Biodiesel, Bioethanol, and Biobutanol Production from Microalgae

  • Abd El-Fatah AbomohraEmail author
  • Mostafa Elshobary


Due to depletion of fossil fuel supplies and hazardous impacts on the global climate, clean renewable and sustainable energy production is being critically demanded. First-generation biofuels are mainly produced from edible crops and oilseeds. Because of competition with human food, first-generation biofuels are restricted in their ability to accomplish the global biofuel need, climate change amendment, and economic growth. Consequently, second-generation and third-generation biofuels were developed from nonedible feedstocks including lignocellulosic biomasses and microalgae, respectively, to overcome these challenges. However, algae are considered as a superior feedstock for biofuel production because of their diversity. Some of the major benefits of algae are their extremely fast growth rate and the ability of sequestration of carbon dioxide with high oil and carbohydrate contents that can be easily transformed into biodiesel or other gasoline components such as butanol. Biodiesel has been receiving globally growing consideration due to the liquid fuel needs and its potential as a biodegradable nontoxic substitute to petroleum diesel. In addition, butanol has become an attractive biofuel as a by-product of algal biomass processing after lipid extraction for biodiesel, due to its higher energy content, lower vapor pressure, and less hygroscopy than ethanol. This chapter reviews the current status of microalgae for biodiesel and butanol production as eco-friendly alternatives for liquid fossil fuels.


Renewable energy Biodiesel Butanol FAME Microalgae Energy crops 


  1. Abo-Hashesh M, Wang R, Hallenbeck PC. Metabolic engineering in dark fermentative hydrogen production; theory and practice. Bioresour Technol. 2011;102:8414–22.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Abomohra A, Wagner M, El-Sheekh M, Hanelt D. Lipid and total fatty acid productivity in photoautotrophic fresh water microalgae: screening studies towards biodiesel production. J Appl Phycol. 2013;25:931–6.CrossRefGoogle Scholar
  3. Abomohra A, El-Sheekh M, Hanelt D. Pilot cultivation of the chlorophyte microalga Scenedesmus obliquus as a promising feedstock for biofuel. Biomass Bioenergy. 2014;64:237–44.CrossRefGoogle Scholar
  4. Abomohra A, Jin W, El-Sheek M. Enhancement of lipid extraction for improved biodiesel recovery from the biodiesel promising microalga Scenedesmus obliquus. Energy Convers Manag. 2016a;108:23–9.CrossRefGoogle Scholar
  5. Abomohra A, Jin W, Tu R, et al. Microalgal biomass production as a sustainable feedstock for biodiesel: current status and perspectives. Renew Sust Energ Rev. 2016b;64:596–606.CrossRefGoogle Scholar
  6. Abomohra A, El-Sheekh M, Hanelt D. Screening of marine microalgae isolated from the hypersaline Bardawil lagoon for biodiesel feedstock. Renew Energy. 2017;101:1266–72.CrossRefGoogle Scholar
  7. Abomohra A, Eladel H, El-Esawi M, et al. Effect of lipid-free microalgal biomass and waste glycerol on growth and lipid production of Scenedesmus obliquus: Innovative waste recycling for extraordinary lipid production. Bioresour Technol. 2018;249:992–9.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Adewuyi YG. Sonochemistry: environmental science and engineering applications. Ind Eng Chem Res. 2001;40:4681–715.CrossRefGoogle Scholar
  9. Alam MA, Wang Z, Yuan Z. Generation and harvesting of microalgae biomass for biofuel production. In: Tripathi B, Kumar D, editors. Prospects and challenges in algal biotechnology. Singapore: Springer; 2017.Google Scholar
  10. Barnwal BK, Sharma MP. Prospects of biodiesel production from vegetable oils in India. Renew Sust Energ Rev. 2005;9:363–78.CrossRefGoogle Scholar
  11. Beer LL, Boyd ES, Peters JW, Posewitz MC. Engineering algae for biohydrogen and biofuel production. Curr Opin Biotechnol. 2009;20:264–71.PubMedCrossRefPubMedCentralGoogle Scholar
  12. Bharathiraja B, Chakravarthy M, Kumar RR, et al. Biodiesel production using chemical and biological methods–a review of process, catalyst, acyl acceptor, source and process variables. Renew Sust Energ Rev. 2014;38:368–82.CrossRefGoogle Scholar
  13. Bilgin A, Durgun O, Sahin Z. The effects of diesel-ethanol blends on diesel engine performance. Energy Sources. 2002;24:431–40.CrossRefGoogle Scholar
  14. Bošnjaković M. Biodiesel from algae. J Mech Eng Autom. 2013;3:179–88.Google Scholar
  15. Bozbas K. Biodiesel as an alternative motor fuel: production and policies in the European Union. Renew Sust Energ Rev. 2008;12:542–52.CrossRefGoogle Scholar
  16. Brennan L, Owende P. Biofuels from microalgae-a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev. 2010;14:557–77. Scholar
  17. Brown LM. Uptake of carbon dioxide from flue gas by microalgae. Energy Convers Manag. 1996;37:1363–7.CrossRefGoogle Scholar
  18. Campos EJ, Qureshi N, Blaschek HP. Production of acetone butanol ethanol from degermed corn using Clostridium beijerinckii BA101. In: Biotechnology for fuels and chemicals. New York: Springer; 2002. p. 553–61.CrossRefGoogle Scholar
  19. Cantrell KB, Ducey T, Ro KS, Hunt PG. Livestock waste-to-bioenergy generation opportunities. Bioresour Technol. 2008;99:7941–53.PubMedCrossRefPubMedCentralGoogle Scholar
  20. Cara C, Moya M, Ballesteros I, et al. Influence of solid loading on enzymatic hydrolysis of steam exploded or liquid hot water pretreated olive tree biomass. Process Biochem. 2007;42:1003–9.CrossRefGoogle Scholar
  21. Castro YA. Optimization of wastewater microalgae pretreatment for acetone, butanol, and ethanol fermentation. Logan: Utah State University; 2014.Google Scholar
  22. Cheah WY, Ling TC, Show PL, et al. Cultivation in wastewaters for energy: a microalgae platform. Appl Energy. 2016;179:609–25.CrossRefGoogle Scholar
  23. Chen CY, Zhao XQ, Yen HW, et al. Microalgae-based carbohydrates for biofuel production. Biochem Eng J. 2013;78:1–10. Scholar
  24. Chen W-H, Lin B-J, Huang M-Y, Chang J-S. Thermochemical conversion of microalgal biomass into biofuels: a review. Bioresour Technol. 2015;184:314–27.PubMedCrossRefPubMedCentralGoogle Scholar
  25. Cheng H-H, Whang L-M, Chan K-C, et al. Biological butanol production from microalgae-based biodiesel residues by Clostridium acetobutylicum. Bioresour Technol. 2015;184:379–85.PubMedCrossRefPubMedCentralGoogle Scholar
  26. Chia SR, Ong HC, Chew KW, et al. Sustainable approaches for algae utilisation in bioenergy production. Renew Energy. 2017;129:1–15. Scholar
  27. Chisti Y. Biodiesel from microalgae. Biotechnol Adv. 2007;25:294–306. Scholar
  28. Chisti Y. Biodiesel from microalgae beats bioethanol. Trends Biotechnol. 2008;26:126–31. Scholar
  29. Choi SP, Nguyen MT, Sim SJ. Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. Bioresour Technol. 2010;101:5330–6.PubMedCrossRefPubMedCentralGoogle Scholar
  30. Costa RL, Oliveira TV, Ferreira J de S, et al. Prospective technology on bioethanol production from photofermentation. Bioresour Technol. 2015;181:330–7. Scholar
  31. Danquah M, Liu B, Harun R, Haru R. Analysis of process configurations for bioethanol production from microalgal biomass. In: Progress in biomass and bioenergy production. Rijeka: InTech; 2011.Google Scholar
  32. Daroch M, Geng S, Wang G. Recent advances in liquid biofuel production from algal feedstocks. Appl Energy. 2013;102:1371–81.CrossRefGoogle Scholar
  33. de Farias Silva CE, Bertucco A. Bioethanol from microalgae and cyanobacteria: a review and technological outlook. Process Biochem. 2016;51:1833–42. Scholar
  34. Demirbas A. Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods. Prog Energy Combust Sci. 2005;31:466–87.CrossRefGoogle Scholar
  35. Demirbas A. Competitive liquid biofuels from biomass. Appl Energy. 2011;88:17–28.CrossRefGoogle Scholar
  36. Deng M-D, Coleman JR. Ethanol synthesis by genetic engineering in cyanobacteria. Appl Environ Microbiol. 1999;65:523–8.PubMedPubMedCentralGoogle Scholar
  37. Dewulf J, Van Langenhove H. Renewables-based technology: sustainability assessment. Chichester: Wiley; 2006.CrossRefGoogle Scholar
  38. Dismukes GC, Carrieri D, Bennette N, et al. Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Curr Opin Biotechnol. 2008;19:235–40.PubMedCrossRefGoogle Scholar
  39. Domozych D, Ciancia M, Fangel J, et al. The cell walls of green algae: a journey through evolution and diversity. Front Plant Sci. 2012;3:1–10.CrossRefGoogle Scholar
  40. Drapcho CM, Nhuan NP, Walker TH. Biofuels engineering process technology. New York: McGraw-Hill; 2008.Google Scholar
  41. Dürre P. Biobutanol: an attractive biofuel. Biotechnol J. 2007;2:1525–34. Scholar
  42. Eggeman T, Elander RT. Process and economic analysis of pretreatment technologies. Bioresour Technol. 2005;96:2019–25. Scholar
  43. Ellis JT, Hengge NN, Sims RC, Miller CD. Acetone, butanol, and ethanol production from wastewater algae. Bioresour Technol. 2012;111:491–5. Scholar
  44. FAPC-150BC. Biodiesel Production Techniques. Food Technology Fact Sheet, Robert M. Kerr Food & Agricultural Products Center, Oklahoma Cooperative Extension Service, Oklahoma State University.Google Scholar
  45. Ferreira AF, Ortigueira J, Alves L, et al. Biohydrogen production from microalgal biomass: energy requirement, CO2 emissions and scale-up scenarios. Bioresour Technol. 2013;144:156–64.PubMedCrossRefPubMedCentralGoogle Scholar
  46. Foley PM, Beach ES, Zimmerman JB. Algae as a source of renewable chemicals: opportunities and challenges. Green Chem. 2011;13:1399–405.CrossRefGoogle Scholar
  47. Frank ED, Elgowainy A, Han J, Wang Z. Life cycle comparison of hydrothermal liquefaction and lipid extraction pathways to renewable diesel from algae. Mitig Adapt Strateg Glob Chang. 2013;18:137–58.CrossRefGoogle Scholar
  48. Gao K. ABE fermentation from low cost substrates. Fermentation. 2016;2:13.CrossRefGoogle Scholar
  49. Gao K, Rehmann L. ABE fermentation from enzymatic hydrolysate of NaOH-pretreated corncobs. Biomass Bioenergy. 2014;66:110–5.CrossRefGoogle Scholar
  50. Gao K, Boiano S, Marzocchella A, Rehmann L. Cellulosic butanol production from alkali-pretreated switchgrass (Panicum virgatum) and phragmites (Phragmites australis). Bioresour Technol. 2014;174:176–81.PubMedCrossRefPubMedCentralGoogle Scholar
  51. George HA, Chen J-S. Acidic conditions are not obligatory for onset of butanol formation by Clostridium beijerinckii (synonym, C. butylicum). Appl Environ Microbiol. 1983;46:321–7.Google Scholar
  52. Gheshlaghi R, Scharer JM, Moo-Young M, Chou CP. Metabolic pathways of clostridia for producing butanol. Biotechnol Adv. 2009;27:764–81. Scholar
  53. Gilbert R, Perl A, Banister D. Transport revolutions: moving people and freight without oil. Hoboken: Earthscan; 2007.Google Scholar
  54. Gloria M, Colmenares M, Catholic P. Biofuels Potential of Peru. The University of Queensland, Australia; 2013; 211pp.Google Scholar
  55. Gomez LD, Steele-King CG, McQueen-Mason SJ. Sustainable liquid biofuels from biomass: the writing’s on the walls. New Phytol. 2008;178:473–85.PubMedCrossRefPubMedCentralGoogle Scholar
  56. Gottwald M, Hippe H, Gottschalk G. Formation of n-butanol from D-glucose by strains of the “Clostridium tetanomorphum” group. Appl Environ Microbiol. 1984;48:573–6.Google Scholar
  57. Gouveia L, Oliveira AC. Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol. 2009;36:269–74.PubMedCrossRefPubMedCentralGoogle Scholar
  58. Green EM. Fermentative production of butanol-the industrial perspective. Curr Opin Biotechnol. 2011;22:337–43. Scholar
  59. Groot WJ, Van der Lans R, Luyben KCAM. Technologies for butanol recovery integrated with fermentations. Process Biochem. 1992;27:61–75.CrossRefGoogle Scholar
  60. Gupta RB, Demirbas A. Gasoline, diesel, and ethanol biofuels from grasses and plants. Cambridge: Cambridge University Press; 2010.CrossRefGoogle Scholar
  61. Halim R, Gladman B, Danquah MK, Webley PA. Oil extraction from microalgae for biodiesel production. Bioresour Technol. 2011;102:178–85.PubMedCrossRefPubMedCentralGoogle Scholar
  62. Halim R, Danquah MK, Webley PA. Extraction of oil from microalgae for biodiesel production: a review. Biotechnol Adv. 2012;30:709–32.CrossRefPubMedGoogle Scholar
  63. Han S, Jin W, Chen Y, Tu R, Abomohra A. enhancement of lipid production of Chlorella pyrenoidosa cultivated in municipal wastewater by magnetic treatment. Appl Biochem Biotechnol. 2016;180:1043–55.PubMedCrossRefPubMedCentralGoogle Scholar
  64. Harun R, Jason WSY, Cherrington T, Danquah MK. Exploring alkaline pre-treatment of microalgal biomass for bioethanol production. Appl Energy. 2011;88:3464–7. Scholar
  65. Harun R, Yip JWS, Thiruvenkadam S, et al. Algal biomass conversion to bioethanol–a step-by-step assessment. Biotechnol J. 2014;9:73–86.PubMedCrossRefPubMedCentralGoogle Scholar
  66. Hellingwerf KJ, De Mattos MJT. Alternative routes to biofuels: light-driven biofuel formation from CO2 and water based on the “photanol” approach. J Biotechnol. 2009;142:87–90.PubMedCrossRefPubMedCentralGoogle Scholar
  67. Hemming D. Plant sciences reviews 2011. Wallingford: Cabi; 2011.Google Scholar
  68. Hemschemeier A, Happe T. The exceptional photofermentative hydrogen metabolism of the green alga Chlamydomonas reinhardtii. Transactions. 2005;33:39–41.PubMedCrossRefPubMedCentralGoogle Scholar
  69. Hernández D, Riaño B, Coca M, García-González MC. Saccharification of carbohydrates in microalgal biomass by physical, chemical and enzymatic pre-treatments as a previous step for bioethanol production. Chem Eng J. 2015;262:939–45. Scholar
  70. Hernando J, Leton P, Matia MP, et al. Biodiesel and FAME synthesis assisted by microwaves: homogeneous batch and flow processes. Fuel. 2007;86:1641–4.CrossRefGoogle Scholar
  71. Hirano A, Hon-Nami K, Kunito S, et al. Temperature effect on continuous gasification of microalgal biomass: theoretical yield of methanol production and its energy balance. Catal Today. 1998;45:399–404.CrossRefGoogle Scholar
  72. Ho S-HH, Huang S-WW, Chen C-YY, et al. Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Bioresour Technol. 2013;135:191–8. Scholar
  73. Hönig V, Kotek M, Mařík J. Use of butanol as a fuel for internal combustion engines. Agron Res. 2014;12:333–40.Google Scholar
  74. Hu Y, Wang S, Li J, Wang Q, He Z, Feng Y, Abomohra A, Afonaa-Mensah S, Hui C. Co-pyrolysis and co-hydrothermal liquefaction of seaweeds and rice husk: comparative study towards enhanced biofuel production. J Anal Appl Pyrolysis. 2017;129:162–70.CrossRefGoogle Scholar
  75. Huang Y, Chen Y, Xie J, et al. Bio-oil production from hydrothermal liquefaction of high-protein high-ash microalgae including wild Cyanobacteria sp. and cultivated Bacillariophyta sp. Fuel. 2016;183:9–19. Scholar
  76. Ji J, Wang J, Li Y, et al. Preparation of biodiesel with the help of ultrasonic and hydrodynamic cavitation. Ultrasonics. 2006;44:e411–4.PubMedCrossRefPubMedCentralGoogle Scholar
  77. Jin C, Yao M, Liu H, et al. Progress in the production and application of n-butanol as a biofuel. Renew Sust Energ Rev. 2011;15:4080–106.CrossRefGoogle Scholar
  78. Johnson MB, Wen Z. Production of biodiesel fuel from the microalga Schizochytrium limacinum by direct transesterification of algal biomass. Energy Fuel. 2009;23:5179–83.CrossRefGoogle Scholar
  79. Jones DT, Woods D. Acetone-butanol fermentation revisited. Microbiol Rev. 1986;50:484–524.PubMedPubMedCentralGoogle Scholar
  80. Khoo HH, Sharratt PN, Das P, et al. Life cycle energy and CO2 analysis of microalgae-to-biodiesel: preliminary results and comparisons. Bioresour Technol. 2011;102:5800–7.PubMedCrossRefGoogle Scholar
  81. Klass DL. Biomass for renewable energy, fuels, and chemicals. Philadelphia: Elsevier; 1998.Google Scholar
  82. Kumar S. Evaluation of biodiesel as an alternate fuel to compression\nIgnition engine and to study its effect on performance and\nEmission characteristics. Int J Mod Eng Res. 2014;4:194–200.Google Scholar
  83. Kumar D, Murthy GS. Stochastic molecular model of enzymatic hydrolysis of cellulose for ethanol production. Biotechnol Biofuels. 2013;6:63.PubMedPubMedCentralCrossRefGoogle Scholar
  84. Laghari SM, Isa MH, Saleem H. Microwave individual and combined pre-treatments on lignocellulosic biomasses. IOSR J Eng. 2014;4:14–28.CrossRefGoogle Scholar
  85. Laherrere J. Oil and gas: what future? World. 2006;1:534.Google Scholar
  86. Lakaniemi A-M, Tuovinen OH, Puhakka JA. Anaerobic conversion of microalgal biomass to sustainable energy carriers–a review. Bioresour Technol. 2013;135:222–31.PubMedCrossRefPubMedCentralGoogle Scholar
  87. Laza T, Bereczky Á. Basic fuel properties of rapeseed oil-higher alcohols blends. Fuel. 2011;90:803–10.CrossRefGoogle Scholar
  88. Li S-Y, Srivastava R, Suib SL, et al. Performance of batch, fed-batch, and continuous A–B–E fermentation with pH-control. Bioresour Technol. 2011;102:4241–50.PubMedCrossRefPubMedCentralGoogle Scholar
  89. Lin Y, Tanaka S. Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol. 2006;69:627–42.PubMedCrossRefPubMedCentralGoogle Scholar
  90. Lü J, Sheahan C, Fu P. Metabolic engineering of algae for fourth generation biofuels production. Energy Environ Sci. 2011;4:2451–66.CrossRefGoogle Scholar
  91. Macquarrie DJ, Clark JH, Fitzpatrick E. The microwave pyrolysis of biomass. Biofuels Bioprod Biorefin. 2012;6:549–60.CrossRefGoogle Scholar
  92. Marchetti JM, Miguel VU, Errazu AF. Possible methods for biodiesel production. Renew Sust Energ Rev. 2007;11:1300–11.CrossRefGoogle Scholar
  93. Mathur ML, Sharma RP. Internal combustion engines. New Delhi: Dhanpat Rai Publications; 2010.Google Scholar
  94. Meher LC, Sagar DV, Naik SN. Technical aspects of biodiesel production by transesterification—a review. Renew Sust Energ Rev. 2006;10:248–68.CrossRefGoogle Scholar
  95. Millat T, Janssen H, Thorn GJ, et al. A shift in the dominant phenotype governs the pH-induced metabolic switch of Clostridium acetobutylicumin phosphate-limited continuous cultures. Appl Microbiol Biotechnol. 2013;97:6451–66.PubMedCrossRefPubMedCentralGoogle Scholar
  96. Miranda I, Gominho J, Pereira H. Incorporation of bark and tops in Eucalyptus globulus wood pulping. Bioresources. 2012;7:4350–61.Google Scholar
  97. Mitchell P. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biochim Biophys Acta (BBA)-Bioenergetics. 2011;1807:1507–38.CrossRefGoogle Scholar
  98. Mosier N, Wyman C, Dale B, et al. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol. 2005;96:673–86.PubMedCrossRefPubMedCentralGoogle Scholar
  99. Mubarak M, Shaija A, Suchithra TV. A review on the extraction of lipid from microalgae for biodiesel production. Algal Res. 2015;7:117–23. Scholar
  100. Mussatto SI, Dragone G, Guimarães PMR, et al. Technological trends, global market, and challenges of bio-ethanol production. Biotechnol Adv. 2010;28:817–30.PubMedCrossRefPubMedCentralGoogle Scholar
  101. Norsker N-H, Barbosa MJ, Vermuë MH, Wijffels RH. Microalgal production—a close look at the economics. Biotechnol Adv. 2011;29:24–7.PubMedCrossRefPubMedCentralGoogle Scholar
  102. Nüchter M, Ondruschka B, Jungnickel A, Müller U. Organic processes initiated by non-classical energy sources. J Phys Org Chem. 2000;13:579–86.CrossRefGoogle Scholar
  103. O’Reilly J, Oreskes N, Oppenheimer M. The rapid disintegration of projections: the west Antarctic ice sheet and the intergovernmental panel on climate change. Soc Stud Sci. 2012;42:709–31.PubMedCrossRefPubMedCentralGoogle Scholar
  104. Okuda K, Oka K, Onda A, et al. Hydrothermal fractional pretreatment of sea algae and its enhanced enzymatic hydrolysis. J Chem Technol Biotechnol. 2008;83:836–41.CrossRefGoogle Scholar
  105. Olabi AG. The 3rd international conference on sustainable energy and environmental protection SEEP 2009–guest editor’s introduction. Energy. 2010;35:4508–9.CrossRefGoogle Scholar
  106. Olabi AG. State of the art on renewable and sustainable energy. Energy. 2013;61:2–5.CrossRefGoogle Scholar
  107. Olofsson K, Bertilsson M, Lidén G. A short review on SSF–an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnol Biofuels. 2008;1:7.PubMedPubMedCentralCrossRefGoogle Scholar
  108. Ono E, Cuello JL. Feasibility assessment of microalgal carbon dioxide sequestration technology with photobioreactor and solar collector. Biosyst Eng. 2006;95:597–606.CrossRefGoogle Scholar
  109. Ormerod WG, Freund P, Smith A, Davison J. Ocean storage of CO2: IEA Greenhouse Gas R&D Programme; 2002.Google Scholar
  110. Park J-H, Hong J-Y, Jang HC, et al. Use of Gelidium amansii as a promising resource for bioethanol: a practical approach for continuous dilute-acid hydrolysis and fermentation. Bioresour Technol. 2012;108:83–8.PubMedCrossRefPubMedCentralGoogle Scholar
  111. Patil V, Tran K-Q, Giselrød HR. Towards sustainable production of biofuels from microalgae. Int J Mol Sci. 2008;9:1188–95.PubMedPubMedCentralCrossRefGoogle Scholar
  112. Pfromm PH, Amanor-Boadu V, Nelson R, et al. Bio-butanol vs. bio-ethanol: a technical and economic assessment for corn and switchgrass fermented by yeast or Clostridium acetobutylicum. Biomass Bioenergy. 2010;34:515–24.CrossRefGoogle Scholar
  113. Pospíšil M, Šiška J, Šebor G. BioButanol as fuel in transport, Biom [online].[cit. 2014-17-01]. Available 2014.
  114. Pulz O. Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol. 2001;57:287–93.PubMedCrossRefPubMedCentralGoogle Scholar
  115. Pulz O, Scheibenbogen K. Photobioreactors: design and performance with respect to light energy input. In: Bioprocess and algae reactor technology, apoptosis. Berlin: Springer; 1998. p. 123–52.CrossRefGoogle Scholar
  116. Qin J. Bio – hydrocarbons from Algae. Barton Aust Rural Ind Res Dev Corp. 2005;05/025:1–26. doi: ISBN 1 74151 124 0Google Scholar
  117. Qureshi N, Li X, Hughes S, et al. Butanol production from corn fiber xylan using Clostridium acetobutylicum. Biotechnol Prog. 2006;22:673–80.PubMedCrossRefPubMedCentralGoogle Scholar
  118. Radakovits R, Jinkerson RE, Darzins A, Posewitz MC. Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell. 2010;9:486–501.PubMedPubMedCentralCrossRefGoogle Scholar
  119. Rashid N, Rehman MSU, Sadiq M, et al. Current status, issues and developments in microalgae derived biodiesel production. Renew Sust Energ Rev. 2014;40:760–78.CrossRefGoogle Scholar
  120. Rismani-Yazdi H, Haznedaroglu BZ, Bibby K, Peccia J. Transcriptome sequencing and annotation of the microalgae Dunaliella tertiolecta: pathway description and gene discovery for production of next-generation biofuels. BMC Genomics. 2011;12:148.PubMedPubMedCentralCrossRefGoogle Scholar
  121. Rodolfi L, Chini Zittelli G, Bassi N, et al. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng. 2009;102:100–12. Scholar
  122. Satyanarayana KG, Mariano AB, Vargas JVC. A review on microalgae, a versatile source for sustainable energy and materials. Int J Energy Res. 2011;35:291–311.CrossRefGoogle Scholar
  123. Schenk PM, Thomas-Hall SR, Stephens E, et al. Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res. 2008;1:20–43.CrossRefGoogle Scholar
  124. Searchinger T, Heimlich R, Houghton RA, et al. Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science (80-). 2008;319:1238–40.CrossRefGoogle Scholar
  125. Shaheen R, Shirley M, Jones DT. Comparative fermentation studies of industrial strains belonging to four species of solvent-producing clostridia. J Mol Microbiol Biotechnol. 2000;2:115–24.PubMedPubMedCentralGoogle Scholar
  126. Sheehan J, Dunahay T, Benemann J, Roessler P. Look back at the US department of energy’s aquatic species program: biodiesel from algae; close-out report. Golden: National Renewable Energy Lab; 1998.CrossRefGoogle Scholar
  127. Singh A, Olsen SI. A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels. Appl Energy. 2011;88:3548–55.CrossRefGoogle Scholar
  128. Singh A, Smyth BM, Murphy JD. A biofuel strategy for Ireland with an emphasis on production of biomethane and minimization of land-take. Renew Sust Energ Rev. 2010;14:277–88.CrossRefGoogle Scholar
  129. Singh A, Nigam PS, Murphy JD. Renewable fuels from algae: an answer to debatable land based fuels. Bioresour Technol. 2011;102:10–6.PubMedCrossRefPubMedCentralGoogle Scholar
  130. Skřivanová E, Marounek M. Influence of pH on antimicrobial activity of organic acids against rabbit enteropathogenic strain of Escherichia coli. Folia Microbiol (Praha). 2007;52:70–2.CrossRefGoogle Scholar
  131. Soni R, Nazir A, Chadha BS. Optimization of cellulase production by a versatile Aspergillus fumigatus fresenius strain (AMA) capable of efficient deinking and enzymatic hydrolysis of Solka floc and bagasse. Ind Crop Prod. 2010;31:277–83.CrossRefGoogle Scholar
  132. Spolaore P, Joannis-Cassan C, Duran E, Isambert A. Commercial applications of microalgae. J Biosci Bioeng. 2006;101:87–96.CrossRefGoogle Scholar
  133. Srirangan K, Akawi L, Moo-Young M, Chou CP. Towards sustainable production of clean energy carriers from biomass resources. Appl Energy. 2012;100:172–86.CrossRefGoogle Scholar
  134. Stavarache C, Vinatoru M, Maeda Y. Ultrasonic versus silent methylation of vegetable oils. Ultrason Sonochem. 2006;13:401–7.PubMedCrossRefPubMedCentralGoogle Scholar
  135. Stephenson AL, Dennis JS, Howe CJ, et al. Influence of nitrogen-limitation regime on the production by Chlorella vulgaris of lipids for biodiesel feedstocks. Biofuels. 2010;1:47–58.CrossRefGoogle Scholar
  136. Sun Y, Cheng J. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol. 2002;83:1–11.PubMedCrossRefPubMedCentralGoogle Scholar
  137. Talebnia F, Karakashev D, Angelidaki I. Production of bioethanol from wheat straw: an overview on pretreatment, hydrolysis and fermentation. Bioresour Technol. 2010;101:4744–53.PubMedCrossRefPubMedCentralGoogle Scholar
  138. Tao L, Aden A, Elander RT, et al. Process and technoeconomic analysis of leading pretreatment technologies for lignocellulosic ethanol production using switchgrass. Bioresour Technol. 2011;102:11105–14.PubMedCrossRefPubMedCentralGoogle Scholar
  139. Tengborg C, Galbe M, Zacchi G. Reduced inhibition of enzymatic hydrolysis of steam-pretreated softwood. Enzym Microb Technol. 2001;28:835–44.CrossRefGoogle Scholar
  140. Thang VH, Kanda K, Kobayashi G. Production of acetone–butanol–ethanol (ABE) in direct fermentation of cassava by Clostridium saccharoperbutylacetonicum N1-4. Appl Biochem Biotechnol. 2010;161:157–70.PubMedCrossRefPubMedCentralGoogle Scholar
  141. Ueno Y, Kurano N, Miyachi S. Ethanol production by dark fermentation in the marine green alga, Chlorococcum littorale. J Ferment Bioeng. 1998;86:38–43.CrossRefGoogle Scholar
  142. Ugwu CU, Aoyagi H, Uchiyama H. Photobioreactors for mass cultivation of algae. Bioresour Technol. 2008;99:4021–8.PubMedPubMedCentralCrossRefGoogle Scholar
  143. Ullah K, Ahmad M, Sharma VK, et al. Assessing the potential of algal biomass opportunities for bioenergy industry: a review. Fuel. 2015;143:414–23.CrossRefGoogle Scholar
  144. Van Der Maarel MJEC, Van Der Veen B, Uitdehaag JCM, et al. Properties and applications of starch-converting enzymes of the α-amylase family. J Biotechnol. 2002;94:137–55.PubMedCrossRefPubMedCentralGoogle Scholar
  145. Wang X, Liu X, Wang G. Two-stage hydrolysis of invasive algal feedstock for ethanol fermentation. J Integr Plant Biol. 2011;53:246–52.PubMedCrossRefPubMedCentralGoogle Scholar
  146. Wang Y, Janssen H, Blaschek HP. Fermentative biobutanol production: an old topic with remarkable recent advances. In: Bioprocessing of renewable resources to commodity bioproducts. Hoboken: Wiley; 2014. p. 227–60.CrossRefGoogle Scholar
  147. Wang Y, Guo W, Cheng C, et al. Enhancing bio-butanol production from biomass of Chlorella vulgaris JSC-6 with sequential alkali pretreatment and acid hydrolysis. Bioresour Technol. 2016;200:557–64. Scholar
  148. Wang S, Jiang D, Cao B, Hu Y, Yuan C, Wang Q, He Z, Hui C, Abomohra A, Liu X, Feng Y, Zhang B. Study on the interaction effect of seaweed bio-coke and rice husk volatiles during co-pyrolysis. J Anal Appl Pyrolysis. 2018;132:111–22. Scholar
  149. Warabi Y, Kusdiana D, Saka S. Reactivity of triglycerides and fatty acids of rapeseed oil in supercritical alcohols. Bioresour Technol. 2004;91:283–7.PubMedCrossRefPubMedCentralGoogle Scholar
  150. Xiong J-Q, Kurade MB, Jeon B-H. Can microalgae remove pharmaceutical contaminants from water? J Hazard Mater. 2017;323:212–9.PubMedCrossRefPubMedCentralGoogle Scholar
  151. Xiros C, Topakas E, Christakopoulos P. Hydrolysis and fermentation for cellulosic ethanol production. Wiley Interdiscip Rev Energy Environ. 2013;2:633–54.CrossRefGoogle Scholar
  152. Xue C, Zhao XQ, Liu CG, et al. Prospective and development of butanol as an advanced biofuel. Biotechnol Adv. 2013;31:1575–84. Scholar
  153. Yoshida T, Tashiro Y, Sonomoto K. Novel high butanol production from lactic acid and pentose by Clostridium saccharoperbutylacetonicum. J Biosci Bioeng. 2012;114:526–30.PubMedCrossRefPubMedCentralGoogle Scholar
  154. Zhang J, Chen S, Yang R, Yan Y. Biodiesel production from vegetable oil using heterogenous acid and alkali catalyst. Fuel. 2010;89:2939–44. Scholar
  155. Zhao G, Chen X, Wang L, et al. Ultrasound assisted extraction of carbohydrates from microalgae as feedstock for yeast fermentation. Bioresour Technol. 2013;128:337–44.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.New Energy Department, School of Energy and Power EngineeringJiangsu UniversityZhenjiangChina
  2. 2.Botany Department, Faculty of ScienceTanta UniversityTantaEgypt

Personalised recommendations