Synthetic Biology Advances for Enrichment of Bioactive Molecules in Plants

  • Lokesh Kumar Narnoliya
  • Jyoti Singh Jadaun
  • Sudhir P SinghEmail author


Plant bioactive molecules are secondary metabolites that have pharmacological effects on human beings. Three types of secondary metabolites are present in plant systems: terpenes, alkaloids, and phenylpropanoids. They may not be very crucial for plant growth and development aspects, but are needful for survivability and fecundity. These pharmaceutical molecules are useful in the development of drug and other herbal preparations of potential health benefits. These phytomedicines are known to exert minimal side effects and enormous positive effectiveness to human health; therefore, their utility is enhancing day by day. Currently, many drug formulations contain plant bioactive molecules as a sole ingredient, covering more than 50% of the medicine-market. Despite the demand of secondary metabolites in the market, their supply is limited from the natural sources; therefore, technologies are required to enhance their production. Although advance breeding and biotechnological tools are being applied to enhance the biosynthetic level of bioactive molecules, synthetic biology offers a promising approach for production of these metabolites at substantial scale. Synthetic biology is a branch of biology and engineering, useful in designing and constructing modulated metabolic pathways and bioengineering of biological systems for the production of bioactive molecules. This chapter discusses about the plant bioactive molecules, their types, biosynthetic pathways, and significance. The molecular biology approaches used for production of the secondary metabolites have been summarized in this chapter. It also covers the systems and tools, which are used in synthetic biology technique for upscaling of the selected metabolites. Further, the case studies of the biosynthetic production of high-value biomolecules and the future perspectives of synthetic biology have been discussed.


Secondary metabolites Bioactive molecules Terpenes Alkaloids Phenylpropanoids Synthetic biology CRISPR-Cas 



Mevalonic acid


2-C-methyl-D-erythritol 4-phosphate


Isopentenyl diphosphate


D-glyceraldehyde 3-phosphate


Dimethylallyl pyrophosphate


Geranyl pyrophosphate


Monoterpene synthases


Farnesyl pyrophosphate


Geranylgeranyl diphosphate


3-Hydroxy-3-methylglutaryl coenzyme A reductase


Monoterpene indole alkaloids


Benzylisoquinoline alkaloids


Clustered regularly interspaced short palindromic repeats-Cas9


Double-strand break


Single-guide RNA


  1. Ajikumar PK, Xiao WH, Tyo KE, Wang Y, Simeon F, Leonard E, Mucha O, Phon TH, Pfeifer B, Stephanopoulos G (2010) Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science 330:70–74CrossRefPubMedPubMedCentralGoogle Scholar
  2. Akula R, Ravishankar GA (2011) Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav 6:1720–1731CrossRefGoogle Scholar
  3. Albertsen L, Chen Y, Bach LS, Rattleff S, Maury J, Brix S, Nielsen J, Mortensen UH (2011) Diversion of flux toward sesquiterpene production in Saccharomyces cerevisiaeby fusion of host and heterologous enzymes. Appl Environ Microbiol 77:1033–1040PubMedPubMedCentralCrossRefGoogle Scholar
  4. Allen RS, Millgate AG, Chitty JA, Thisleton J, Miller JA, Fist AJ, Gerlach WL, Larkin PJ (2004) RNAi-mediated replacement of morphine with the nonnarcotic alkaloid reticuline in opium poppy. Nat Biotechnol 22:1559–1566PubMedCrossRefPubMedCentralGoogle Scholar
  5. Alonso-Gutierrez J, Chan R, Batth TS, Adams PD, Keasling JD, Petzold CJ, Lee TS (2013) Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production. Metab Eng 19:33–41PubMedCrossRefPubMedCentralGoogle Scholar
  6. Alvarez MA (2014) Plant biotechnology for health: from secondary metabolites to molecular farming. Springer, ChamCrossRefGoogle Scholar
  7. Andrianantoandro E, Basu S, Karig DK, Weiss R (2006) Synthetic biology: new engineering rules for an emerging discipline. Mol Syst Biol 2:2006.0028PubMedPubMedCentralCrossRefGoogle Scholar
  8. Asadollahi MA, Maury J, Møller K, Nielsen KF, Schalk M, Clark A, Nielsen J (2008) Production of plant sesquiterpenes in Saccharomyces cerevisiae: effect of ERG9 repression on sesquiterpene biosynthesis. Biotechnol Bioeng 99:666–677CrossRefGoogle Scholar
  9. Baenas N, García-Viguera C, Moreno DA (2014) Elicitation: a tool for enriching the bioactive composition of foods. Molecules 19:13541–13563PubMedCrossRefPubMedCentralGoogle Scholar
  10. Baltes NJ, Voytas DF (2015) Enabling plant synthetic biology through genome engineering. Trends Biotechnol 33:120–131PubMedCrossRefGoogle Scholar
  11. Beekwilder J, Wolswinkel R, Jonker H, Hall R, De Vos CR, Bovy A (2006) Production of resveratrol in recombinant microorganisms. Appl Environ Microbiol 72(8):5670-5672.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bernhoft A, Siem H, Bjertness E, Meltzer M, Flaten T, Holmsen E (2010) Bioactive compounds in plants–benefits and risks for man and animals. In: Proceedings from a symposium held at the Norwegian Academy of Science and Letters, Novus forlag, OsloGoogle Scholar
  13. Bhan N, Li L, Cai C, Xu P, Linhardt RJ, Koffas MA (2015) Enzymatic formation of a resorcylic acid by creating a structure-guided single-point mutation in stilbene synthase. Protein Sci 24(2):167–173PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bourgaud F, Gravot A, Milesi S, Gontier E (2001) Production of plant secondary metabolites: a historical perspective. Plant Sci 161:839–851CrossRefGoogle Scholar
  15. Boyd W (2000) Natural colors as functional ingredients in healthy foods. Cereal Foods World 45(5):221–222Google Scholar
  16. Brodelius M, Lundgren A, Mercke P, Brodelius PE (2002) Fusion of farnesyldiphosphate synthase and epi-aristolochene synthase, a sesquiterpene cyclase involved in capsidiol biosynthesis in Nicotiana tabacum. Eur J Biochem 269:3570–3577PubMedCrossRefGoogle Scholar
  17. Brown S, Clastre M, Courdavault V, O’Connor SE (2015) De novo production of the plant-derived alkaloid strictosidine in yeast. Proc Natl Acad Sci U S A 112:3205–3210PubMedPubMedCentralCrossRefGoogle Scholar
  18. Cameron DE, Bashor CJ, Collins JJ (2014) A brief history of synthetic biology. Nat Rev Microbiol 12:381–390PubMedCrossRefGoogle Scholar
  19. Chaurasia N, Mishra Y (2016) Novel technologies for plant functional genomics. In: Dubey SK, Pandey A, Sangwan RS (eds) Current developments in biotechnology and bioengineering: crop modification, nutrition, and food production. Elsevier, Amsterdam, p 241Google Scholar
  20. Chaurasiya ND, Sangwan NS, Sabir F, Misra L, Sangwan RS (2012) Withanolide biosynthesis recruits both mevalonate and DOXP pathways of isoprenogenesis in Ashwagandha Withania somnifera L. (Dunal). Plant Cell Rep 31:1889–1897PubMedCrossRefGoogle Scholar
  21. Covello PS (2008) Making artemisinin. Phytochemistry 69:2881–2885PubMedCrossRefGoogle Scholar
  22. Dai Z, Liu Y, Huang L, Zhang X (2012) Production of miltiradiene by metabolically engineered Saccharomyces Cerevisiae. Biotechnol Bioeng 109:2845–2853PubMedCrossRefGoogle Scholar
  23. Davidovich-Rikanati R, Sitrit Y, Tadmor Y, Iijima Y, Bilenko N, Bar E, Carmona B, Fallik E, Dudai N, Simon JE, Pichersky E (2007) Enrichment of tomato flavor by diversion of the early plastidial terpenoid pathway. Nature Biotech 25(8):899–902PubMedCrossRefGoogle Scholar
  24. Deavours BE, Dixon RA (2005) Metabolic engineering of isoflavonoid biosynthesis in alfalfa. Plant Physiol 138:2245–2259PubMedPubMedCentralCrossRefGoogle Scholar
  25. Ding M-Z, Yan H-F, Li L-F, Zhai F, Shang L-Q, Yin Z, Yuan YJ (2014) Biosynthesis of Taxadiene in Saccharomyces cerevisiae: selection of geranylgeranyl diphosphate synthase directed by a computer-aided docking strategy. PLoS One 9:e109348PubMedPubMedCentralCrossRefGoogle Scholar
  26. Dziggel C, Schäfer H, Wink M (2017) Tools of pathway reconstruction and production of economically relevant plant secondary metabolites in recombinant microorganisms. Biotechnol J 12CrossRefGoogle Scholar
  27. Ellis T, Adie T, Baldwin GS (2011) DNA assembly for synthetic biology: from parts to pathways and beyond. Integr Biol 3:109–118CrossRefGoogle Scholar
  28. Engels B, Dahm P, Jennewein S (2008) Metabolic engineering of taxadiene biosynthesis in yeast as a first step towards Taxol (Paclitaxel) production. Metab Eng 10:201–206PubMedCrossRefGoogle Scholar
  29. Fernie AR, Schauer N (2009) Metabolomics-assisted breeding: a viable option for crop improvement? Trends Genet 25:39–48PubMedCrossRefGoogle Scholar
  30. Fossati E, Narcross L, Ekins A, Falgueyret JP, Martin VJ (2015) Synthesis of morphinan alkaloids in Saccharomyces cerevisiae. PLoS One 10:e0124459PubMedPubMedCentralCrossRefGoogle Scholar
  31. Grace C, Grupper M (2005) Aligning ACT supply and demand: short and long term options. DFID Health Systems Resource Centre, LondonGoogle Scholar
  32. Gupta P, Goel R, Pathak S, Srivastava A, Singh SP, Sangwan RS, Asif MH, Trivedi PK (2013) De novo assembly, functional annotation and comparative analysis of Withania somnifera leaf and root transcriptomes to identify putative genes involved in the withanolides biosynthesis. PLoS One 8:e62714PubMedPubMedCentralCrossRefGoogle Scholar
  33. Hagel JM, Facchini PJ (2013) Benzylisoquinoline alkaloid metabolism–a century of discovery and a brave new world. Plant Cell Physiol 54:647–672PubMedCrossRefPubMedCentralGoogle Scholar
  34. Hale V, Keasling JD, Renninger N, Diagana TT (2007) Microbially derived artemisinin: a biotechnology solution to the global problem of access to affordable antimalarial drugs. Am J Trop Med Hyg 77:198–202PubMedCrossRefPubMedCentralGoogle Scholar
  35. Hawkins KM, Smolke CD (2008) Production of benzylisoquinoline alkaloids in Saccharomyces cerevisiae. Nat Chem Biol 4(9):564–573PubMedPubMedCentralCrossRefGoogle Scholar
  36. Hidalgo D, Martínez-Márquez A, Moyano E, Bru-Martínez R, Corchete P, Palazon J (2017) Bioconversion of stilbenes in genetically engineered root and cell cultures of tobacco. Sci Rep 7:45331PubMedPubMedCentralCrossRefGoogle Scholar
  37. Hussain MS, Fareed S, Ansari S, Rahman MA, Ahmad IZ, Saeed M (2012) Current approaches toward production of secondary plant metabolites. J Pharm Bioallied Sci 4:10PubMedPubMedCentralCrossRefGoogle Scholar
  38. Jackson BE, Hart-Wells EA, Matsuda SP (2003) Metabolic engineering to produce sesquiterpenes in yeast. Org Lett 5:1629–1632PubMedCrossRefPubMedCentralGoogle Scholar
  39. Jiang H, Wood KV, Morgan JA (2005) Metabolic engineering of the phenylpropanoid pathway in Saccharomyces cerevisiae. Appl Environ Microbiol 71(6):2962–2969PubMedPubMedCentralCrossRefGoogle Scholar
  40. Kabera JN, Semana E, Mussa AR, He X (2014) Plant secondary metabolites: biosynthesis, classification, function and pharmacological properties. J Pharm Pharmacol 2:377–392Google Scholar
  41. Katsuyama Y, Miyahisa I, Funa N, Horinouchi S (2007) One-pot synthesis of genistein from tyrosine by coincubation of genetically engineered Escherichia coli and Saccharomyces cerevisiae cells. Appl Microbiol Biotechnol 73:1143–1149PubMedCrossRefPubMedCentralGoogle Scholar
  42. Khanuja S P S, Paul S, Shasany A K, Gupta A K, Darokar M P, Gupta M M, Verma R K, Ram G, Kumar A, Lal R K, Bansal R P (2008) High artemisinin yielding Artemisia plant named ‘CIM-Arogya’. US Patent 7: 375,260Google Scholar
  43. Kim HU, Charusanti P, Lee SY, Weber T (2016) Metabolic engineering with systems biology tools to optimize production of prokaryotic secondary metabolites. Nat Product Rep 33:933–941CrossRefGoogle Scholar
  44. Koopman F, Beekwilder J, Crimi B, van Houwelingen A, Hall RD, Bosch D, van Maris AJ, Pronk JT, Daran JM (2012) De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae. Microb Cell Factories 11:155PubMedPubMedCentralCrossRefGoogle Scholar
  45. Lewinsohn E, Schalechet F, Wilkinson J, Matsui K, Tadmor Y, Nam KH, Amar O, Lastochkin E, Larkov O, Ravid U, Hiatt W (2001) Enhanced levels of the aroma and flavor compound S-linalool by metabolic engineering of the terpenoid pathway in tomato fruits. Plant Physiol 127:1256–1265PubMedPubMedCentralCrossRefGoogle Scholar
  46. Li FX, Jin ZP, Zhao DX, Cheng LQ, Fu CX, Ma F (2006) Overexpression of the Saussurea medusa chalcone isomerase gene in S. involucrata hairy root cultures enhances their biosynthesis of apigenin. Phytochemistry 67(6):553–560PubMedCrossRefGoogle Scholar
  47. Li M, Kildegaard KR, Chen Y, Rodriguez A, Borodina I, Nielsen J (2015) De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae. Metab Eng 32:1–11PubMedCrossRefGoogle Scholar
  48. Li M, Schneider K, Kristensen M, Borodina I, Nielsen J (2016) Engineering yeast for high-level production of stilbenoid antioxidants. Sci Rep 6Google Scholar
  49. Lindberg P, Park S, Melis A (2010) Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metab Eng 12:70–79PubMedCrossRefGoogle Scholar
  50. Liu W, Stewart CN (2015) Plant synthetic biology. Trends Plant Sci 20:309–317PubMedCrossRefGoogle Scholar
  51. Luo Y, Li BZ, Liu D, Zhang L, Chen Y, Jia B, Zeng BX, Zhao H, Yuan YJ (2015) Engineered biosynthesis of natural products in heterologous hosts. Chem Soc Rev 44:5265–5290PubMedPubMedCentralCrossRefGoogle Scholar
  52. Marienhagen J, Bott M (2013) Metabolic engineering of microorganisms for the synthesis of plant natural products. J Biotechnol 163:166–178PubMedCrossRefPubMedCentralGoogle Scholar
  53. Martin VJ, Pitera DJ, Withers ST, Newman JD, Keasling JD (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 21:796PubMedCrossRefPubMedCentralGoogle Scholar
  54. Matsumura E, Matsuda M, Sato F, Minami H (2013) Microbial production of plant benzylisoquinoline alkaloids. Natural Products, Springer, Berlin, pp3–24CrossRefGoogle Scholar
  55. Mazid M, Khan TA, Mohammad F (2011) Role of secondary metabolites in defense mechanisms of plants. Biol Med 3:232–249Google Scholar
  56. Mei YZ, Liu RX, Wang DP, Wang X, Dai CC (2015) Biocatalysis and biotransformation of resveratrol in microorganisms. Biotechnol Lett 37:9–18PubMedCrossRefPubMedCentralGoogle Scholar
  57. Minami H, Kim JS, Ikezawa N, Takemura T, Katayama T, Kumagai H, Sato F (2008) Microbial production of plant benzylisoquinoline alkaloids. Proc Natl Acad Sci 105(21):7393–7398CrossRefGoogle Scholar
  58. Mishra S, Bansal S, Mishra B, Sangwan RS, Jadaun JS, Sangwan NS (2016) RNAi and homologous over-expression based functional approaches reveal triterpenoid synthase gene-cycloartenol synthase is involved in downstream withanolide biosynthesis in Withania somnifera. PLoS One 11:e0149691PubMedPubMedCentralCrossRefGoogle Scholar
  59. Moses T, Pollier J, Thevelein JM, Goossens A (2013) Bioengineering of plant (tri) terpenoids: from metabolic engineering of plants to synthetic biology in vivo and in vitro. New Phytol 200:27–43PubMedCrossRefGoogle Scholar
  60. Moyano E, Fornalé S, Palazón J, Cusidó RM, Bagni N, Piñol MT (2002) Alkaloid production in Duboisia hybrid hairy root cultures overexpressing the pmt gene. Phytochemistry 59:697–702PubMedCrossRefGoogle Scholar
  61. Muir SR, Collins GJ, Robinson S, Hughes S, Bovy A, De Vos CR, van Tunen AJ, Verhoeyen ME (2001) Overexpression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonols. Nat Biotechnol 19:470–474CrossRefGoogle Scholar
  62. Nagegowda DA (2010) Plant volatile terpenoid metabolism: biosynthetic genes, transcriptional regulation and subcellular compartmentation. FEBS Lett 584:2965–2973PubMedCrossRefGoogle Scholar
  63. Nakatsuka T, Abe Y, Kakizaki Y, Yamamura S, Nishihara M (2007) Production of red-flowered plants by genetic engineering of multiple flavonoid biosynthetic genes. Plant Cell Rep 26:1951–1959PubMedCrossRefGoogle Scholar
  64. Narnoliya LK, Sangwan NS, Sangwan RS (2014a) Mining of BAHD superfamily alcohol acyl transferases from Artemisia annua trichome transcriptome. CSIR-CIMAP 128Google Scholar
  65. Narnoliya LK, Rajakani R, Sangwan NS, Gupta V, Sangwan RS (2014b) Comparative transcripts profiling of fruit mesocarp and endocarp relevant to secondary metabolism by suppression subtractive hybridization in Azadirachta indica (neem). Mol Biol Rep 41:3147–3162PubMedCrossRefGoogle Scholar
  66. Narnoliya LK, Kaushal G, Singh SP, Sangwan RS (2017) De novo transcriptome analysis of rose-scented geranium provides insights into the metabolic specificity of terpene and tartaric acid biosynthesis. BMC Genomics 18:74PubMedPubMedCentralCrossRefGoogle Scholar
  67. Narnoliya LK, Sangwan RS, Singh SP (2018 Jun) Transcriptome mining and in silico structural and functional analysis of ascorbic acid and tartaric acid biosynthesis pathway enzymes in rose-scanted geranium. Mol Biol Rep 45(3):315–326PubMedCrossRefGoogle Scholar
  68. Palazón J, Moyano E, Cusidó RM, Bonfill M, Oksman-Caldentey KM, Piñol MT (2003) Alkaloid production in Duboisia hybrid hairy roots and plants overexpressing the h6h gene. Plant Sci 165:1289–1295CrossRefGoogle Scholar
  69. Puchta H (2016) Using CRISPR/Cas in three dimensions: towards synthetic plant genomes, transcriptomes and epigenomes. Plant J 87:5–15PubMedCrossRefGoogle Scholar
  70. Qiu J, Gao F, Shen G, Li C, Han X, Zhao Q, Zhao D, Hua X, Pang Y (2013) Metabolic engineering of the phenylpropanoid pathway enhances the antioxidant capacity of Saussurea involucrata. PLoS One 8:e70665PubMedPubMedCentralCrossRefGoogle Scholar
  71. Rao SR, Ravishankar GA (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv 20:101–153PubMedCrossRefGoogle Scholar
  72. Rastogi S, Kalra A, Gupta V, Khan F, Lal RK, Tripathi AK, Parameswaran S, Gopalakrishnan C, Ramaswamy G, Shasany AK (2015) Unravelling the genome of Holy basil: an “incomparable elixir of life” of traditional Indian medicine. BMC Genomics 16:413PubMedPubMedCentralCrossRefGoogle Scholar
  73. Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MC (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943PubMedPubMedCentralCrossRefGoogle Scholar
  74. Samanani N, Facchini PJ (2002) Purification and characterization of norcoclaurine synthase. The first committed enzyme in benzylisoquinoline alkaloid biosynthesis in plants. J Biol Chem 277:33878–33883PubMedCrossRefGoogle Scholar
  75. Sangwan NS, Sangwan RS (2014) Secondary metabolites of traditional medical plants: a case study of ashwagandha (Withania somnifera). In: Applied plant cell biology. Springer, Berlin/Heidelberg. ISBN: 978-3-642-41786-3:325-367Google Scholar
  76. Sangwan RS, Tripathi S, Singh J, Narnoliya LK, Sangwan NS (2013) De novo sequencing and assembly of Centella asiatica leaf transcriptome for mapping of structural, functional and regulatory genes with special reference to secondary metabolism. Gene 525:58–76PubMedCrossRefGoogle Scholar
  77. Santos CN, Koffas M, Stephanopoulos G (2011) Optimization of a heterologous pathway for the production of flavonoids from glucose. Metab Eng 13:392–400PubMedCrossRefGoogle Scholar
  78. Sasaki K, Tsurumaru Y, Yazaki K (2009) Prenylation of flavonoids by biotransformation of yeast expressing plant membrane-bound prenyltransferase SfN8DT-1. Biosci Biotechnol Biochem 73:759–761PubMedCrossRefGoogle Scholar
  79. Schiml S, Puchta H (2016) Revolutionizing plant biology: multiple ways of genome engineering by CRISPR/Cas. Plant Methods 12:8PubMedPubMedCentralCrossRefGoogle Scholar
  80. Shakya AK (2016) Medicinal plants: future source of new drugs. Int J Herbal Med 4:59–64Google Scholar
  81. Shiba Y, Paradise EM, Kirby J, Ro DK, Keasling JD (2007) Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids. Metabolic Eng 9:160–168PubMedCrossRefPubMedCentralGoogle Scholar
  82. Shukla AK, Upadhyay SK, Mishra M, Saurabh S, Singh R, Singh H, Thakur N, Rai P, Pandey P, Hans AL, Srivastava S, Rajapure V, Yadav SK, Singh MK, Kumar J, Chandrashekar K, Verma PC, Singh AP, Nair KN, Bhadauria S, Wahajuddin M, Singh S, Sharma S, Omkar URS, Ranade SA, Tuli PK, Singh PK (2016) Expression of an insecticidal fern protein in cotton protects against whitefly. Nat Biotechnol 34:1046–1051PubMedCrossRefPubMedCentralGoogle Scholar
  83. Singer AC, Crowley DE, Thompson IP (2003) Secondary plant metabolites in phytoremediation and biotransformation. Trends Biotechnol 21:123–130PubMedCrossRefPubMedCentralGoogle Scholar
  84. Thomson JA (2007) Genetic engineering of plants // Encyclopedia of Life Sciences Support Systems // Bio-technology. – 2007. – 3. – UNESCO, Eolss Publishers, Oxford, UK.
  85. Trenchard IJ, Siddiqui MS, Thodey K, Smolke CD (2015) De novo production of the key branch point benzylisoquinoline alkaloid reticuline in yeast. Metab Eng 31:74–83PubMedPubMedCentralCrossRefGoogle Scholar
  86. Tsuruta H, Paddon CJ, Eng D, Lenihan JR, Horning T, Anthony LC et al (2009) High-level production of Amorpha-4,11-diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli. PLoS One 4(2):e4489PubMedPubMedCentralCrossRefGoogle Scholar
  87. Verpoorte R, Memelink J (2002) Engineering secondary metabolite production in plants. Curr Opin Biotechnol 13:181–187CrossRefGoogle Scholar
  88. Verpoorte R, van der Heijden R, Memelink J (2000) Engineering the plant cell factory for secondary metabolite production. Transgenic Res 9:323–343PubMedCrossRefPubMedCentralGoogle Scholar
  89. Wang W, Wang Y, Zhang Q, Qi Y, Guo D (2009) Global characterization of Artemisia annua glandular trichome transcriptome using 454 pyrosequencing. BMC Genomics 10:465PubMedPubMedCentralCrossRefGoogle Scholar
  90. Wang CT, Liu H, Gao XS, Zhang HX (2010) Overexpression of G10H and ORCA3 in the hairy roots of Catharanthus roseus improves catharanthine production. Plant Cell Rep 29:887–894PubMedCrossRefPubMedCentralGoogle Scholar
  91. Wang T, Ma X, Zhu H, Li A, Du G, Chen J (2012) Available methods for assembling expression cassettes for synthetic biology. Appl Microbiol Biotechnol 93:1853–1863PubMedCrossRefGoogle Scholar
  92. Wang J, Guleria S, Koffas MA, Yan Y (2016) Microbial production of value-added nutraceuticals. Curr Opin Biotechnol 37:97–104PubMedCrossRefGoogle Scholar
  93. Weathers PJ, Arsenault PR, Covello PS, McMickle A, Teoh KH, Reed DW (2011) Artemisinin production in Artemisia annua: studies in planta and results of a novel delivery method for treating malaria and other neglected diseases. Phytochem Rev 10:173–183PubMedPubMedCentralCrossRefGoogle Scholar
  94. Winkel-Shirley B (2001) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126:485–493PubMedPubMedCentralCrossRefGoogle Scholar
  95. Wu J, Du G, Chen J, Zhou J (2015) Enhancing flavonoid production by systematically tuning the central metabolic pathways based on a CRISPR interference system in Escherichia coli. Sci Rep 5:13477Google Scholar
  96. Yang C, Chen M, Zeng L, Zhang L, Liu X, Lan X, Tang K, Liao Z (2011) Improvement of tropane alkaloids production in hairy root cultures of Atropa belladonna by overexpressing pmt and h6h genes. Plant Omics 4:29Google Scholar
  97. Yan Y, Chemler J, Huang L, Martens S, Koffas MA (2005) Metabolic engineering of anthocyanin biosynthesis in Escherichia coli. Appl Environ Microbiol 71(7):3617–3623PubMedPubMedCentralCrossRefGoogle Scholar
  98. Yu D, Xu F, Zeng J, Zhan J (2012) Type III polyketide synthases in natural product biosynthesis. IUBMB Life 64(4):285–295PubMedCrossRefGoogle Scholar
  99. Yu O, Jung W, Shi J, Croes RA, Fader GM, McGonigle B, Odell JT (2000) Production of the isoflavones genistein and daidzein in non-legume dicot and monocot tissues. Plant Physiol 124:781–794PubMedPubMedCentralCrossRefGoogle Scholar
  100. Zeng Q, Qiu F, Yuan L (2008) Production of artemisinin by genetically-modified microbes. Biotechnol Lett 30:581–592PubMedCrossRefGoogle Scholar
  101. Zhong J-J (2011) Small molecules: plant secondary metabolites. In: Moo-Young M (ed) Comprehensive biotechnology, vol 3, 2nd edn. Elsevier, pp 299–308Google Scholar
  102. Zhou J, Wang C, Yoon SH, Jang HJ, Choi ES, Kim SW (2014) Engineering Escherichia coli for selective geraniol production with minimized endogenous dehydrogenation. J Biotechnol 169:42–50PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Lokesh Kumar Narnoliya
    • 1
  • Jyoti Singh Jadaun
    • 1
  • Sudhir P Singh
    • 1
    Email author
  1. 1.Center of Innovative and Applied Bioprocessing (CIAB)MohaliIndia

Personalised recommendations