubular photobioreactor fluid dynamics evaluation for energy consumption minimization. Algal Res. 2017;27:65–72.CrossRefGoogle Scholar
  63. Gonçalves AL, Pires JCM, Simões M. A review on the use of microalgal consortia for wastewater treatment. Algal Res. 2017;24:403–15.CrossRefGoogle Scholar
  64. González JM, Simó R, Massana R, Covert JS, Casamayor EO, Pedrós-Alió C, et al. Bacterial community structure associated with a dimethylsulfoniopropionate-producing North Atlantic algal bloom. Appl Environ Microbiol. 2000;66:4237–46.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Grima EM, Camacho FG, Pérez JAS, Sevilla JMF, Fernández FGA, Gómez AC. A mathematical model of microalgal growth in light-limited chemostat culture. J Chem Technol Biotechnol. 1994;61:167–73.CrossRefGoogle Scholar
  66. Grobbelaar JU. Algal nutrition – mineral nutrition. In: Handbook of microalgal culture. Oxford/Ames: Blackwell Publishing Ltd; 2007. p. 95–115.Google Scholar
  67. Grossart HP, Czub G, Simon M. Algae–bacteria interactions and their effects on aggregation and organic matter flux in the sea. Environ Microbiol. 2006;8:1074–84.PubMedCrossRefPubMedCentralGoogle Scholar
  68. Grover JP. Resource competition and community structure in aquatic micro-organisms: experimental studies of algae and bacteria along a gradient of organic carbon to inorganic phosphorus supply. J Plankton Res. 2000;22:1591–610.CrossRefGoogle Scholar
  69. Gupta PL, Lee SM, Choi HJ. A mini review: photobioreactors for large scale algal cultivation. World J Microbiol Biotechnol. 2015;31:1409–17.PubMedCrossRefPubMedCentralGoogle Scholar
  70. Habibi A, Teymouri A, Delavari Amrei H, Pajoum shariati F. A novel open raceway pond design for microalgae growth and nutrients removal from treated slaughterhouse wastewater. Pollution. 2018;4:103–10.Google Scholar
  71. Hellebust JA, Ahmad I. Regulation of nitrogen assimilation in green microalgae. Biol Oceanogr. 1989;6:241–55.Google Scholar
  72. Hernandez J-P, de-Bashan LE, Rodriguez DJ, Rodriguez Y, Bashan Y. Growth promotion of the freshwater microalga Chlorella vulgaris by the nitrogen-fixing, plant growth-promoting bacterium Bacillus pumilus from arid zone soils. Eur J Soil Biol. 2009;45:88–93.CrossRefGoogle Scholar
  73. Hernandez D, Riano B, Coca M, Garcia-Gonzalez MC. Treatment of agro-industrial wastewater using microalgae-bacteria consortium combined with anaerobic digestion of the produced biomass. Bioresour Technol. 2013;135:598–603.PubMedCrossRefPubMedCentralGoogle Scholar
  74. Hoh D, Watson S, Kan E. Algal biofilm reactors for integrated wastewater treatment and biofuel production: a review. Chem Eng J. 2016;287:466–73.CrossRefGoogle Scholar
  75. Hu Y, Hao X, van Loosdrecht M, Chen H. Enrichment of highly settleable microalgal consortia in mixed cultures for effluent polishing and low-cost biomass production. Water Res. 2017;125:11–22.PubMedCrossRefPubMedCentralGoogle Scholar
  76. Jagmann N, Philipp B. Reprint of design of synthetic microbial communities for biotechnological production processes. J Biotechnol. 2014;192(Pt B):293–301.PubMedCrossRefPubMedCentralGoogle Scholar
  77. Jerez CG, Malapascua JR, Sergejevová M, Masojídek J, Figueroa FL. Chlorella fusca (Chlorophyta) grown in thin-layer cascades: estimation of biomass productivity by in-vivo chlorophyll a fluorescence monitoring. Algal Res. 2016;17:21–30.CrossRefGoogle Scholar
  78. Johnson KR, Admassu W. Mixed algae cultures for low cost environmental compensation in cultures grown for lipid production and wastewater remediation. J Chem Technol Biotechnol. 2013;88:992–8.CrossRefGoogle Scholar
  79. Jorquera O, Kiperstok A, Sales EA, Embirucu M, Ghirardi ML. Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresour Technol. 2010;101:1406–13.PubMedCrossRefPubMedCentralGoogle Scholar
  80. Kagami M, de Bruin A, Ibelings BW, Van Donk E. Parasitic chytrids: their effects on phytoplankton communities and food-web dynamics. Hydrobiologia. 2007;578:113–29.CrossRefGoogle Scholar
  81. Karemore A, Ramalingam D, Yadav G, Subramanian G, Sen R. Photobioreactors for improved algal biomass production: analysis and design considerations. In: Algal biorefinery: an integrated approach. Cham: Springer; 2015. p. 103–24.CrossRefGoogle Scholar
  82. Kazamia E, Czesnick H, Nguyen TTV, Croft MT, Sherwood E, Sasso S, et al. Mutualistic interactions between vitamin B12-dependent algae and heterotrophic bacteria exhibit regulation. Environ Microbiol. 2012;14:1466–76.PubMedCrossRefPubMedCentralGoogle Scholar
  83. Kesaano M, Sims RC. Algal biofilm based technology for wastewater treatment. Algal Res. 2014;5:231–40.CrossRefGoogle Scholar
  84. Kim B-H, Ramanan R, Cho D-H, Oh H-M, Kim H-S. Role of Rhizobium, a plant growth promoting bacterium, in enhancing algal biomass through mutualistic interaction. Biomass Bioenergy. 2014;69:95–105.CrossRefGoogle Scholar
  85. Koreivienė J, Valčiukas R, Karosienė J, Baltrėnas P. Testing of Chlorella/Scenedesmus microalgae consortia for remediation of wastewater, CO2 mitigation and algae biomass feasibility for lipid production. J Environ Eng Landsc Manag. 2014;22:105–14.CrossRefGoogle Scholar
  86. Kumar K, Dasgupta CN, Nayak B, Lindblad P, Das D. Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria. Bioresour Technol. 2011;102:4945–53.PubMedCrossRefPubMedCentralGoogle Scholar
  87. Larsdotter K. Wastewater treatment with microalgae – a literature review. Vatten. 2006;62:31–8.Google Scholar
  88. Le Chevanton M, Garnier M, Lukomska E, Schreiber N, Cadoret J-P, Saint-Jean B, et al. Effects of nitrogen limitation on Dunaliella sp.–Alteromonas sp. interactions: from mutualistic to competitive relationships. Front Mar Sci. 2016;3:123.CrossRefGoogle Scholar
  89. Leyva LA, Bashan Y, Mendoza A, de-Bashan LE. Erratum to: accumulation of fatty acids in Chlorella vulgaris under heterotrophic conditions in relation to activity of acetyl-CoA carboxylase, temperature, and co-immobilization with Azospirillum brasilense. Naturwissenschaften. 2014;101:1115.CrossRefGoogle Scholar
  90. Leyva LA, Bashan Y, de-Bashan LE. Activity of acetyl-CoA carboxylase is not directly linked to accumulation of lipids when Chlorella vulgaris is co-immobilised with Azospirillum brasilense in alginate under autotrophic and heterotrophic conditions. Ann Microbiol. 2015;65:339–49.CrossRefGoogle Scholar
  91. Lin L, Chan GY, Jiang BL, Lan CY. Use of ammoniacal nitrogen tolerant microalgae in landfill leachate treatment. Waste Manag. 2007;27:1376–82.PubMedCrossRefPubMedCentralGoogle Scholar
  92. Lívanský K, Doucha J. CO2 and O2 gas exchange in outdoor thin-layer high density microalgal cultures. J Appl Phycol. 1996;8:353–8.CrossRefGoogle Scholar
  93. Magdouli S, Brar SK, Blais JF. Co-culture for lipid production: advances and challenges. Biomass Bioenergy. 2016;92:20–30.CrossRefGoogle Scholar
  94. Martínez ME, Jiménez JM, El Yousfi F. Influence of phosphorus concentration and temperature on growth and phosphorus uptake by the microalga Scenedesmus obliquus. Bioresour Technol. 1999;67:233–40.CrossRefGoogle Scholar
  95. Masojídek J, Kopecký J, Giannelli L, Torzillo G. Productivity correlated to photobiochemical performance of Chlorella mass cultures grown outdoors in thin-layer cascades. J Ind Microbiol Biotechnol. 2011;38:307–17.PubMedCrossRefPubMedCentralGoogle Scholar
  96. Mendoza JL, Granados MR, de Godos I, Acién FG, Molina E, Banks C, et al. Fluid-dynamic characterization of real-scale raceway reactors for microalgae production. Biomass Bioenergy. 2013;54:267–75.CrossRefGoogle Scholar
  97. Meza B, de-Bashan LE, Bashan Y. Involvement of indole-3-acetic acid produced by Azospirillum brasilense in accumulating intracellular ammonium in Chlorella vulgaris. Res Microbiol. 2015;166:72–83.PubMedCrossRefPubMedCentralGoogle Scholar
  98. Mirón AS, Gómez AC, Camacho FG, Grima EM, Chisti Y. Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae. In: Osinga R, Tramper J, Burgess JG, Wijffels RH, editors. Progress in industrial microbiology. Amsterdam: Elsevier; 1999. p. 249–70.Google Scholar
  99. Molina Grima E, Fernández FGA, Garcıa Camacho F, Chisti Y. Photobioreactors: light regime, mass transfer, and scaleup. J Biotechnol. 1999;70:231–47.CrossRefGoogle Scholar
  100. Morales-Amaral MM, Gómez-Serrano C, Acién FG, Fernández-Sevilla JM, Molina-Grima E. Outdoor production of Scenedesmus sp. in thin-layer and raceway reactors using centrate from anaerobic digestion as the sole nutrient source. Algal Res. 2015a;12:99–108.CrossRefGoogle Scholar
  101. Morales-Amaral MM, Gómez-Serrano C, Acién FG, Fernández-Sevilla JM, Molina-Grima E. Production of microalgae using centrate from anaerobic digestion as the nutrient source. Algal Res. 2015b;9:297–305.CrossRefGoogle Scholar
  102. Morales-Sánchez D, Martinez-Rodriguez OA, Kyndt J, Martinez A. Heterotrophic growth of microalgae: metabolic aspects. World J Microbiol Biotechnol. 2015;31:1–9.PubMedCrossRefPubMedCentralGoogle Scholar
  103. Munoz R, Guieysse B. Algal-bacterial processes for the treatment of hazardous contaminants: a review. Water Res. 2006;40:2799–815.PubMedCrossRefPubMedCentralGoogle Scholar
  104. Mustafa E-M, Phang S-M, Chu W-L. Use of an algal consortium of five algae in the treatment of landfill leachate using the high-rate algal pond system. J Appl Phycol. 2011;24:953–63.CrossRefGoogle Scholar
  105. Neilson AH, Lewin RA. The uptake and utilization of organic carbon by algae: an essay in comparative biochemistry. Phycologia. 1974;13:227–64.CrossRefGoogle Scholar
  106. Olguin EJ. Dual purpose microalgae-bacteria-based systems that treat wastewater and produce biodiesel and chemical products within a biorefinery. Biotechnol Adv. 2012;30:1031–46.PubMedCrossRefPubMedCentralGoogle Scholar
  107. Oswald WJ. Micro-algae and waste-water treatment. Cambridge: Cambridge University Press; 1988.Google Scholar
  108. Paerl HW, Pinckney JL. A mini-review of microbial consortia: their roles in aquatic production and biogeochemical cycling. Microb Ecol. 1996;31:225–47.PubMedCrossRefPubMedCentralGoogle Scholar
  109. Palacios OA, Choix FJ, Bashan Y, de-Bashan LE. Influence of tryptophan and indole-3-acetic acid on starch accumulation in the synthetic mutualistic Chlorella sorokinianaAzospirillum brasilense system under heterotrophic conditions. Res Microbiol. 2016;167:367–79.PubMedCrossRefPubMedCentralGoogle Scholar
  110. Palmer CM. A composite rating of algae tolerating organic pollution. J Phycol. 1969;5:78–82.PubMedCrossRefPubMedCentralGoogle Scholar
  111. Park JBK, Craggs RJ, Shilton AN. Recycling algae to improve species control and harvest efficiency from a high rate algal pond. Water Res. 2011a;45:6637–49.PubMedCrossRefPubMedCentralGoogle Scholar
  112. Park JB, Craggs RJ, Shilton AN. Wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol. 2011b;102:35–42.PubMedCrossRefGoogle Scholar
  113. Picardo MC, de Medeiros JL, OdQF A, Chaloub RM. Effects of CO2 enrichment and nutrients supply intermittency on batch cultures of Isochrysis galbana. Bioresour Technol. 2013;143:242–50.PubMedCrossRefPubMedCentralGoogle Scholar
  114. Pienkos PT, Darzins A. The promise and challenges of microalgal-derived biofuels. Biofuels Bioprod Biorefin. 2009;3:431–40.CrossRefGoogle Scholar
  115. Posadas E, Garcia-Encina PA, Soltau A, Dominguez A, Diaz I, Munoz R. Carbon and nutrient removal from centrates and domestic wastewater using algal-bacterial biofilm bioreactors. Bioresour Technol. 2013;139:50–8.PubMedCrossRefGoogle Scholar
  116. Posadas E, García-Encina PA, Domínguez A, Díaz I, Becares E, Blanco S, et al. Enclosed tubular and open algal–bacterial biofilm photobioreactors for carbon and nutrient removal from domestic wastewater. Ecol Eng. 2014;67:156–64.CrossRefGoogle Scholar
  117. Posten C. Design principles of photo-bioreactors for cultivation of microalgae. Eng Life Sci. 2009;9:165–77.CrossRefGoogle Scholar
  118. Přibyl P, Cepák V, Kaštánek P, Zachleder V. Elevated production of carotenoids by a new isolate of Scenedesmus sp. Algal Res. 2015;11:22–7.CrossRefGoogle Scholar
  119. Pulz O. Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol. 2001;57:287–93.PubMedCrossRefPubMedCentralGoogle Scholar
  120. Qiang H, Richmond A. Productivity and photosynthetic efficiency of Spirulina platensis as affected by light intensity, algal density and rate of mixing in a flat plate photobioreactor. J Appl Phycol. 1996;8:139–45.CrossRefGoogle Scholar
  121. Qin L, Wang Z, Sun Y, Shu Q, Feng P, Zhu L, et al. Microalgae consortia cultivation in dairy wastewater to improve the potential of nutrient removal and biodiesel feedstock production. Environ Sci Pollut Res Int. 2016;23:8379–87.PubMedCrossRefPubMedCentralGoogle Scholar
  122. Quinn JC, Yates T, Douglas N, Weyer K, Butler J, Bradley TH, et al. Nannochloropsis production metrics in a scalable outdoor photobioreactor for commercial applications. Bioresour Technol. 2012;117:164–71.PubMedCrossRefPubMedCentralGoogle Scholar
  123. Rajendran A, Hu B. Mycoalgae biofilm: development of a novel platform technology using algae and fungal cultures. Biotechnol Biofuels. 2016;9:112.PubMedPubMedCentralCrossRefGoogle Scholar
  124. Ramanan R, Kim BH, Cho DH, Oh HM, Kim HS. Algae-bacteria interactions: evolution, ecology and emerging applications. Biotechnol Adv. 2016;34:14–29.PubMedCrossRefPubMedCentralGoogle Scholar
  125. Ravikumar R. Micro algae in open raceways. In: Bajpai R, Prokop A, Zappi M, editors. Algal biorefineries: volume 1: cultivation of cells and products. Dordrecht: Springer Netherlands; 2014. p. 127–46.CrossRefGoogle Scholar
  126. Rawat I, Ranjith Kumar R, Mutanda T, Bux F. Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy. 2011;88:3411–24.CrossRefGoogle Scholar
  127. Rego D, Redondo LM, Geraldes V, Costa L, Navalho J, Pereira MT. Control of predators in industrial scale microalgae cultures with pulsed electric fields. Bioelectrochemistry. 2015;103:60–4.PubMedCrossRefPubMedCentralGoogle Scholar
  128. Renuka N, Sood A, Ratha SK, Prasanna R, Ahluwalia AS. Evaluation of microalgal consortia for treatment of primary treated sewage effluent and biomass production. J Appl Phycol. 2013;25:1529–37.CrossRefGoogle Scholar
  129. Rivas MO, Vargas P, Riquelme CE. Interactions of Botryococcus braunii cultures with bacterial biofilms. Microb Ecol. 2010;60:628–35.PubMedCrossRefPubMedCentralGoogle Scholar
  130. Romero Villegas GI, Fiamengo M, Acién Fernández FG, Molina Grima E. Outdoor production of microalgae biomass at pilot-scale in seawater using centrate as the nutrient source. Algal Res. 2017;25:538–48.CrossRefGoogle Scholar
  131. Rubio FC, Fernández FGA, Pérez JAS, Camacho FG, Grima EM. Prediction of dissolved oxygen and carbon dioxide concentration profiles in tubular photobioreactors for microalgal culture. Biotechnol Bioeng. 1999;62:71–86.PubMedCrossRefPubMedCentralGoogle Scholar
  132. Rubio FC, Camacho FG, Sevilla JMF, Chisti Y, Grima EM. A mechanistic model of photosynthesis in microalgae. Biotechnol Bioeng. 2003;81:459–73.PubMedCrossRefPubMedCentralGoogle Scholar
  133. Safonova E, Kvitko KV, Iankevitch MI, Surgko LF, Afti IA, Reisser W. Biotreatment of industrial wastewater by selected algal-bacterial consortia. Eng Life Sci. 2004;4:347–53.CrossRefGoogle Scholar
  134. Sanchez JF, Fernandez-Sevilla JM, Acien FG, Ceron MC, Perez-Parra J, Molina-Grima E. Biomass and lutein productivity of Scenedesmus almeriensis: influence of irradiance, dilution rate and temperature. Appl Microbiol Biotechnol. 2008;79:719–29.PubMedCrossRefPubMedCentralGoogle Scholar
  135. Sandnes JM, Källqvist T, Wenner D, Gislerød HR. Combined influence of light and temperature on growth rates of Nannochloropsis oceanica: linking cellular responses to large-scale biomass production. J Appl Phycol. 2005;17:515–25.CrossRefGoogle Scholar
  136. Santos CA, Reis A. Microalgal symbiosis in biotechnology. Appl Microbiol Biotechnol. 2014;98:5839–46.PubMedCrossRefPubMedCentralGoogle Scholar
  137. Sayre R. Microalgae: the potential for carbon capture. Bioscience. 2010;60:722–7.CrossRefGoogle Scholar
  138. Schnurr PJ, Espie GS, Allen DG. Algae biofilm growth and the potential to stimulate lipid accumulation through nutrient starvation. Bioresour Technol. 2013;136:337–44.PubMedCrossRefGoogle Scholar
  139. Segev E, Wyche TP, Kim KH, Petersen J, Ellebrandt C, Vlamakis H, et al. Dynamic metabolic exchange governs a marine algal-bacterial interaction. elife. 2016;5:e17473.PubMedPubMedCentralCrossRefGoogle Scholar
  140. Sepúlveda C, Acién FG, Gómez C, Jiménez-Ruíz N, Riquelme C, Molina-Grima E. Utilization of centrate for the production of the marine microalgae Nannochloropsis gaditana. Algal Res. 2015;9:107–16.CrossRefGoogle Scholar
  141. Silaban A, Bai R, Gutierrez-Wing MT, Negulescu II, Rusch KA. Effect of organic carbon, C:N ratio and light on the growth and lipid productivity of microalgae/cyanobacteria coculture. Eng Life Sci. 2014;14:47–56.CrossRefGoogle Scholar
  142. Silva HJ, Cortifas T, Ertola RJ. Effect of hydrodynamic stress on Dunaliella growth. J Chem Technol Biotechnol. 1987;40:41–9.CrossRefGoogle Scholar
  143. Singh M, Das KC. Low cost nutrients for algae cultivation. In: Bajpai R, Prokop A, Zappi M, editors. Algal biorefineries: volume 1: cultivation of cells and products. Dordrecht: Springer Netherlands; 2014. p. 69–82.CrossRefGoogle Scholar
  144. Su Y, Mennerich A, Urban B. Synergistic cooperation between wastewater-born algae and activated sludge for wastewater treatment: influence of algae and sludge inoculation ratios. Bioresour Technol. 2012;105:67–73.PubMedCrossRefPubMedCentralGoogle Scholar
  145. Subashchandrabose SR, Ramakrishnan B, Megharaj M, Venkateswarlu K, Naidu R. Consortia of cyanobacteria/microalgae and bacteria: biotechnological potential. Biotechnol Adv. 2011;29:896–907.PubMedCrossRefPubMedCentralGoogle Scholar
  146. Sydney EB, Novak AC, de Carvalho JC, Soccol CR. Chapter 4: Respirometric balance and carbon fixation of industrially important algae. In: Biofuels from algae. Amsterdam: Elsevier; 2014. p. 67–84.CrossRefGoogle Scholar
  147. Takache H, Christophe G, Cornet JF, Pruvost J. Experimental and theoretical assessment of maximum productivities for the microalgae Chlamydomonas reinhardtii in two different geometries of photobioreactors. Biotechnol Prog. 2010;26:431–40.PubMedPubMedCentralGoogle Scholar
  148. Takache H, Pruvost J, Cornet JF. Kinetic modeling of the photosynthetic growth of Chlamydomonas reinhardtii in a photobioreactor. Biotechnol Prog. 2012;28:681–92.PubMedCrossRefPubMedCentralGoogle Scholar
  149. Tarlan E, Dilek FB, Yetis U. Effectiveness of algae in the treatment of a wood-based pulp and paper industry wastewater. Bioresour Technol. 2002;84:1–5.PubMedCrossRefPubMedCentralGoogle Scholar
  150. Ugwu CU, Aoyagi H, Uchiyama H. Photobioreactors for mass cultivation of algae. Bioresour Technol. 2008;99:4021–8.CrossRefGoogle Scholar
  151. Unnithan VV, Unc A, Smith GB. Mini-review: a priori considerations for bacteria–algae interactions in algal biofuel systems receiving municipal wastewaters. Algal Res. 2014;4:35–40.CrossRefGoogle Scholar
  152. Vasseur C, Bougaran G, Garnier M, Hamelin J, Leboulanger C, Chevanton ML, et al. Carbon conversion efficiency and population dynamics of a marine algae–bacteria consortium growing on simplified synthetic digestate: first step in a bioprocess coupling algal production and anaerobic digestion. Bioresour Technol. 2012;119:79–87.PubMedCrossRefPubMedCentralGoogle Scholar
  153. Vejrazka C, Janssen M, Streefland M, Wijffels RH. Photosynthetic efficiency of Chlamydomonas reinhardtii in flashing light. Biotechnol Bioeng. 2011;108:2905–13.PubMedCrossRefPubMedCentralGoogle Scholar
  154. Vejrazka C, Janssen M, Streefland M, Wijffels RH. Photosynthetic efficiency of Chlamydomonas reinhardtii in attenuated, flashing light. Biotechnol Bioeng. 2012;109:2567–74.PubMedCrossRefPubMedCentralGoogle Scholar
  155. Vejrazka C, Janssen M, Benvenuti G, Streefland M, Wijffels RH. Photosynthetic efficiency and oxygen evolution of Chlamydomonas reinhardtii under continuous and flashing light. Appl Microbiol Biotechnol. 2013;97:1523–32.PubMedCrossRefPubMedCentralGoogle Scholar
  156. Vonshak A, Torzillo G, Masojidek J, Boussiba S. Sub-optimal morning temperature induces photoinhibition in dense outdoor cultures of the alga Monodus subterraneus (Eustigmatophyta). Plant Cell Environ. 2001;24:1113–8.CrossRefGoogle Scholar
  157. Wang JK, Seibert M. Prospects for commercial production of diatoms. Biotechnol Biofuels. 2017;10:16.PubMedPubMedCentralCrossRefGoogle Scholar
  158. Watanabe K, Takihana N, Aoyagi H, Hanada S, Watanabe Y, Ohmura N, et al. Symbiotic association in Chlorella culture. FEMS Microbiol Ecol. 2005;51:187–96.PubMedCrossRefPubMedCentralGoogle Scholar
  159. Xue F, Miao J, Zhang X, Tan T. A new strategy for lipid production by mix cultivation of Spirulina platensis and Rhodotorula glutinis. Appl Biochem Biotechnol. 2010;160:498–503.PubMedCrossRefPubMedCentralGoogle Scholar
  160. Yang J, Li X, Hu H, Zhang X, Yu Y, Chen Y. Growth and lipid accumulation properties of a freshwater microalga, Chlorella ellipsoidea YJ1, in domestic secondary effluents. Appl Energy. 2011;88:3295–9.CrossRefGoogle Scholar
  161. Yen H-W, Chen P-W, Chen L-J. The synergistic effects for the co-cultivation of oleaginous yeast-Rhodotorula glutinis and microalgae-Scenedesmus obliquus on the biomass and total lipids accumulation. Bioresour Technol. 2015;184:148–52.PubMedCrossRefPubMedCentralGoogle Scholar
  162. Yoo C, Jun SY, Lee JY, Ahn CY, Oh HM. Selection of microalgae for lipid production under high levels carbon dioxide. Bioresour Technol. 2010;101(Suppl 1):S71–4.PubMedCrossRefPubMedCentralGoogle Scholar
  163. Yoshimoto N, Sato T, Kondo Y. Dynamic discrete model of flashing light effect in photosynthesis of microalgae. J Appl Phycol. 2005;17:207–14.CrossRefGoogle Scholar
  164. Zhang J, Hu B. A novel method to harvest microalgae via co-culture of filamentous fungi to form cell pellets. Bioresour Technol. 2012;114:529–35.PubMedCrossRefPubMedCentralGoogle Scholar
  165. Zhao X, Zhou Y, Huang S, Qiu D, Schideman L, Chai X, et al. Characterization of microalgae-bacteria consortium cultured in landfill leachate for carbon fixation and lipid production. Bioresour Technol. 2014;156:322–8.PubMedCrossRefPubMedCentralGoogle Scholar
  166. Zhou W, Cheng Y, Li Y, Wan Y, Liu Y, Lin X, et al. Novel fungal pelletization-assisted technology for algae harvesting and wastewater treatment. Appl Biochem Biotechnol. 2012;167:214–28.PubMedCrossRefPubMedCentralGoogle Scholar
  167. Zonneveld C. Light-limited microalgal growth: a comparison of modelling approaches. Ecol Model. 1998;113:41–54.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Truong Giang Le
    • 1
    • 2
  • Dang-Thuan Tran
    • 1
    • 2
  • Thi Cam Van Do
    • 3
  • Van Tuyen Nguyen
    • 1
    • 2
  1. 1.Graduate University of Science and TechnologyVietnam Academy of Science and TechnologyHanoiVietnam
  2. 2.Institute of ChemistryVietnam Academy of Science and TechnologyHanoiVietnam
  3. 3.Department of Chemical TechnologyHanoi University of IndustryHanoiVietnam

Personalised recommendations