Metabolomics Resources: An Introduction of Databases and Their Future Prospective

  • Neeraj Kumar
  • Vishal AcharyaEmail author


Metabolomics, an extended branch deals with targeted metabolite analysis, takes transcriptome and proteome analysis in consideration to solve complex biological puzzles. Improved insight in the metabolomics has generated huge complex of data that makes room for improved in silico methodologies to reveal the basic biological mechanism from the generated datasets. Despite, the recently developed tools, various software and metabolomics resources available and other information in the form of databases are currently lacking in providing precise and required information. Therefore, this chapter will provide the readers an overview of available open-source tools, algorithms, and workflow strategy to familiarize, promote, and facilitate metabolomics research and data processing frameworks. Though most of the tools and resources that have been described in this chapter include data processing, data annotation, and data visualization in mass spectrometry (MS) and NMR-based metabolomics and specific tools for untargeted metabolomics workflows, few advanced tools will also be discussed. The tools and resources discussed here have well-known collaborations of analytical data with reliance in computational platform. In the end, we have discussed about the future prospective for metabolomics resources.


Metabolomics Databases Mass spectrophotometer Annotation Molecular networking 



Application programming interfaces


Competitive fragmentation modeling


Gas chromatography-mass spectroscopy


Kyoto Encyclopedia of Genes and Genomes


Liquid chromatography-mass chromatography


Matrix-free laser desorption/ionization


Nuclear magnetic resonance


  1. Alcaraz N, Pauling J, Batra R, Barbosa E, Junge A, Christensen AG, Azevedo V, Ditzel HJ, Baumbach J (2014) KeyPathwayMiner 4.0: condition-specific pathway analysis by combining multiple omics studies and networks with Cytoscape. BMC Syst Biol 8:99CrossRefGoogle Scholar
  2. Allen F, Greiner R, Wishart D (2015) Competitive fragmentation modeling of ESI-MS/MS spectra for putative metabolite identification. Metabolomics 11:98–110CrossRefGoogle Scholar
  3. Ara T, Enomoto M, Arita M, Ikeda C, Kera K, Yamada M, Nishioka T, Ikeda T, Nihei Y, Shibata D, Kanaya S, Sakurai N (2015) Metabolonote: a wiki-based database for managing hierarchical metadata of metabolome analyses. Front Bioeng Biotechnol.
  4. Berdy J (2005) Bioactive microbial metabolites. J Antibiot 58:1–26CrossRefGoogle Scholar
  5. Broeckling CD, Afsar FA, Neumann S, Ben-Hur A, Prenni JE (2015) RAMClust: a novel feature clustering method enables spectral-matching-based annotation for metabolomics data. Anal Chem 86:6812–6817CrossRefGoogle Scholar
  6. Cicek AE, Qi X, Cakmak A, Johnson SR, Han X, Alshalwi S, Ozsoyoglu ZM, Ozsoyoglu G (2014) An online system for metabolic network analysis. Database (Oxford) pii: bau091. CrossRefGoogle Scholar
  7. Coble JB, Fraga CG (2014) Comparative evaluation of preprocessing freeware on chromatography/mass spectroscopy data for signature discovery. J Chromatogr A 1358:155–164CrossRefGoogle Scholar
  8. Daly R, Rogers S, Wandy J, Jankevics A, Burgess KE, Breitling R (2014) MetAssign: probabilistic annotation of metabolites from LC-MS data using a Bayesian clustering approach. Bioinformatics 30:2764–2771CrossRefGoogle Scholar
  9. Dhanasekaran AR, Pearson JL, Ganesan B, Weimer BC (2015) Metabolome searcher: a high throughput tool for metabolite identification and metabolic pathway mapping directly from mass spectroscopy and using genome restriction. BMC Bioinform 16:62CrossRefGoogle Scholar
  10. Doerfler H, Sun X, Wang L, Engelmeier D, Lyon D, Weckwerth W (2014) mzGroupAnalyzer-predicting pathways and novel chemical structures from untargeted high-throughput metabolomics data. PloS One 9:e96188CrossRefGoogle Scholar
  11. Edmands WM, Barupal DK, Scalbert A (2014) MetMSLine: an automated and fully integrated pipeline for rapid processing of high-resolution LC-MS metabolomics datasets. Bioinformatics 31:788–790CrossRefGoogle Scholar
  12. Fernández-Albert F, Llorach R, Andrés-Lacueva C, Perera A (2014) An R package to analyse LC/MS metabolomics data: MAIT (metabolite automatic identification toolkit). Bioinformatics 30:1937–1939CrossRefGoogle Scholar
  13. French WR, Zimmerman LJ, Schilling B, Gibson BW, Miller CA, Townsend RR, Sherrod SD, Goodwin CR, McLean JA, Tabb DL (2014) Wavelet-based peak detection and a new charge inference procedure for MS/MS implemented in proteoWizard’s msConvert. J Proteome Res 14:1299–1307CrossRefGoogle Scholar
  14. Garg N, Conrad D, Dorrestein P (2015) Metabolomics by mass spectrometry based molecular networking and spatial mapping. FASEB J 29:369–371Google Scholar
  15. Grapov D, Fahrmann J, Hwang J, Poudel A, Jo J, Periwal V, Fiehn O, Hara M (2015) Diabetes associated metabolomics perturbations in NOD mice. Metabolomics 11:425–437CrossRefGoogle Scholar
  16. Griss J, Jones AR, Sachsenberg T, Walzer M, Gatto L, Hartler J, Thallinger GG, Salek RM, Steinbeck C, Neuhauser N, Cox J, Neumann S, Fan J, Reisinger F, Xu QW, Del Toro N, Pérez-Riverol Y, Ghali F, Bandeira N, Xenarios I, Kohlbacher O, Vizcaíno JA, Hermjakob H (2014) The mzTab data exchange format: communicating mass-spectrometry-based proteomics and metabolomics experimental results to a wider audience. Mol. Cell Proteomics 13:2765–2775CrossRefGoogle Scholar
  17. Hamdalla MA, Rajasekaran S, Grant DF, Măndoiu II (2015) Metabolic pathway predictions for metabolomics: a molecular structure matching approach. J Chem Inf Model 55:709–718CrossRefGoogle Scholar
  18. Haug K, Salek RM, Conesa P, Hastings J, de Matos P, Rijnbeek M, Mahendraker T, Williams M, Neumann S, Rocca-Serra P, Maguire E, González-Beltràn A, Sansone SA, Griffin JL, Steinbeck C (2012) MetaboLights-an open-access general-purpose repository for metabolomics studies and associated meta-data. Nucleic Acids Res 41:D781–D786CrossRefGoogle Scholar
  19. Jeffryes JG, Colastani RL, Elbadawi-Sidhu M, Kind T, Niehaus TD, Broadbelt LJ, Hanson AD, Fiehn O, Tyo KE, Henry CS (2015) MINE: open access databases of computationally predicted enzyme promiscuity products for untargeted metabolomics. J Cheminform 7:44CrossRefGoogle Scholar
  20. Johnson SR, Lange BM (2015) Open-access metabolomics databases for natural product research: present capabilities and future potential. Front Bioeng Biotechnol 3:1–10CrossRefGoogle Scholar
  21. Kaever A, Landesfeind M, Feussner K, Mosblech A, Heilmann I, Morgenstern B, Feussner I, Meinicke P (2015) MarVis-pathway: integrative and exploratory pathway analysis of non-targeted metabolomics data. Metabolomics 11:764–777CrossRefGoogle Scholar
  22. Kessner D, Chambers M, Burke R, Agus D, Mallick P (2008) ProteoWizard: open source software for rapid protemomics tools development. Bioinformatics 24:2534–2536CrossRefGoogle Scholar
  23. Kim S, Fang A, Wang B, Jeong J, Zhang X (2011) An optimal peak alignment for comprehensive two-dimensional gas chromatography mass spectrometry using mixture similarity measure. Bioinformatics 27:1660–1666CrossRefGoogle Scholar
  24. Kirwan JA, Weber RJ, Broadhurst DI, Viant MR (2014) Direct infusion mass spectrometry metabolomics dataset: a benchmark for data processing and quality control. Sci Data 1:140012CrossRefGoogle Scholar
  25. Kotera M, Tabei Y, Yamanishi Y, Muto A, Moriya Y, Tokimatsu T, Goto S (2014) Metabolome-scale prediction of intermediate compounds in multistep metabolic pathways with a recursive supervised approach. Bioinformatics 30:i165–i174CrossRefGoogle Scholar
  26. Lee HS, Jo S, Mukherjee S, Park SJ, Skolnick J, Lee J, Im W (2015) GS-align for glycan strcutre alignment and similarity measurement. Bioinformatics 31:2653–2659CrossRefGoogle Scholar
  27. Li JW, Vederas JC (2009) Drug discovery and natural products: end of an era or an endless frontier? Science 325:161–165CrossRefGoogle Scholar
  28. Liu Y, Liang Y, Wishart D (2015) PolySearch2: a significantly improved text-mining system for discovering associations between human diseases, genes, drugs, metabolites, toxins and more. Nucleic Acids Res 43:W535–W542CrossRefGoogle Scholar
  29. Newman DJ, Cragg GM (2012) Natural products as source of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75:311–335CrossRefGoogle Scholar
  30. Nikolskiy I, Siuzdak G, Patti GJ (2015) Discriminating precursors of common fragments for large-scale metabolite profiling by triple quadrupole mass spectrometry. Bioinformatics 31:2017–2023CrossRefGoogle Scholar
  31. Ogura T, Bamba T, Tai A, Fukusaki E (2015) Method for the compound annotation of conjugates in nontargeted metabolomics using accurate mass spectroscopy, multistage product ion spectra and compound database searching. Mass Spectrom 4:A0036CrossRefGoogle Scholar
  32. Ohtana Y, Abdullah AA, Altaf-Ul-Amin M, Huang M, Ono N, Sato T, Sugiura T, Horai H, Nakamura Y, Morita HA, Lange KW, Kibinge NK, Katsuragi T, Shirai T, Kanaya S (2014) Clustering of 3D-strcuture similarity based network of secondary metabolites reveals their relationship with biological activities. Mol Inform 33:790–801PubMedGoogle Scholar
  33. Over B, Wetzel S, Grutter C, Nakai Y, Renner S, Rauh D, Waldmann H (2013) Natural-product-derived fragments for fragment-based ligand discovery. Nat Chem 5:21–28CrossRefGoogle Scholar
  34. Pluskal T, Castillo S, Villar-Briones A, Oresic M (2010) MZmine 2: modular framework for processing, visualizing, and analyzing mass spectroscopy. BMC Bioinform 11:395CrossRefGoogle Scholar
  35. Pon A, Jewison T, Su Y, Liang Y, Knox C, Maciejewski A, Wilson M, Wishart DS (2015) Pathways with PathWhiz. Nucleic Acids Res 43:W552–W559CrossRefGoogle Scholar
  36. Rolda’n C, de la Torre A, Mota S, Mprales-Soto A, Menendez J, Segura-Carretero A (2013) Idetification of active compounds in vegetal extracts based on correlation between activity and HPLC-MS data. Food Chem 136:392–399CrossRefGoogle Scholar
  37. Sakurai N, Ara T, Enomoto M, Motegi T, Morishita Y, Kurabayashi A, Iijima Y, Ogata Y, Nakajima D, Suzuki H, Shibata D (2014) Tools and databases of the KOMICS web portal for preprocessing, mining, and dissemination of metabolomics data. Biomed Res Int 2014:194812CrossRefGoogle Scholar
  38. Smith CA, Want EJ, O’Maille G, Abagyan R, Siuzdak G (2006) XCMS: Processing Mass Spectroscopy data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem 78:779–787CrossRefGoogle Scholar
  39. Sun H, Wang H, Zhu R, Tang K, Gong Q, Cui J, Cao Z, Liu Q (2014) iPEAP: integrating multiple omics and genetic data for pathway enrichment analysis. Bioinformatics 30:737–739CrossRefGoogle Scholar
  40. Tengstrand E, Lindberg J, Aberg KM (2014) TracMass 2-a modular suite of tools for processing chromatography-full scan mass spectroscopy data. Anal Chem 86:3435–3442CrossRefGoogle Scholar
  41. Winnikoff JR, Glukhov E, Watrous J, Dorrestein PC, Gerwick WH (2014) Quantitative molecular networking to profile marine cyanobacterial metabolomes. J Antibiot 67:105–112CrossRefGoogle Scholar
  42. Wishart DS (2008) Quantitative metabolomics using NMR. TrAC Trends Anal Chem 27:228–237CrossRefGoogle Scholar
  43. Xu QW, Griss J, Wang R, Jones AR, Hermjakob H, VizcaÍno J (2014) A (2014) jmzTab: a java interface to the mzTab data standard. Proteomics 14:1328–1332CrossRefGoogle Scholar
  44. Yu T, Jones DP (2014) Improving peak detection in high-resolution LC/MS metabolomics data using preexisting knowledge and machine learning approach. Bioinformatics 30:2941–2948CrossRefGoogle Scholar
  45. Zhu ZJ, Schultz AW, Wang J, Johnson CH, Yannone SM, Patti GJ, Siuzdak G (2013) Liquid chromatography quadrupole time-of-flight mass spectrometry characterization of metabolites guided by the METLIN database. Nat Prot 8:451–460CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Functional Genomics and Complex System Laboratory, Biotechnology DivisionCSIR-Institute of Himalayan Bioresource TechnologyPalampurIndia
  2. 2.Academy of Scientific and Innovative Research (AcSIR)CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT) CampusPalampurIndia

Personalised recommendations