Progress and Challenges in Biodiesel Production from Microalgae Feedstock

  • Shrasti Vasistha
  • Anwesha Khanra
  • Monika Prakash RaiEmail author


Increasing energy demand and limited fossil fuel sources have developed the interest of researchers toward biofuel, as it is regarded as the promising approach for continuous source of energy. Microalgae are considered as a desirable feedstock for biodiesel production due to its inherent capacity to synthesize large amount of oil. The key steps in microalgae biofuel synthesis are cell culture, cell recovery, lipid removal, and fatty acid methyl ester (FAME) production. The high cost of biodiesel production is the major bottleneck in the microalga biofuel technology. Among the four steps, harvesting and lipid extraction count more than 50% of the total cost of biodiesel production. Recently, nanoparticle engineering-based methods have been applied as a powerful tool in algae system to overcome the technical problems. Another problem is the mass cultivation of microalgae, which carries major importance because massive biomass is required for viable production of biodiesel. Closed cultivation system (photobioreactor) and open cultivation system (open raceway ponds) are emerged as a solution for mass cultivation of microalgae, but there is a need to understand the design and principle of cultivation system. In this chapter, a pragmatic and critical discussion is tried to put forward with the ongoing research on microalgae with future trends.


  1. Alam MA, Vandamme D, Chun W, et al. Bioflocculation as an innovative harvesting strategy for microalgae. Rev Environ Sci Biotechnol. 2016;15:1–11.CrossRefGoogle Scholar
  2. Aresta M, Dibenedetto A, Carone M, Colonna T, Fragale C. Production of biodiesel from macroalgae by supercritical CO2 extraction and thermochemical liquefaction. Environ Chem Lett. 2005;3:136–9.CrossRefGoogle Scholar
  3. Arzamendi G, Campoa I, Arguinarena E, Sanchez M, Montes M, Gandia LM. Synthesis of biodiesel with heterogeneous NaOH/alumina catalysts: comparison with homogeneous NaOH Chem. Eng J. 2007;134:123–30.Google Scholar
  4. Atadashi IM, Aroua MK, Aziz ARA, Sulaiman NMN. The effects of catalysts in biodiesel production: a review. J Ind Eng Chem. 2013;19(1):14–26.CrossRefGoogle Scholar
  5. Balasubramanian S, Allen JD, Kanitka A, Boldor D. Oil extraction from Scenedesmus obliquus using a continuous microwave system—design, optimization, and quality characterization. Bioresour Technol. 2011;102:3396–403.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Barros AI, Gonçalves AL, Simoes M, Pires JCM. Harvesting techniques applied to microalgae: a review. Renew Sust Energ Rev. 2015;41:1489–500.CrossRefGoogle Scholar
  7. Beach ES, Eckelman MJ, Cui Z, Brentner L, Zimmerman JB. Preferential technological and life cycle environmental performance of chitosan flocculation for harvesting of the green algae Neochloris oleoabundans. Bioresour Technol. 2012;121:445–9.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Benavente-Valdés JR, Méndez-Zavala A, Morales-Oyervides L, Chisti Y, Montañez J. Effects of shear rate, photoautotrophy and photoheterotrophy on production of biomass and pigments by Chlorella vulgaris. J Chem Tech Biotechnol. 2017;92(9):2453–9.CrossRefGoogle Scholar
  9. Bhatt NC, Panwar A, Bisht TS, Tamta S. Coupling of algal biofuel production with wastewater. Sci World J. 2014;2014(Article ID 210504):10.Google Scholar
  10. Borlido L, Azevedo AM, Roque ACA, Aires-Barros MR. Magnetic separation in biotechnology. Biotechnol Adv. 2013;31:1374–85.PubMedCrossRefGoogle Scholar
  11. Cao H, Zhang Z, Wu X, Miao X. Direct biodiesel production from wet microalgae biomass of Chlorella pyrenoidosa through in situ transesterification. Biomed Res Int. 2013;2013:1–6.Google Scholar
  12. Chen CY, Yeh KL, Aisyah R, Lee DJ, Chang JS. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol. 2011;102:71–81.CrossRefGoogle Scholar
  13. Chen G, Zhao L, Qi Y, Cui YL. Chitosan and its derivatives applied in harvesting microalgae for biodiesel production: an outlook. J Nanomater. 2014;2014:1–9. Scholar
  14. Chew TL, Bhatia S. Catalytic processes towards the production of biofuels in a palm oil and oil palm biomass-based biorefinery. Bioresour Technol. 2008;99(17):7911–22.PubMedCrossRefGoogle Scholar
  15. Chisti, Y. (2007) Biodiesel from microalgae. Biotechnol. Adv. 25 (3), 294–306. Scholar
  16. Chojnacka K, Marquez-Rocha FJ. Kinetic and stoichiometric relationships of the energy and carbon metabolism in the culture of microalgae. Biotechnology. 2004;3:21–34.CrossRefGoogle Scholar
  17. Christenson L, Sims R. Production and harvesting of microalgae for waste water treatment, biofuels, and bioproducts. Biotechnol Adv. 2011;29:686–702.CrossRefGoogle Scholar
  18. Cooney M, Young G, Nagle N. Extraction of bio-oils from microalgae. Sep Purif Rev. 2009;38:219–325.CrossRefGoogle Scholar
  19. Danquah MK, Ang L, Uduman N, Moheimani N, Forde GM. Dewatering of microalgal culture for biodiesel production: exploring polymer flocculation and tangential flow filtration. J Chem Technol Biotechnol. 2009;84:1078–83.CrossRefGoogle Scholar
  20. Deng X-Y, Gao K, Addy M, Li D, Zhang R-C, Lu Q, Ma Y-W, Cheng Y-L, Chen P, Liu Y-H, Ruan R. Cultivation of Chlorella vulgaris on anaerobically digested swine manure with daily recycling of the post-harvest culture broth. Bioresour Technol. 2018;247:716–23.PubMedPubMedCentralCrossRefGoogle Scholar
  21. De-morais MG, Costa JA. Carbondioxide fixatation by Chlorella Kessleri, Chlorella Vulgaris, Scenedesmus obliquus and Spirulina sp. cultivated in flask and vertical tubular photobioreactors. Biotechnol Lett. 2007;29(9):1349–52.PubMedCrossRefGoogle Scholar
  22. Farid MS, Shariati A, Badakhshan A, Anvaripour B. Using nano-chitosan for harvesting microalga Nannochloropsis sp. Bioresour Technol. 2013;131:555–9.PubMedCrossRefGoogle Scholar
  23. Farooq W, Lee HUK, Huh YS, Lee YC. Chlorella vulgaris cultivation with an additive of magnesium-aminoclay. Algal Res. 2016;17:211–6.CrossRefGoogle Scholar
  24. Folch MLJ, Stanley GHS. A simple method of isolation and purification of total lipids from animal tissues. J Biol Chem. 1956;226:497–509.Google Scholar
  25. Garzon-Sanabria AJ, Davis RT, Nikolov ZL. Harvesting Nannochloris oculata by inorganic electrolyte flocculation: effect of initial cell density, ionic strength, coagulant dosage, and media pH. Bioresour Technol. 2012;118:418–24.PubMedCrossRefGoogle Scholar
  26. Georgiana DR, Mayfield SP. Exploiting diversity and synthetic biology for the production of algal biofuels. Nature. 2012;488(7411):329–35.CrossRefGoogle Scholar
  27. Gupta SK, Ansari FA, Bauddh K, Singh B, Nema AK, Pant KK. Harvesting of microalgae for biofuels: comprehensive performance evaluation of natural, inorganic and synthetic flocculants. Green Technol Environ Sustain. 2017:131–56.Google Scholar
  28. Halim R, Gladman B, Danquah MK, Webley PA. Oil extraction from microalgae for biodiesel production. Bioresour Technol. 2011;102:178–85.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Halim R, Danquah MK, Webley PA. Extraction of oil from microalgae for biodiesel production: a review. Biotechnol Adv. 2012;30:709–32.PubMedCrossRefGoogle Scholar
  30. Harun R, Singh M, Forde GM, Danquah MK. Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sustain Energy Rev. 2010;14:1037–47.CrossRefGoogle Scholar
  31. Heasman M, Diemar J, O’connor W, Sushames T, Foulkes L. Development of extended shelf life microalgae concentrate diets harvested by centrifugation for bivalve mollusks- a summary. Aquac Res. 2000;31:637–5.CrossRefGoogle Scholar
  32. Hitttab MA, Ghaly A, Hammouda A. Microalgae harvesting methods for industrial production of biodiesel: critical review and comparative analysis. J Fundam Renewable Energy Appl. 2015;5(2):3–26.Google Scholar
  33. Hu Y-R, Wang F, Wang S-K, Liu C-Z, Guo C. Efficient harvesting of marine microalgae Nannochloropsis` maritime using magnetic nanoparticles. Bioresour Technol. 2013;138:387–90.PubMedCrossRefPubMedCentralGoogle Scholar
  34. Huang GH, Chen F, Wei D, Zhang XW, Chen G. Biodiesel production by microalgal biotechnology. Appl Energy. 2010;87:38–46.CrossRefGoogle Scholar
  35. Iqbal J, Theegala C. Microwave assisted lipid extraction from microalgae using biodiesel as co-solvent. Algal Res. 2013;2:34–42.CrossRefGoogle Scholar
  36. Jacobson K, Gopinath R, Meher LC, Dalai AK. Solid acid catalyzed biodiesel production from waste cooking oil. Appl Catal B. 2008;85:86–91.CrossRefGoogle Scholar
  37. Kanaga K, Pandey A, Kumar S, Geetanjali. Multi-objective optimization of media nutrients for enhanced production of algae biomass and fatty acid biosynthesis from Chlorella pyrenoidosa NCIM 2738. Bioresour. Technol. 2015;200:940–50. Scholar
  38. Kanda H, Li P, Ikehara T, Yasumoto-Hirose M. Lipids extracted from several species of natural blue–green microalgae by dimethyl ether: extraction yield and properties. Fuel. 2012;95:88–92.CrossRefGoogle Scholar
  39. Karpagam R, Raj KJ, Ashokkumar B, Varalakshmi P. Characterization and fatty acid profiling in two fresh water microalgae for biodiesel production: lipid enhancement methods and media optimization using response surface methodology. Bioresour Technol. 2015;188(Supplement C):177–84.PubMedCrossRefGoogle Scholar
  40. Khoo HH, Sharratt PN, Das P, Balasubramanian RK, Naraharisetti PK, Shaik S. Life cycle energy and CO2 analysis of microalgae-to-biodiesel: preliminary results and comparisons. Bioresour Technol. 2011;102:5800–7.PubMedCrossRefGoogle Scholar
  41. Kim B, Praveenkumar R, Lee J, Nam B, Kim DM, Lee K, Lee YC, Oh YK. Magnesium aminoclay enhances lipid production of mixotrophic Chlorella sp. KR-1 while reducing bacterial populations. Bioresour Technol. 2016;219:608–13.PubMedCrossRefGoogle Scholar
  42. Kim Z-H, Park Y-S, Ryu Y-J, Lee C-G. Enhancing biomass and fatty acid productivity of Tetraselmis sp. in bubble column photobioreactors by modifying light quality using light filters. Biotechnol Bioprocess Eng. 2017;22(4):397–404.CrossRefGoogle Scholar
  43. Kouzu M, Kasuno T, Tajika M, Sugimoto Y, Yamanaka S, Hidaka J. Calcium oxide as a solid base catalyst for transesterification of soybean oil and its application to biodiesel production. Fuel. 2008;87(12):2798–806.CrossRefGoogle Scholar
  44. Kouzu M, Yamanaka S, Hidaka J, Tsunomori M. Heterogeneous catalysis of calcium oxide used for transesterification of soybean oil with refluxing methanol. Appl Catal A Gen. 2009;355:1–2.CrossRefGoogle Scholar
  45. Kulkarni MG, Dalai AK. Waste cooking oil — an economical source for biodiesel: a review. Ind Eng Chem Res. 2006;45:2901–13.CrossRefGoogle Scholar
  46. Lam MK, Lee KT, Mohamed AR. Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: a review. Biotechnol Adv. 2010;28(4):500–18.PubMedCrossRefPubMedCentralGoogle Scholar
  47. Lardon L, Hélias A, Sialve B, Steyer JP, Bernard O. Life-cycle assessment of biodiesel production from microalgae. Environ Sci Technol. 2009;43:6475–81.PubMedCrossRefPubMedCentralGoogle Scholar
  48. Lee Y-C, Kim B, Farooq W, Chung J, Hang J-I, Shin H-J, Jeong SH, Park J-Y, Lee J-S, Oh Y-K. Harvesting of oleaginous Chlorella sp. by organoclays. Bioresour Technol. 2013;132:440–5.PubMedCrossRefPubMedCentralGoogle Scholar
  49. Lee Y-C, Lee K, Hwang Y, Andersen HR, Kim B, Lee SY, Choi M-H, Park J-Y, Han Y-K, Oh YK, Huh Y-S. Aminoclay-templated nanoscale zerovalent iron (nZVI) synthesis for efficient harvesting of oleaginous microalga Chlorella sp. KR-1. RSC Adv. 2014;4:4122–7.CrossRefGoogle Scholar
  50. Lee Y-C, Lee HU, Lee K, Kim B, Lee SY, Choi M-H, Farooq W, Choi JS, Park J-Y, Lee J, Oh Y-K, Huh YS. Aminoclay-conjugated TiO2 synthesis for simultaneous harvesting and wet-disruption of oleaginous Chlorella sp. Chem Eng J. 2014a;245:143–9.CrossRefGoogle Scholar
  51. Lee K, Lee SY, Praveenkumar R, Kim B, Seo JY, Jeon SG, Na J-G, Park J-Y, Kim D-M, Oh Y-K. Repeated use of stable magnetic flocculant for efficient harvest of oleaginous Chlorella sp. Bioresour Technol. 2014b;167:284–90.PubMedCrossRefGoogle Scholar
  52. Lee Y-C, Lee K, Oh Y-K. Recent nanoparticle engineering advances in microalgal cultivation and harvesting processes of biodiesel production: a review. Bioresour Technol. 2015;184:63–72.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Liang YN, Sarkany N, Cui Y. Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol Lett. 2009;31:1043–9.CrossRefGoogle Scholar
  54. Lim JK, Chieh DCJ, Jalak SA, Toh PY, Yasin NHM, Ng BW, Ahmad AL. Rapid magnetophoretic separation of microalgae. Small. 2012;8:1683–92.PubMedCrossRefGoogle Scholar
  55. Lotero E, Liu Y, Lopez DE, Suwannakarn K, Bruce DA, Goodwin JG Jr. Synthesis of biodiesel via acid catalysis. Ind Eng Chem Res. 2005;44:5353–63.CrossRefGoogle Scholar
  56. Mandal S, Mallick N. Microalga Scenedesmus obliquus as a potential source for biodiesel production. Appl Microbiol Biotechnol. 2009;84:281–91.PubMedCrossRefGoogle Scholar
  57. Mao X, Wu T, Sun D, Zhang Z, Chen F. Differential responses of the green microalga Chlorella zofingiensis to the starvation of various nutrients for oil and astaxanthin production. Bioresour Technol. 2018;249:791–8.PubMedCrossRefGoogle Scholar
  58. Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev. 2010;14(1):217–32.CrossRefGoogle Scholar
  59. Milledge JJ, Heaven S. A review of the harvesting of micro-algae for biofuel production. Rev Environ Sci Biotechnol. 2013;12(2):165–78.CrossRefGoogle Scholar
  60. Molina Grima E, Belarbi E-H, Acien-Fernandez FG, Robles Medina A, Yusuf C. Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv. 2003;20:491–515.CrossRefGoogle Scholar
  61. Mubarak M, Shaija A, Suchithra TV. A review on the extraction of lipid from microalgae for biodiesel production. Algal Res. 2015;7:117–23.CrossRefGoogle Scholar
  62. Munoz R, Guieysse B. Algal-bacterial processes for the treatment of hazardous contaminants: a review. Water Res. 2006;40:2799–815.PubMedCrossRefPubMedCentralGoogle Scholar
  63. Narasimharao K, Lee A, Wilson K. Catalysts in production of biodiesel: a review. J Biobased Mater Bioenergy. 2007;1(3):1–12.Google Scholar
  64. Neto AMP, Sotana de Souza RA, Leon-Nino AD, da Costa JDA, Tiburcio RS, Nunes TA, Sellare de Mello TC, Kanemoto FT, Saldanha-Corrêa FMP, Gianesella SMF. Improvement in microalgae lipid extraction using a sonication-assisted method. Renew Energy. 2013;55:525.CrossRefGoogle Scholar
  65. Ogbonna JC, Tanaka H. Cyclic autotrophic/heterotrophic cultivation of photosynthetic cells: a method of achieving continuous cell growth under light dark cycles. Bioresour Technol. 1998;65:65–72.CrossRefGoogle Scholar
  66. Oyler JR. Integrated processes and systems for production of biofuels using algae. Patent No. US20110136217 A1; 2009.Google Scholar
  67. Polishchuk A, Valev D, Tarvainen M, Mishra S, Kinnunen V, Antal T, Yang B, Rintala J, Tyystjärvi E. Cultivation of Nannochloropsis for eicosapentaenoic acid production in wastewaters of pulp and paper industry. Bioresour Technol. 2015;193:469–76.PubMedCrossRefGoogle Scholar
  68. Pragya N, Pandey KK, Sahoo PK. A review on harvesting, oil extraction and biofuels production technologies from microalgae. Renew Sustain Energy Rev. 2013;24:159–71.CrossRefGoogle Scholar
  69. Prochazkova G, Safarik I, Branyik T. Harvesting microalgae with microwave synthesized magnetic microparticles. Bioresour Technol. 2013;130:472–7.PubMedCrossRefGoogle Scholar
  70. Rai MP, Nigam S, Shrama R. Response of growth and fatty acid compositions of Chlorella pyrenoidosa under mixotrophic cultivation with acetate and glycerol for bioenergy application. Biomass Bioenergy. 2013;58:251–7.CrossRefGoogle Scholar
  71. Rawat I, Ranjith Kumar R, Mutanda T, Bux F. Dual role of microalgae: phycoremediation of domestic waste water and biomass production for sustainable biofuels production. Appl Energy. 2011;88:3411–24.CrossRefGoogle Scholar
  72. Rodrigues MA, da Silva Bon EP. Evaluation of Chlorella (Chlorophyta) as source of fermentable sugars via cell wall enzymatic hydrolysis. Enzyme Res. 2011; Scholar
  73. Sagiroglu A, Selen I, Ozcan M, Paluzar H, Toprakkiran N. Comparison of biodiesel productivities of different vegetable oils by acidic catalysis. Chem Ind Chem Eng Q. 2011;17:53–8.CrossRefGoogle Scholar
  74. San Pedro A, González-López CV, Acién FG, Molina-Grima E. Marine microalgae selection and culture conditions optimization for biodiesel production. Bioresour Technol. 2013;134:353–61.PubMedCrossRefPubMedCentralGoogle Scholar
  75. Sathish A, Sims RC. Biodiesel from mixed culture algae via a wet lipid extraction procedure. Bioresour Technol. 2012;118:643–7.CrossRefGoogle Scholar
  76. Shelef G, Sukenik A, Green M. Microalgae harvesting and processing: a literature review. Haifa: Technion Research and Development Foundation Ltd; 1984.CrossRefGoogle Scholar
  77. Shin YS, Choi H, Choi JW, Lee JS, Sung YJ, Jun S. Multilateral approach on enhancing economic viability of lipid production from microalgae: a review. Bioresour Technol. 2018;258:335–44.PubMedCrossRefPubMedCentralGoogle Scholar
  78. Show K-Y, Lee D-J. Algal biomass harvesting. In: Pandey A, Lee D-J, Chisti Y, Soccol CR, editors. Biofuels from algae. Burlington: Elsevier; 2014. p. 85–110.CrossRefGoogle Scholar
  79. Suali E, Sarbatly R. Conversion of microalgae to biofuel. Renew Sustain Energy Rev. 2012;16:4316–42.CrossRefGoogle Scholar
  80. Surendhiran D, Vijay M. Effect of various pretreatment for extracting intracellular lipid from Nannochloropsis oculata under nitrogen replete and depleted conditions. ISRN Chem Eng. 2014;2014:1–9. Scholar
  81. Toh PY, Ng BW, Ahmad AL, Chan DJC, Lim JK. The role of particle-to cell interactions in dictating nanoparticle aided magnetophoretic separation of microalgal cell. Nanoscale. 2014;6(21):12838–48. Scholar
  82. Topare NS, Raut SJ, Renge VC, Khedkar SV, Chavan YP, Bhagat SL. Extraction of oil from algae by solvent extraction and oil expeller method. Int J Chem Sci. 2011;9:1746–50.Google Scholar
  83. Uduman N, Qi Y, Danquah MK, Forde GM, Hoadley A. Dewatering of microalgal cultures: a major bottle neck to algae-based fuels. J Renew Sustain Energy. 2010;2:012701–15.CrossRefGoogle Scholar
  84. Wang G, Wang T. Characterization of lipid components in two microalgae for biofuel application. J Am Oil Chem Soc. 2011;89:135–43.CrossRefGoogle Scholar
  85. Wiley PE, Campbell JE, McKuin B. Production of biodiesel and biogas from algae: a review of process train options. Water Environ Res. 2011;83(4):326–38.PubMedCrossRefGoogle Scholar
  86. Xiong W, Li XF, Xiang JY, Wu QY. High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Appl Microbiol Biotechnol. 2008;78:29–36.PubMedCrossRefGoogle Scholar
  87. Xu H, Miao XL, Wu QY. High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol. 2006;126:499–507.PubMedCrossRefGoogle Scholar
  88. Xu L, Guo C, Wang F, Zheng S, Liu C-Z. A simple and rapid harvesting method for microalgae by in situ magnetic separation. Bioresour Technol. 2011;102:10047–51.PubMedCrossRefGoogle Scholar
  89. Yoo G, Park WK, Kim CW, Choi YE, Yang JW. Direct lipid extraction from wet Chlamydomonas reinhardtii biomass using osmotic shock. Bioresour Technol. 2012;123:717–22.PubMedCrossRefPubMedCentralGoogle Scholar
  90. Yu S, Min Sk, Shin HW. Nanocellulose size regulates microalgal flocculation and lipid metabolism. Sci Rep. 2016;6:35684. Scholar
  91. Zabeti M, Wan Daud WMA, Aroua MK. Activity of solid catalysts for biodiesel production: a review. Fuel Process Technol. 2009;90:770–7.CrossRefGoogle Scholar
  92. Zheng H, Yin J, Gao Z, Huang H, Ji X, Dou C. Disruption of Chlorella vulgaris cells for the release of biodiesel producing lipids: a comparison of grinding, ultrasonication, bead milling, enzymatic lysis, and microwaves. Appl Biochem Biotechnol. 2011;164:1215–24.CrossRefGoogle Scholar
  93. Zhou W, Min M, Hu B, Ma X, Liu Y, Wang Q, et al. Filamentous fungi assisted bio-flocculation: a novel alternative technique for harvesting heterotrophic and autotrophic microalgal cells. Sep Purif Technol. 2013;107:158–65.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Shrasti Vasistha
    • 1
  • Anwesha Khanra
    • 1
  • Monika Prakash Rai
    • 1
    Email author
  1. 1.Amity Institute of BiotechnologyAmity UniversityNoidaIndia

Personalised recommendations