Advertisement

Isolation of Microfibrillated Cellulose (MFC) Via Fungal Cellulases Hydrolysis Combined with Ultrasonication

  • Dzun Noraini JimatEmail author
  • Aviceena
Chapter

Abstract

Celluloses, the most abundant biopolymers which exist in plant sources are potential materials to be used in manufacturing high performance composites due to theirs fascinating structure and properties. In plant cell walls, they are embedded in matrix substances such as hemicellulose and lignin. Removal of matrix substances is required before fibrillating the cellulose fibres into nanoscale-sized. The obtained microfibrillated cellulose (MFC) poses different features depending to its origin and degree of initial processing procedures and fibrillation method use. Thus, this chapter explains the isolation steps of microfibril cellulose (MFC) from cocoa pod husk via fungal cellulases hydrolysis combined with ultrasonication. The morphology and strutural observation of the MFC of cocoa pod husk (CPH) via scanning electron microscopy images and fourier transform infrared spectroscopy analysis respectively were also showed in this chapter.

Keywords

Cellulases Cocoa pod husk Fibers Fourier Transform Infrared Fungal Hydrolysis Microfibrillated cellulose Scanning electron Microscopy Ultrasonication 

References

  1. Abdul Khalil HPS, Davoudpour Y, Islam MN, Mustapha A, Sudesh K, Dungani R, Jawaid M (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydr Polym 99:649–665.  https://doi.org/10.1016/j.carbpol.2013.08.069 CrossRefPubMedGoogle Scholar
  2. Abraham E, Deepa B, Pothan LA, Jacob M, Thomas S, Cvelbar U, Anandjiwala R (2011) Extraction of nanocellulose fibrils from lignocellulosic fibres: a novel approach. Carbohydr Polym 86(4):1468–1475. https://doi.org/10.1016/j.carbpol.2011.06.034 CrossRefGoogle Scholar
  3. de Campos A, Correa AC, Cannella D, de M Teixeira E, Marconcini JM, Dufresne A et al (2013) Obtaining nanofibers from curau?? and sugarcane bagasse fibers using enzymatic hydrolysis followed by sonication. Cellulose 20(3):1491–1500.  https://doi.org/10.1007/s10570-013-9909-3 CrossRefGoogle Scholar
  4. Hassan ML, Bras J, Hassan EA, Silard C, Mauret E (2014) Enzyme-assisted isolation of microfibrillated cellulose from date palm fruit stalks. Ind Crop Prod 55:102–108.  https://doi.org/10.1016/j.indcrop.2014.01.055 CrossRefGoogle Scholar
  5. Henriksson M, Henriksson G, Berglund LA, Lindström T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43(8):3434–3441.  https://doi.org/10.1016/j.eurpolymj.2007.05.038 CrossRefGoogle Scholar
  6. Janardhnan S, Sain MM (2006) Isolation of cellulose microfibrils – an enzymatic approach. Cellulose 1(2):176–188.  https://doi.org/10.15376/biores.1.2.176-188 CrossRefGoogle Scholar
  7. Monschein M, Reisinger C, Nidetzky B (2013) Bioresource Technology Enzymatic hydrolysis of microcrystalline cellulose and pretreated wheat straw: a detailed comparison using convenient kinetic analysis. Bioresour Technol 128:679–687.  https://doi.org/10.1016/j.biortech.2012.10.129 CrossRefPubMedGoogle Scholar
  8. Nakagaito AN, Yano H (2004) The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites. Appl Phys Mater Sci Process 78(4):547–552.  https://doi.org/10.1007/s00339-003-2453-5 CrossRefGoogle Scholar
  9. Oyeleke SB, Oyewole OA, Dauda BEN, Ibeh EN (2012) Cellulase and pectinase production potentials of Aspegillus Niger isolated from corn cob. Bajopas 5(1):78–83Google Scholar
  10. Paakko M, Ankerfors M, Kosonen H, Nyakanen A, Ahola S, Osterberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindstrom T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941CrossRefGoogle Scholar
  11. Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494.  https://doi.org/10.1007/s10570-010-9405-y CrossRefGoogle Scholar
  12. Svagan AJ, Azizi Samir MAS, Berglund LA (2007) Biomimetic polysaccharide nanocomposites of high cellulose content and high toughness. Biomacromolecules 8(8):2556–2563.  https://doi.org/10.1021/bm0703160 CrossRefPubMedGoogle Scholar
  13. Tonoli GHD, Teixeira EM, Corrêa AC, Marconcini JM, Caixeta LA, Pereira-Da-Silva MA, Mattoso LHC (2012) Cellulose micro/nanofibres from Eucalyptus kraft pulp: preparation and properties. Carbohydr Polym 89(1):80–88.  https://doi.org/10.1016/j.carbpol.2012.02.052 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Biotechnology Engineering, Kulliyyah of EngineeringInternational Islamic University Malaysia (IIUM)Kuala LumpurMalaysia

Personalised recommendations