Advertisement

CRISPR/Cas9-Mediated Gene Editing Tool and Fathomless Genetic and Metabolic Engineering Applications in Plants

  • Anshu Alok
  • Jitesh Kumar
  • Phanikanth Jogam
  • Dulam Sandhya
Chapter

Abstract

CRISPR-/Cas9-mediated genome editing is modernizing plant science by presenting simple, accurate and high-throughput tools for genetic engineering in various plant species. This modern technology utilizes guide RNAs, which direct Cas9 endonuclease, to generate double-stranded breaks at targeted sites of the genome, and finally plant DNA repair by either nonhomologous end-joining or homology-directed repair mechanism resulted in an error-prone efficient mutation in the genome. However, the targeted modification of the plant genome depends upon the selection of target sites, vector carrying its important components and its delivery method in plant cells. In this chapter, we described different types of CRISPR/Cas9 plant transformation vectors, its properties and delivery methods in plant cells. Initially, the cloning vectors harbouring the single-guide RNA and Cas9 gene regulated by different promoters were used for genome editing in plant protoplast. Further, binary Ti plasmid carrying T-DNA and broad host-range replicon was used for the development of different CRISPR/Cas9 plant transformation vectors. These CRISPR/Cas9 vectors carrying essential components are delivered to plant cells via PEG-mediated protoplast transfection, A. tumefaciens-mediated transformation or transformation by bombardment method.

Keywords

CRISPR/Cas9 Metabolic engineering Genome editing Agrobacterium HDR 

References

  1. Alagoz Y, Gurkok T, Zhang B, Unver T (2016) Manipulating the biosynthesis of bioactive compound alkaloids for next-generation metabolic engineering in opium poppy using CRISPR-Cas 9 genome editing technology. Sci Rep 6:30910CrossRefGoogle Scholar
  2. Alok A, Shukla V, Pala Z, Kumar J, Kudale S, Desai N (2016) In vitro regeneration and optimization of factors affecting agrobacterium mediated transformation in Artemisia Pallens, an important medicinal plant. Physiol Mol Biol Plants:1–9Google Scholar
  3. Alok A, Sharma S, Kumar J, Verma S, Sood H (2017) Engineering in plant genome using agrobacterium: progress and future BT- metabolic engineering for bioactive compounds: strategies and processes. In: Kalia VC, Saini AK (eds) . Springer, Singapore, pp 91–111Google Scholar
  4. Bachtiar V, Near J, Johansen-Berg H, Stagg CJ (2015) Modulation of GABA and resting state functional connectivity by transcranial direct current stimulation. elife 4.  https://doi.org/10.7554/eLife.08789
  5. Baltes NJ, Gil-Humanes J, Cermak T, Atkins PA, Voytas DF (2014) DNA replicons for plant genome engineering. Plant Cell 26:151–163CrossRefGoogle Scholar
  6. Bhati KK, Alok A, Kumar A, Kaur J, Tiwari S, Pandey AK (2016) Silencing of ABCC13 transporter in wheat reveals its involvement in grain development, phytic acid accumulation and lateral root formation. J Exp Bot 67:4379–4389CrossRefGoogle Scholar
  7. Bondy-Denomy J, Pawluk A, Maxwell KL, Davidson AR (2013) Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system. Nature 493:429–432CrossRefGoogle Scholar
  8. Breyer D, Kopertekh L, Reheul D (2014) Alternatives to antibiotic resistance marker genes for in vitro selection of genetically modified plants–scientific developments, current use, operational access and biosafety considerations. Crit Rev Plant Sci 33(4):286–330CrossRefGoogle Scholar
  9. Butler NM, Baltes NJ, Voytas DF, Douches DS (2016) Geminivirus-mediated genome editing in potato (Solanum tuberosum L.) using sequence-specific nucleases. Front Plant Sci.  https://doi.org/10.3389/fpls.2016.01045
  10. Cai Y, Chen L, Liu X, Sun S, Wu C, Jiang B, Han T, Hou W (2015) CRISPR/Cas9-mediated genome editing in soybean hairy roots. PLoS One 10:e0136064CrossRefGoogle Scholar
  11. Čermák T, Baltes NJ, Čegan R, Zhang Y, Voytas DF (2015) High-frequency, precise modification of the tomato genome. Genome Biol 16:232.  https://doi.org/10.1186/s13059-015-0796-9 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cermak T, Curtin SJ, Gil-Humanes J, Čegan R, Kono TJ, Konečná E, Belanto JJ, Starker CG, Mathre JW, Greenstein RL, Voytas DF (2017) A multi-purpose toolkit to enable advanced genome engineering in plants. Plant Cell The Plant Cell, tpc-00922Google Scholar
  13. Chen F, Pruett-Miller SM, Huang Y, Gjoka M, Duda K, Taunton J, Collingwood TN, Frodin M, Davis GD (2011) High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases. Nat Methods 8:753–755.  https://doi.org/10.1038/nmeth.1653 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Sci 339:819–823.  https://doi.org/10.1126/science.1231143 CrossRefGoogle Scholar
  15. Durai S, Mani M, Kandavelou K, Wu J, Porteus MH, Chandrasegaran S (2005) Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Res 33:5978–5990.  https://doi.org/10.1093/nar/gki912 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Endo M, Mikami M, Toki S (2016) Biallelic gene targeting in rice. Plant Physiol 170:667–677.  https://doi.org/10.1104/pp.15.01663 CrossRefPubMedGoogle Scholar
  17. Feng Z, Mao Y, Xu N, Zhang B, Wei P, Yang DL, Wang Z, Zhang Z, Zheng R, Yang L, Zeng L (2014) Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis. Proc Natl Acad Sci U S A 111:4632–4637.  https://doi.org/10.1073/pnas.1400822111 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol Mol Biol Rev 67(1):16–37CrossRefGoogle Scholar
  19. Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, Stern-Ginossar N, Brandman O, Whitehead EH, Doudna JA, Lim WA, Weissman JS, Qi LS (2013) CRISPR-mediated modular RNA-guided Regualtion of transcription in eukaryotes. Cell 154:442–451.  https://doi.org/10.1016/j.cell.2013.06.044 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gordon KH, Waterhouse PM (2007) RNAi for insect-proof plants. Nat Biotechnol 25:1231–1232.  https://doi.org/10.1038/nbt1107-1231 CrossRefPubMedGoogle Scholar
  21. Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327:167–170.  https://doi.org/10.1126/science.1179555 CrossRefPubMedGoogle Scholar
  22. Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O, Cradick TJ, Marraffini LA, Bao G, Zhang F (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31(9):827CrossRefGoogle Scholar
  23. Jia H, Wang N (2014) Targeted genome editing of sweet orange using Cas9/sgRNA. PLoS One.  https://doi.org/10.1371/journalpone.0093806
  24. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science:1225829Google Scholar
  25. Joung JK, Sander JD (2013) TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 14:49–55CrossRefGoogle Scholar
  26. Kumar RR, Prasad S (2011) Metabolic engineering of Bacteria. Indian J Microbiol 51:403–409CrossRefGoogle Scholar
  27. Kusano H, Onodera H, Kihira M, Aoki H, Matsuzaki H, Shimada H (2016) A simple gateway-assisted construction system of TALEN genes for plant genome editing. Sci Rep 6:30234.  https://doi.org/10.1038/srep30234 CrossRefPubMedPubMedCentralGoogle Scholar
  28. La Russa MF, Qi LS (2015) The new state of the art : Cas9 for gene activation and repression. Mol Cell Biol 35:3800–3809.  https://doi.org/10.1128/MCB.00512-15 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Lee L-Y, Gelvin SB (2008) T-DNA binary vectors and systems. Plant Physiol 146(2):325–332CrossRefGoogle Scholar
  30. Li B, Cui G, Shen G, Zhan Z, Huang L, Chen J, Qi X (2017a) Targeted mutagenesis in the medicinal plant Salvia miltiorrhiza. Sci Rep 7:43320.  https://doi.org/10.1038/srep43320 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Li R, Li R, Li X, Fu D, Zhu B, Tian H, Luo Y, Zhu H (2017b) Multiplexed CRISPR/Cas9-mediated metabolic engineering of γ-aminobutyric acid levels in Solanum lycopersicum. Plant Biotechnol JGoogle Scholar
  32. Lin S, Ewen-Campen B, Ni X, Housden BE, Perrimon N (2015) In vivo transcriptional activation using CRISPR/Cas9 in Drosophila. Genetics 201:433–442.  https://doi.org/10.1534/genetics.115.181065 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Lowder LG, Zhang D, Baltes NJ, Paul JW, Tang X, Zheng X, Voytas DF, Hsieh TF, Zhang Y, Qi Y (2015) A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiol 169:971–985.  https://doi.org/10.1104/pp.15.00636 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Lu H-J, Zhou X-R, Gong Z-X, Upadhyaya NM (2001) Generation of selectable marker-free transgenic rice using double right-border (DRB) binary vectors. Funct Plant Biol 28(3):241–248CrossRefGoogle Scholar
  35. Lu X, Tang K, Li P (2016) Plant metabolic engineering strategies for the production of pharmaceutical Terpenoids. Front Plant Sci 7.  https://doi.org/10.3389/fpls.2016.01647
  36. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826CrossRefGoogle Scholar
  37. Malnoy M, Viola R, Jung MH, Koo OJ, Kim S, Kim JS, Velasco R, Kanchiswamy CN (2016) DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Front Plant Sci 7:1904.  https://doi.org/10.3389/fpls.2016.01904 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Matheka JM, Anami S, Gethi J, Omer RA, Alakonya A, Machuka J, Runo S (2013) A new double right border binary vector for producing marker-free transgenic plants. BMC Res Notes 6(1):448CrossRefGoogle Scholar
  39. Nishimasu H, Ann Ran F, Hsu PD, Konermann S, Shehata SI, Dohmae N, Ishitani R, Zhang F, Nureki O (2014) Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156(5):935–949CrossRefGoogle Scholar
  40. Nishimasu H, Cong L, Yan WX, Ann Ran F, Zetsche B, Li Y, Kurabayashi A, Ishitani R, Zhang F, Nureki O (2015) Crystal structure of Staphylococcus aureus Cas9. Cell 162(5):1113–1126CrossRefGoogle Scholar
  41. Pala Z, Shukla V, Alok A, Kudale S, Desai N (2016) Enhanced production of an anti-malarial compound artesunate by hairy root cultures and phytochemical analysis of Artemisia pallens wall. 3 Biotech.  https://doi.org/10.1007/s13205-016-0496-5
  42. Pan C, Ye L, Qin L, Liu X, He Y, Wang J, Chen L, Lu G (2016) CRISPR/Cas9-mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations. Sci Rep 6:24765.  https://doi.org/10.1038/srep24765 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Park JJ, Dempewolf E, Zhang W, Wang ZY (2017) RNA-guided transcriptional activation via CRISPR/dCas9 mimics overexpression phenotypes in Arabidopsis. PLoS One.  https://doi.org/10.1371/journalpone.0179410
  44. Perez-Pinera P, Kocak DD, Vockley CM, Adler AF, Kabadi AM, Polstein LR, Thakore PI, Glass KA, Ousterout DG, Leong KW, Guilak F (2013) RNA-guided gene activation by CRISPR-Cas9–based transcription factors. Nat Methods 10:973–976.  https://doi.org/10.1038/nmeth.2600 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Piatek A, Ali Z, Baazim H, Li L, Abulfaraj A, Al-Shareef S, Aouida M, Mahfouz MM (2015) RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors. Plant Biotechnol J 13:578–589.  https://doi.org/10.1111/pbi.12284 CrossRefPubMedGoogle Scholar
  46. Qi W, Zhu T, Tian Z, Li C, Zhang W, Song R (2016) High-efficiency CRISPR/Cas9 multiplex gene editing using the glycine tRNA-processing system-based strategy in maize. BMC Biotechnol 16:58.  https://doi.org/10.1186/s12896-016-0289-2 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Sampson TR, Saroj SD, Llewellyn AC, Tzeng YL, Weiss DS (2013) A CRISPR/Cas system mediates bacterial innate immune evasion and virulence. Nature 497:254–257.  https://doi.org/10.1038/nature12048 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi JJ, Qiu JL, Gao C (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotech 31:686–688CrossRefGoogle Scholar
  49. Shan Q, Wang Y, Li J, Gao C (2014) Genome editing in rice and wheat using the CRISPR/Cas system. Nat Protoc 9:2395–2410.  https://doi.org/10.1038/nprot.2014.157 CrossRefPubMedGoogle Scholar
  50. Shi J, Gao H, Wang H, Lafitte HR, Archibald RL, Yang M, Hakimi SM, Mo H, Habben JE (2016) ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol JGoogle Scholar
  51. Stagg CJ, Bachtiar V, Amadi U, Gudberg CA, Ilie AS, Sampaio-Baptista C, O’Shea J, Woolrich M, Smith SM, Filippini N, Near J (2014) Local GABA concentration is related to network-level resting functional connectivity. elife 3.  https://doi.org/10.7554/eLife.01465
  52. Sun Y, Li J, Xia L (2016a) Precise genome modification via sequence-specific nucleases-mediated gene targeting for crop improvement. Front Plant Sci 7.  https://doi.org/10.3389/fpls.2016.01928
  53. Sun Y, Zhang X, Wu C, He Y, Ma Y, Hou H, Guo X, Du W, Zhao Y, Xia L (2016b) Engineering herbicide-resistant Rice plants through CRISPR/Cas9-mediated homologous recombination of Acetolactate synthase. Mol Plant 9:628–631CrossRefGoogle Scholar
  54. Sun Y, Jiao G, Liu Z, Zhang X, Li J, Guo X, Du W, Du J, Francis F, Zhao Y, Xia L (2017) Generation of high-amylose Rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes. Front Plant Sci 8:298PubMedPubMedCentralGoogle Scholar
  55. Svitashev S, Young J, Schwartz C, Gao H, Falco SC, Cigan AM (2015) Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol 169:931.  https://doi.org/10.1104/pp.15.00793 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Svitashev S, Schwartz C, Lenderts B, Young JK, Cigan AM (2016) Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nat Commun 7:13274.  https://doi.org/10.1038/ncomms13274 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Ueta R, Abe C, Watanabe T, Sugano SS, Ishihara R, Ezura H, Osakabe Y, Osakabe K (2017) Rapid breeding of parthenocarpic tomato plants using CRISPR/Cas9. Sci Rep 7:507.  https://doi.org/10.1038/s41598-017-00501-4 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Upadhyay SK, Kumar J, Alok A, Tuli R (2013) RNA-guided genome editing for target gene mutations in wheat G3 (Bethesda) 3:2233–2238Google Scholar
  59. Vazquez-Vilar M, Bernabé-Orts JM, Fernandez-del-Carmen A, Ziarsolo P, Blanca J, Granell A, Orzaez D (2016) A modular toolbox for gRNA–Cas9 genome engineering in plants based on the GoldenBraid standard. Plant Methods 12:10.  https://doi.org/10.1186/s13007-016-0101-2 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu JL (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew Nat Biotechnol Advance on:1–6.  https://doi.org/10.1038/nbt.2969 CrossRefGoogle Scholar
  61. Xie K, Yang Y (2013) RNA-guided genome editing in plants using a CRISPR-Cas system. Mol Plant 6:1975–1983.  https://doi.org/10.1093/mp/sst119 CrossRefPubMedGoogle Scholar
  62. Xie K, Minkenberg B, Yang Y (2015) Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc Natl Acad Sci U S A 112:3570–3575.  https://doi.org/10.1073/pnas.1420294112 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Yin K, Han T, Liu G, Chen T, Wang Y, Yu AY, Liu Y (2015) A geminivirus-based guide RNA delivery system for CRISPR/Cas9 mediated plant genome editing. Sci Rep 5:14926.  https://doi.org/10.1038/srep14926 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Anshu Alok
    • 1
  • Jitesh Kumar
    • 2
  • Phanikanth Jogam
    • 3
  • Dulam Sandhya
    • 3
  1. 1.University Institute of Engineering and TechnologyPanjab UniversityChandigarhIndia
  2. 2.Center of Innovative and Applied BioprocessingMohaliIndia
  3. 3.Department of BiotechnologyKakatiya UniversityWarangalIndia

Personalised recommendations