Advertisement

Microalgae and Wastewater Treatment: Advantages and Disadvantages

  • Beatriz Molinuevo-SalcesEmail author
  • Berta Riaño
  • David Hernández
  • M. Cruz García-González
Chapter

Abstract

Wastewater generation has concomitantly increased with the growth of world human population in the last century. The uncontrolled discharge of wastewater may result in serious social, environmental and health problems. At the same time, the use of microalgal-based systems has been widely studied for a variety of residual effluents treatment since the early 1950s. In this context, different technologies have been developed, and new strategies to cope with specific needs have been investigated worldwide. There are several advantages of microalgal-based systems compared to traditional wastewater treatment technologies, namely, (1) pollutants and pathogen decrease, (2) nutrient recovery in the form of valuable biomass, (3) energy savings and (4) CO2 emissions reduction. In spite of all these advantages, there are still many challenges to overcome before attaining the real implementation of this technology. Those challenges include (1) land requirement, (2) effect of wastewater characteristics, (3) environmental and operational condition influence and (4) biomass harvesting and valorization. This chapter will explore and discuss the main advantages and limitations of using this green technology for wastewater treatment based on our expertise and the latest insights on this topic.

Keywords

Microalgae Wastewater Advantages and limitations Green technology 

Notes

Acknowledgements

This work has been supported by Ministerio de Ciencia, Innovación y Universidades - Gobierno de España (grant number CTQ2017-84006-C3-1-R) and cofinanced by EU-FEDER.

References

  1. Acien FG, Fernández-Sevilla JM, Molina-Grima E. Microalgae: the basis of making sustainability. In: Case study of innovative projects – successful real cases. 2017.  https://doi.org/10.5772/67930.Google Scholar
  2. Adav SS, Lee DJ, Show KY, Tay JH. Aerobic granular sludge: recent advances. Biotechnol Adv. 2008;26:411–23.PubMedCrossRefGoogle Scholar
  3. Alam MA, Wang Z, Yuan Z. Generation and harvesting of microalgae biomass for biofuel production. In: Prospects and challenges in algal biotechnology. Singapore: Springer; 2017. p. 89–111.CrossRefGoogle Scholar
  4. Alcántara C, Domínguez J, García D, Blanco S, Pérez R, García-Encina PA, Muñoz R. Evaluation of wastewater treatment in a novel anoxic-aerobic algal-bacterial photobioreactor with biomass recycling through carbon and nitrogen mass balances. Bioresour Technol. 2015;191:173–86.PubMedCrossRefGoogle Scholar
  5. Al-Gheethi AA, Mohamed RM, Jais NM, Efaq AN, Halid AA, Wurochekke AA, Amir-Hashim MK. Influence of pathogenic bacterial activity on growth of Scenedesmus sp. and removal of nutrients from public market wastewater. J Water Health. 2017;15:741–56.PubMedCrossRefGoogle Scholar
  6. Andersen CB. Understanding carbonate equilibria by measuring alkalinity in experimental and natural systems. J Geosci Educ. 2002;50:389–403.CrossRefGoogle Scholar
  7. Aresta M, Dibenedetto A, Barberio G. Utilization of macro-algae for enhanced CO2 fixation and biofuels production: development of a computing software for an LCA study. Fuel Process Technol. 2005;86:1679–93.CrossRefGoogle Scholar
  8. Azov Y, Goldman JC. Free ammonia inhibition of algal photosynthesis in intensive culture. Appl Environ Microbiol. 1982;43(4):735–9.PubMedPubMedCentralGoogle Scholar
  9. Barros AI, Gonçalves AL, Simões M, Pires JC. Harvesting techniques applied to microalgae: a review. Renew Sust Energ Rev. 2015;41:1489–500.CrossRefGoogle Scholar
  10. Benemann JR. Utilization of carbon dioxide from fossil fuel-burning power plants with biological systems. Energy Convers Manag. 1993;34:999–1004.CrossRefGoogle Scholar
  11. Boelee NC, Temmink H, Janssen M, Buisman CJN, Wijffels RH. Nitrogen and phosphorus removal from municipal wastewater effluent using microalgal biofilms. Water Res. 2011;45:5925–33.PubMedCrossRefGoogle Scholar
  12. Brown N, Shilton A. Luxury uptake of phosphorus by microalgae in waste stabilisation ponds: current understanding and future direction. Rev Environ Sci Biotechnol. 2014;13:321–8.CrossRefGoogle Scholar
  13. Buck BH, Buchholz CM. The offshore-ring: a new system design for the open ocean aquaculture of macroalgae. J Appl Phycol. 2004;16:355–68.CrossRefGoogle Scholar
  14. Cai T, Park SY, Li Y. Nutrient recovery from wastewater streams by microalgae: status and prospects. Renew Sust Energ Rev. 2013;19:360–9.CrossRefGoogle Scholar
  15. Chinnasamy S, Bhatnagar A, Hunt RW, Das KC. Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresour Technol. 2010;101:3097–105.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Chisti Y. Biodiesel from microalgae. Biotechnol Adv. 2007;25:294–306.CrossRefGoogle Scholar
  17. Chisti Y. Biodiesel from microalgae beats bioethanol. Trends Biotechnol. 2008;26:126–31.PubMedCrossRefPubMedCentralGoogle Scholar
  18. Cho DH, Ramanan R, Heo J, Kang Z, Kim BH, Oh HM, Kim HS. Organic carbon, influent, microbial diversity and biomass in raceways ponds treating raw municipal. Bioresour Technol. 2015;191:481–7.PubMedCrossRefGoogle Scholar
  19. Chojnacka K, Chojnacki A, Gorecka H. Biosorption of Cr3+, Cd2+ and Cu2+ ions by blue-green algae Spirulina sp.: kinetics, equilibrium and the mechanism of the process. Chemosphere. 2005;59:75–84.PubMedCrossRefGoogle Scholar
  20. Christenson L, Sims R. Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol Adv. 2011;29:686–702.CrossRefGoogle Scholar
  21. Dallaire V, Lessard P, Vandenberg G, de la Noü J. Effect of algal incorporation on growth, survival and carcass composition of rainbow trout (Oncorhynchus mykiss) fry. Bioresour Technol. 2007;98(7):1433–9.PubMedCrossRefGoogle Scholar
  22. De Godos I, Blanco S, García-Encina PA, Becares E, Muñoz R. Long-term operation of high rate algal ponds for the bioremediation of piggery wastewaters at high loading rates. Bioresour Technol. 2009;100:4332–9.PubMedCrossRefGoogle Scholar
  23. De Godos I, Vargas VA, Guzmán HO, Soto R, García B, García PA, Muñoz R. Assessing carbon and nitrogen removal in a novel anoxic–aerobic cyanobacterial–bacterial photobioreactor configuration with enhanced biomass sedimentation. Water Res. 2014;61:77–85.PubMedCrossRefGoogle Scholar
  24. De Godos I, Arbid Z, Lara E, Cano R, Muñoz R, Rogalla F. Wastewater treatment in algal systems. In: Innovative wastewater treatment and resource recovery technologies. Impacts on energy, economy and environment. London: IWA Publishing; 2017.Google Scholar
  25. FAO. FAOSTAT online database. 2014. Available at http://faostat.fao.org/.Accessed Mar 2018.
  26. Feng Y, Li C, Zhang D. Lipid production of Chlorella vulgaris cultured in artificial wastewater medium. Bioresour Technol. 2011;102:101–5.PubMedCrossRefGoogle Scholar
  27. Fortier MOP, Roberts GW, Stagg-Williams SM, Sturm BS. Determination of the life cycle climate change impacts of land use and albedo change in algal biofuel production. Algal Res. 2017;28:270–81.CrossRefGoogle Scholar
  28. González LE, Cañizares RO, Baena S. Efficiency of ammonia and phosphorus removal from a Colombian agroindustrial wastewater by the microalgae Chlorella vulgaris and Scenedesmus dimorphus. Bioresour Technol. 1997;60:259–62.CrossRefGoogle Scholar
  29. González AG, Oleg S, Pokrovsky J, Santana-Casiano M, González-Dávila M. Bioadsorption of heavy metals. In: Prospects and challenges in algal biotechnology. Singapore: Springer; 2017. p. 257–75.Google Scholar
  30. González-Fernández C, Riaño-Irazábal B, Molinuevo-Salces B, García-González MC. Effect of operational conditions of the degradation of organic matter and develop-ment of microalgae-bacteria consortia when treating swine slurry. Appl Microbiol Biotechnol. 2011;90:1147–53.PubMedCrossRefGoogle Scholar
  31. Gonzalez-Fernandez C, Sialve B, Molinuevo-Salces B. Anaerobic digestion of microalgal biomass: challenges, opportunities and research needs. Bioresour Technol. 2015;198:896–906.PubMedCrossRefGoogle Scholar
  32. Gouveia L. Microalgae as a feedstock for biofuels. Springer Briefs in Microbiology. 2011.  https://doi.org/10.1007/978-3-642-17997-6.CrossRefGoogle Scholar
  33. Guldhe A, Kumari S, Ramanna L, Ramsundar P, Singh P, Rawat I, Bux F. Prospects, recent advancements and challenges of different wastewater streams. J Environ Manag. 2017;203:299–315.CrossRefGoogle Scholar
  34. Handler RM, Shi R, Shonnard DR. Land use change implications for large-scale cultivation of algae feedstocks in the United States Gulf Coast. J Clean Prod. 2017;153:15–25.CrossRefGoogle Scholar
  35. Hernández D, Riaño B, Coca M, García-González MC. Treatment of agro-industrial wastewater using microalgae–bacteria consortium combined with anaerobic digestion of the produced biomass. Bioresour Technol. 2013;135:598–603.PubMedCrossRefGoogle Scholar
  36. Hernández D, Riaño B, Coca M, García-González MC. Saccharification of carbohydrates in microalgal biomass by physical, chemical and enzymatic pre-treatments as a previous step for bioethanol production. Chem Eng J. 2015;262:939–45.CrossRefGoogle Scholar
  37. Hernández D, Riaño B, Coca M, Solana M, Bertucco A, García-González MC. Microalgae cultivation in high rate algal ponds using slaughterhouse wastewater for biofuel applications. Chem Eng J. 2016;285:449–58.CrossRefGoogle Scholar
  38. Jia H, Yuan Q. Removal of nitrogen from wastewater using microalgae and microalgae–bacteria consortia. Cogent Environ Sci. 2016;2:1275089.CrossRefGoogle Scholar
  39. Kraan S. Mass-cultivation of carbohydrate rich macroalgae, a possible solution for sustainable biofuel production. Mitig Adapt Strateg Glob. 2013;18:27–46.CrossRefGoogle Scholar
  40. Laamanen CA, Gregory MR, Scott JA. Flotation harvesting of microalgae. Renew Sust Energ Rev. 2016;58:75–86.CrossRefGoogle Scholar
  41. Lal R. Soil carbon sequestration impacts on global climate change and food security. Science. 2004;304:1623–7.PubMedCrossRefGoogle Scholar
  42. Langholtz MH, Coleman AM, Eaton LM, Wigmosta MS, Hellwinckel CM, Brandt CC. Potential land competition between open-pond microalgae production and terrestrial dedicated feedstock supply systems in the US. Renew Energy. 2016;93:201–14.CrossRefGoogle Scholar
  43. Larrán García MA, Tomás-Almenar C, de Mercado E, Hernández D, García-González MC. Valorización de la biomasa algal procedente del tratamiento de purines mediante la inclusión en piensos para trucha arco iris (Oncorhynchus mykiss). In Proc. XVI National Aquaculture Congress, Zaragoza (Spain); 2017. p. 217–218.Google Scholar
  44. Larsdotter K. Wastewater treatment with microalgae: a literature review. Vatten. 2006;62:31–8.Google Scholar
  45. Lavens P, Sorgeloos P. Manual on the production and use of live food for aquaculture. Rome: Food and Agriculture Organization (FAO); 1996.Google Scholar
  46. Lee CS, Lee SA, Ko SR, Oh HM, Ahn CY. Effects of photoperiod on nutrient removal, biomass production, and algal-bacterial population dynamics in lab-scale photobioreactors treating municipal wastewater. Water Res. 2015;68:680–91.PubMedCrossRefGoogle Scholar
  47. Mahapatra DM, Chanakya HN, Joshi NV, Ramachandra TV, Murthy GS. Algae-based biofertilizers: a biorefinery approach. In: Microorganisms for green revolution. Singapore: Springer; 2018. p. 177–96.CrossRefGoogle Scholar
  48. Markou G, Vandamme D, Muylaert K. Microalgal and cyanobacterial cultivation: the supply of nutrients. Water Res. 2014;65:186–202.PubMedCrossRefGoogle Scholar
  49. Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev. 2010;14:217–32.CrossRefGoogle Scholar
  50. Matamoros V, Gutiérrez R, Ferrer I, García J, Bayona JM. Capability of microalgae-based wastewater treatment systems to remove emerging organic contaminants: a pilot-scale study. J Hazard Mater. 2015;288:34–42.PubMedCrossRefGoogle Scholar
  51. Mendoza JL, Granados MR, Godos I, Acien FG, Molina E, Banks C, Heaven S. Fluid-dynamic characterization of real-scale raceway reactors for microalgae production. Biomass Bioenerg. 2013;54:267–75.CrossRefGoogle Scholar
  52. Mezrioui N, Oudra B, Oufdou K, Hassani L, Loudiki M, Darley J. Effect of microalgae growing on wastewater batch culture on Escherichia coli and Vibrio cholerae survival. Water Sci Technol. 1994;30:295–302.CrossRefGoogle Scholar
  53. Milledge JJ, Heaven S. A review of the harvesting of micro-algae for biofuel production. Rev Environ Sci Biotechnol. 2013;12(2):165–78.CrossRefGoogle Scholar
  54. Molina Grima E, Belarbi EH, Acien Fernandez FG, Robles Medina A, Chisti Y. Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv. 2003;20:491–515.CrossRefGoogle Scholar
  55. Molinuevo-Salces B, García-González MC, González-Fernández C. Performance comparison of two photobioreactors configurations (open and closed to the atmosphere) treating anaerobically degraded swine slurry. Bioresour Technol. 2010;101:5144–9.PubMedCrossRefGoogle Scholar
  56. Molinuevo-Salces B, Mahdy A, Ballesteros M, González-Fernández C. From piggery wastewater nutrients to biogas: microalgae biomass revalorization through anaerobic digestion. Renew Energy. 2016;96:1103–10.CrossRefGoogle Scholar
  57. Morrissey WA, Justus JR. Global climate change. Congressional Research Service, Library of Congress; 2000.Google Scholar
  58. Mulbry W, Kondrad S, Buyer J. Treatment of dairy and swine manure effluents using freshwater algae: fatty acid content and composition of algal biomass at different manure loading rates. J Appl Phycol. 2008;20:1079–85.CrossRefGoogle Scholar
  59. Muñoz R, Guieysse B. Algal-bacterial processes for the treatment of hazardous contaminants: a review. Water Res. 2006;40:2799–815.PubMedCrossRefGoogle Scholar
  60. Muylaert K, Bastiaens L, Vandamme D, Gouveia L. Harvesting of microalgae: overview of process options and their strengths and drawbacks. In Microalgae-based biofuels and bioproducts; 2018. p. 113–132.CrossRefGoogle Scholar
  61. Olguín EJ, Castillo SO, Mendoza A, Tapia K, González-Portela RE, Hernández-Landa VJ. Dual purpose system that treats anaerobic effluents from pig waste and produce Neochloris oleoabundans as lipid rich biomass. New Biotechnol. 2015;32:387–95.CrossRefGoogle Scholar
  62. Oswald WJ. Micro-algae and wastewater treatment. In: Borowitzka MA, Borowitzka LJ, editors. Micro-algal biotechnology. Cambridge, UK: Cambridge University Press; 1988. p. 305–28.Google Scholar
  63. Ozturk S, Aslim B, Suludere Z, Tan S. Metal removal of cyanobacterial exopolysaccharides by uronic acid content and monosaccharide composition. Carbohydr Polym. 2014;101:265–71.PubMedCrossRefGoogle Scholar
  64. Paniagua-Michel J. Wastewater treatment using phototrophic–heterotrophic biofilms and microbial mats. In: Prospects and challenges in algal biotechnology. Singapore: Springer; 2017. p. 257–75.CrossRefGoogle Scholar
  65. Park JBK, Craggs RJ. Wastewater treatment and algal production in high rate algal ponds with carbon dioxide addition. Water Sci Technol. 2010;61:633–9.PubMedCrossRefGoogle Scholar
  66. Park JBK, Craggs RJ, Shilton AN. Wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol. 2011;102:35–42.PubMedCrossRefGoogle Scholar
  67. Peng K, Li J, Jiao K, Zeng X, Lin L, Pan S, Danquah MK. The bioeconomy of microalgal biofuels. In: Energy from microalgae. Cham: Springer; 2018. p. 157–69.CrossRefGoogle Scholar
  68. Pereira M, Bartolome MC, Sánchez-Fortum SS. Bioadsorption and bioaccumulation of chromium trivalent in Cr (III) tolerant microalgae: a mechanism for chromium resistance. Chemosphere. 2013;93:1057–63.PubMedCrossRefGoogle Scholar
  69. Posadas E, García-Encina PA, Soltau A, Domínguez A, Díaz I, Muñoz R. Carbon and nutrient removal from centrates and domestic wastewater using algal–bacterial biofilm bioreactors. Bioresour Technol. 2013;139:50–8.PubMedCrossRefGoogle Scholar
  70. Posadas E, Bochon S, Coca M, García-González MC, García-Encina PA, Muñoz R. Microalgae-based agro-industrial wastewater treatment: a preliminary screening of biodegradability. J Appl Phycol. 2014;26:2335–45.CrossRefGoogle Scholar
  71. Posadas E, Morales MM, Gómez C, Acién FG, Muñoz R. Influence of pH and CO2 source on the performance of microalgae-based secondary domestic wastewater treatment in outdoors pilot raceways. Chem Eng J. 2015;265:239–48.CrossRefGoogle Scholar
  72. Posadas E, Alcántara C, García-Encina PA, Gouveia L, Guieysse B, Norvill Z, Acién FG, Markou G, Congestri R, Koreiviene J, Muñoz R. Microalgae cultivation in wastewater. In Microalgae-based biofuels and bioproducts, from feedstock cultivation to end-products; 2018 p. 67–91. ISBN:978–0–08-101023-5.CrossRefGoogle Scholar
  73. Powell N, Shilton A, Chisti Y, Pratt S. Towards a luxury uptake process via microalgae-defining the polyphosphate dynamics. Water Res. 2009;43:4207–13.PubMedCrossRefGoogle Scholar
  74. Riaño B, Molinuevo B, García-González MC. Treatment of fish processing wastewater with microalgae-containing microbiota. Bioresour Technol. 2011;102:10829–33.PubMedCrossRefPubMedCentralGoogle Scholar
  75. Riaño B, Hernández D, García-González MC. Microalgal-based systems for wastewater treatment: effect of applied organic and nutrient loading rate on biomass composition. Ecol Eng. 2012;49:112–7.CrossRefGoogle Scholar
  76. Richmond A. Handbook of microalgal culture: biotechnology and applied phycology. Hoboken: Wiley; 2008.Google Scholar
  77. Rittmann BE. Opportunities for renewable bioenergy using microorganisms. Biotechnol Bioeng. 2008;100:203–12.PubMedCrossRefGoogle Scholar
  78. Ruiz-Marin A, Mendoza-Espinosa LG, Stephenson T. Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. Bioresour Technol. 2010;101:58–64.PubMedCrossRefGoogle Scholar
  79. Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Yu TH. Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science. 2008;319(5867):1238–40.PubMedCrossRefGoogle Scholar
  80. Slade R, Bauen A. Micro-algae cultivation for biofuels: cost, energy balance, environmental impacts and future prospects. Biomass Bioenerg. 2013;53:29–38.CrossRefGoogle Scholar
  81. Stephens E, Ross IL, King Z, Mussgnug JH, Kruse O, Posten C, Hankamer B. An economic and technical evaluation of microalgal biofuels. Nat Biotechnol. 2010;28:126.PubMedCrossRefGoogle Scholar
  82. Subashchandrabose SR, Ramakrishnan B, Megharaj M, Venkateswarlu K, Naidu R. Consortia of cyanobacteria/microalgae and bacteria: biotechnological potential. Biotechnol Adv. 2011;29:896–907.PubMedCrossRefPubMedCentralGoogle Scholar
  83. Sutherland DL, Turnbull MH, Craggs RJ. Increased pond depth improves algal productivity and nutrient removal in wastewater treatment high rate algal ponds. Water Res. 2014;53:271–81.PubMedCrossRefGoogle Scholar
  84. Sutherland DL, Howard-Willians C, Turnbull MH, Broady PA, Craggs RJ. Enhancing microalgal photosynthesis and productivity in wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol. 2015;184:222–9.PubMedCrossRefGoogle Scholar
  85. Tomás-Almenar C, Larrán-García AM, de Mercado E, Sanz-Calvo MA, Hernández D, García-González MC. Microalgae as a protein recovery system for feed rainbow trout. In Proc. 47th Conference of the West European Fish Technologists Association, Dublin (Ireland); 2017. p. 130.Google Scholar
  86. Tomás-Almenar C, Larrán-García AM, de Mercado E, Sanz-Calvo MA, Hernández D, García-González MC. Scenedesmus almeriensis from an integrated system waste-nutrient, as sustainable protein source for feed to rainbow trout (Oncorhynchus mykiss). Aquaculture. 2018;497:422–30.CrossRefGoogle Scholar
  87. Toyoshima M, Aikawa S, Yamagishi T, Kondo A, Kawai H. A pilot-scale floating closed culture system for the multicellular cyanobacterium Arthrospira platensis NIES-39. J Appl Phycol. 2015;27(6):2191–202.PubMedCrossRefGoogle Scholar
  88. Tredici M. Bioreactors, photo. In: Flickinger MC, Drew SW, editors. Encyclopedia of bioprocess technology: fermentation, Biocatal. Biosep. New York: Wiley; 1999.Google Scholar
  89. Umamaheswari J, Shanthakumar S. Efficacy of microalgae for industrial wastewater treatment: a review on operating conditions, treatment efficiency and biomass productivity. Rev Environ Sci Biotechnol. 2016;15:265–84.CrossRefGoogle Scholar
  90. Vandamme D, Foubert I, Muylaert K. Flocculation as a low-cost method for harvesting microalgae for bulk biomass production. Trends Biotechnol. 2013;31:233–9.PubMedPubMedCentralCrossRefGoogle Scholar
  91. Wang L, Li Y, Chen P, Min M, Chen Y, Zhu J, Ruan RR. Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. Bioresour Technol. 2010;101:2623–8.PubMedCrossRefGoogle Scholar
  92. Wilkie AC, Mulbry WW. Recovery of dairy manure nutrients by benthic freshwater algae. Bioresour Technol. 2002;84:81–91.PubMedCrossRefGoogle Scholar
  93. Zeraatkar AH, Ahmadzadeh H, Talebi AF, Moheimani MR, McHenry MP. Potential use of algae for heavy metal bioremediation, a critical review. J Environ Manag. 2016;181:817–31.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Beatriz Molinuevo-Salces
    • 1
    Email author
  • Berta Riaño
    • 1
  • David Hernández
    • 1
  • M. Cruz García-González
    • 1
  1. 1.Technological Agricultural Institute of Castilla y LeonValladolidSpain

Personalised recommendations