Flavonoid Secondary Metabolite: Biosynthesis and Role in Growth and Development in Plants

  • Vinay KumarEmail author
  • Upsana Suman
  • Rubal
  • Sudesh Kumar Yadav


Flavonoids are main class of secondary metabolites and occur in different tissues and organs in diverse plant species. The higher accumulation of flavonoids in a wide variety of fruits and vegetables increases their economical value because flavonoids are good for human health. It has been established that flavonoids help the plants to protect against adverse environmental constraints and have not played a significant role in plant growth and development. A number of recent reports provided strong evidences in support of significant role of flavonoids in growth and development. The objective of this chapter is to provide an overview of the flavonoid biosynthetic pathway and review the significant contribution of flavonoids in growth and development of plants. This study provides an in-depth understanding of the role of flavonoids and is useful for further manipulation of flavonoids for growth and development of wide types of plant species.


Flavonoids Growth Adaptation Development Plants 



Anthocyanin reductase


Ascorbate peroxidase




Chalcone isomerase


Chalcone synthase


Dihydroflavonol reductase




Flavonol synthase


Glutathione reductase


Glycosyl transferase


Nicotinamide adenine dinucleotide hydrate


Phenylalanine ammonia lyase




Reactive oxidant species


UDP-glucuronate/baicalein 7-O-glucuronosyltransferase





The authors express sincere thanks to the Vice Chancellor of Central University of Punjab for providing the basic facility for conducting the work in laboratory.


  1. Agati G, Brunetti C, Ferdinando MD, Ferrini F, Pollastri S, Tattini M (2013) Functional roles of flavonoids in photoproteciton: new evidence lessons from the past. Plant Physiol Biochem 72:35–45PubMedCrossRefPubMedCentralGoogle Scholar
  2. Akiyama K, Matsuoka H, Hayashi H (2002) Isolation and identification of a phosphate deficiency-induced C-glycosylflavonoid that stimulates arbuscular mycorrhiza formation in melon roots. Mol Plant Microbe Int 15:334–340CrossRefGoogle Scholar
  3. Alves-Ferreira M, Wellmer F, Banhara A, Kumar V, Riechmann JL, Meyerowitz EM (2007) Global expression profiling applied to the analysis of Arabidopsis stamen development. Plant Physiol 145:747–762PubMedPubMedCentralCrossRefGoogle Scholar
  4. Andersson A, Keskitalo J, Sjodin A, Bhalerao R, Sterky F, Wissel K, Tandre K, Asoeborg H, Moyle R, Ohmiya Y, Bhalero R, Brunner A, Gustafsson P, Karlsson J, Lundeberg J, Nisson O, Sandberg G, Struss S, Sundberg B, Uhlen M, Jansson S, Nilsson P (2004) A transcriptional timetable of autumn senescence. Genome Biol 5:R24PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bahler BD, Steffen KL, Orzolek MD (1991) Morphological and biochemical comparison of a purple-leafed and a green-leafed pepper cultivar. Hort Sci 26:736Google Scholar
  6. Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizophere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–226PubMedCrossRefPubMedCentralGoogle Scholar
  7. Barbehenn RV, Constabel CP (2011) Tannins in plant-herbivore interactions. Phytochemistry 72:1551–1565PubMedPubMedCentralCrossRefGoogle Scholar
  8. Barry KM, Davies NW, Mohammed CL (2002) Effect of seasoned different fungi on phenolics in response to xylem wounding and inoculation in Eucalyptus nitens. Forest Pathol 32:163–178CrossRefGoogle Scholar
  9. Benjamin MK, Geisler M, Bigler L, Ringli C (2011) Flavonols accumulate asymmetrically and affect auxin transport in Arabidopsis. Plant Physiol 156:585–595CrossRefGoogle Scholar
  10. Bonawitz ND, Chapple C (2010) The genetics of lignin biosynthesis: connecting genotype to phenotype. Annu Rev Genet 44:337–363PubMedCrossRefPubMedCentralGoogle Scholar
  11. Brown DE, Rashotte AM, Murphy AS, Normanly J, Tague BW, Peer WA, Taiz L, Muday GK (2001) Flavonoids act as negative regulators of auxin transport in vivo in Arabidopsis. Plant Physiol 126:524–535PubMedPubMedCentralCrossRefGoogle Scholar
  12. Buer CS, Sukumar P, Muday GK (2006) Ethylene modulates flavonoid accumulation and gravitropic responses in roots of Arabidopsis. Plant Physiol 140:1384–1396PubMedPubMedCentralCrossRefGoogle Scholar
  13. Buer CB, Imin N, Djordjevic MA (2010) Flavonoids: new roles for old molecules. J Integr Plant Biol 52:98–111PubMedCrossRefPubMedCentralGoogle Scholar
  14. Burger J, Edwards GE (1996) Photosynthetic efficiency, and photo damage by UV and visible radiation, in red versus green leaf of coleus varieties. Plant Cell Physiol 37:395–399CrossRefGoogle Scholar
  15. Burghardt F, Proksch P, Fiedler K (2001) Flavonoid sequestration by the common blue butterfly Polyommatus icarus: quantitative intrasepcific variation in relation to larval hostplant, sex and body size. Biochem Sys Ecol 29:875–889CrossRefGoogle Scholar
  16. Castellarin SD, Matthews MA, Di Gaspero G, Gambetta GA (2007) Water deficits accelerate ripening and induce changes in gene expression regulating flavonoid biosynthesis in grape berries. Planta 227:101–112PubMedCrossRefPubMedCentralGoogle Scholar
  17. Cavallarin L, Antoniazzi S, Borreani G, Tobacco E (2005) Effects of wilting and mechanical conditioning on proteolysis in sainfoin (Onobrychis viciifolia Scop) wilted herbage and silage. J Sci Food Agric 85:831–838CrossRefGoogle Scholar
  18. Chalker-Scott L (1999) Environmental significance of anthocyanins in plant stress responses. Photochem Photobiol 70:1–9CrossRefGoogle Scholar
  19. Chalker-Scott L (2002) Do anthocyanins function as osmoregulators in leaf tissues? Adv Bot Res 37:104–129Google Scholar
  20. Chemler JA, Koffas MAG (2008) Metabolic engineering for plant natural product biosynthesis in microbes. Curr Opin Biotechnol 19:597–605PubMedCrossRefPubMedCentralGoogle Scholar
  21. Chemler JA, Lock LT, Koffas MAG, Tzanakakis ES (2007) Standardized biosynthesis of flavan-3-ols with effects on pancreatic beta-cell insulin secretion. App Microbiol Biotechnol 77:797–807CrossRefGoogle Scholar
  22. Cheng H, Li L, Cheng S, Cao F, Wang Y, Yuan H (2011) Molecular cloning and funciton assay of a chalcone gene (GbCHI) from Ginkgo biloba. Plant Cell Rep 30:49–62PubMedCrossRefPubMedCentralGoogle Scholar
  23. Cortell JM, Halbleib M, Gallagher AV, Righetti TL, Kennedy JA (2007) Influence of vine vigor on graphe (Vitis vinifera L. cv. Pinot noir) anthocyanins. 1. Anthocyanin concentration and composition in fruit. J Agric Food Chem 55:6575–6584PubMedCrossRefPubMedCentralGoogle Scholar
  24. Costa-Arbulu C, Gianoli E, Gonzales WL, Niemeyer HM (2001) Feeding by the aphid Sipha flava produced a reddish spot on leaves of sorghum halepense : an induced defense. J Chem Ecol 27:273–283PubMedCrossRefPubMedCentralGoogle Scholar
  25. Cushnie TPT, Lamb AJ (2005) Antimicrobial activity of flavonoids. Int J Antimicrob Agents 26:343–356PubMedCrossRefPubMedCentralGoogle Scholar
  26. del Río JA, Gómez P, Baidez AG, Arcas MC, Botía JM, Ortuño A (2004) Changes in the levels of polymethoxyflavones and flavanones as part of the defense mechanism of Citrus sinensis (cv. Valencia late) fruits against Phytophthora citrophthora. J Agric Food Chem 52:1913–1917PubMedCrossRefPubMedCentralGoogle Scholar
  27. Dixon RA, Pasinetti GM (2010) Flavonoids and isoflavonoids: from plant biology to agriculture and neuroscience. Plant Physiol 154:453–457PubMedPubMedCentralCrossRefGoogle Scholar
  28. Dixon RA, Liu C, Jun JH (2012) Metabolic engineering of anthocyanins and condensed tannins in plants. Curr Opin Biotechnol 24:329. CrossRefPubMedPubMedCentralGoogle Scholar
  29. Dong X, Braun EL, Grotewold E (2001) Functional conservation of plant secondary metabolic enzymes revealed by complementation of Arabidopsis flavonoids mutants with maize genes. Plant Physiol 127:46–57PubMedPubMedCentralCrossRefGoogle Scholar
  30. Feucht W, Dithmar H, Polster J (2004) Nuclei of tea flowers as targets for flavanols. Plant Biol 6:696–701PubMedCrossRefPubMedCentralGoogle Scholar
  31. Feyissa DM, Løvdal T, Olsen KM, Slimestad R, Lillo C (2009) The endogenous GL3, but not EGL3, gene is necessary for anthocyanin synthesis as induced by nitrogen depletion in Arabidopsis rosette stage leaves. Planta 230:747–754PubMedCrossRefPubMedCentralGoogle Scholar
  32. Forkmann G, Martens S (2001) Metabolic engineering and applications of flavonoids. CurrOpin Biotechnol 12:155–160Google Scholar
  33. Gluntini D, Lazzeri V, Calvenzani V, Dall’Asta C, Galaverna G, Tonelli C, Petroni K, Ranieri A (2008) Flavonoid profiling and biosynthetic gene expression in flesh and peel of two tomato genotype grown under UV-B-depleted conditions during ripening. J Agric Food Chem 56:5905–5915CrossRefGoogle Scholar
  34. Gould KS (2004) Nature’s swiss army knife: the diverse protective roles of anthocyanins in leaves. J Biomed Biotechnol 2004:314–320PubMedPubMedCentralCrossRefGoogle Scholar
  35. Gould KS, Lister C (2006) Flavonoid functions in plants. In: Andersen ØM, Markham KR (eds) Flavonoids. Chemistry, biochemistry, and applications. CRC Press, Boca Raton, pp 397–441Google Scholar
  36. Griesser M, Hoffmann T, Bellido ML, Rosati C, Fink B, Kurtzer R, Aharoni A, Munoz-Blanco J, Schwab W (2008) Redirection of flavonoid biosynthesis through the down-regulation of an anthocyanidin glucosyltransferase in ripening strawberry fruit. Plant Physiol 146:1528–1539PubMedPubMedCentralCrossRefGoogle Scholar
  37. Guo J, Han W, Wang MH (2008) Ultraviolet and environmental stresses involved in the induction and regulation of anthocyanin biosynthesis: a review. Afric J Biotechnol 7:4966–4972Google Scholar
  38. Guo J, Zhou W, Lu Z, Li H, Li H, Gao F (2015) Isolation and funcitnoal analysis of Chalcone isomerase gene from purple-fleshed sweet potato. Plant Molecular Biol Rep 33:1451–1463CrossRefGoogle Scholar
  39. Gupta R, Ting JTL, Sokolov LN, Johnson SA, Luan S (2002) A tumor suppressor homolog, AtPTEN1, is essential for pollen development in Arabidopsis. Plant Cell 14:2495–2507PubMedPubMedCentralCrossRefGoogle Scholar
  40. Guyon VN, Astwood JD, Garner EC, Dunker AK, Taylor LP (2000) Isolation and characterization of cDNAs expressed in the early stages of flavonol-induced pollen germination in petunia. Plant Physiol 123:699–710PubMedPubMedCentralCrossRefGoogle Scholar
  41. Hada M, Hashimoto T, Nikaido O, Shin M (1998) UVB-induced DNA damage and its photorepair in nuclei and chloroplasts of Spinacia oleracea L. Photochem Photobiol 68:319–322Google Scholar
  42. Hammerbacher A, Paetz C, Wright LP, Fischer TC, Bohlmann J, Davis AJ, Fenning TM, Gershenzon J, Schmidt A (2014) Flavan-3-ols in Norway spruce: biosynthesis, accumulation, and function in response to attack by the bark beetle-associated fungus Ceratocystis polonica. Plant Physiol 164:2107–2122PubMedPubMedCentralCrossRefGoogle Scholar
  43. Han Y, Vimolmangkang S, Soria-Guerra RE, Rosales-Mendoza S, Zheng D, Lygin AV, Korban SS (2010) Ectopic expression of apple F3’H genes contributes to anthocyanin accumulation in the Arabidopsis tt7 mutant grown under nitrogen stress. Plant Physiol 153:806–820PubMedPubMedCentralCrossRefGoogle Scholar
  44. Han Y, Vimolmangkang S, Soria-Guerra RE, Korban SS (2012) Introduction of apple ANR genes into tobacco inhibits expression of both CHI and DFR genes in flowers, leading to loss of anthocyanin. J Ex Bot 63:2437–2447CrossRefGoogle Scholar
  45. Hancock KR, Collette V, Fraser K, Greig M, Hong X, Richardson K, Jones C, Rasmussen S (2012) Expression of the R2R3-MYB transcription factor TaMYB14 from Trifolium arvense activates proanthocyanidin biosynthesis in the legumes Trifolium repens and Medicago sativa. Plant Physiol 159:1204–1220PubMedPubMedCentralCrossRefGoogle Scholar
  46. Hassan S, Mathesius U (2012) The role of flavonoids in root-rhizosphere signalling: opportunities and challenges for improving plant-microbe interactions. J Ex Bot 63:3429–3444CrossRefGoogle Scholar
  47. Hayashi M, Takahashi H, Tamura K, Huang J, Yu LH, Yamada MK, Tezuka T, Uchimiya H (2005) Enhanced dihydroflavonol-4-reductase activity and NAD homeostasis leading to cell death tolerance in transgenic rice. Proc Nat Aca Sci U S A 102:7020–7025CrossRefGoogle Scholar
  48. Hennig L, Gruissem W, Grossniklaus U, Kohler C (2004) Transcriptional programs of early reproductive stages in Arabidopsis. Plant Physiol 135:1765–1775PubMedPubMedCentralCrossRefGoogle Scholar
  49. Hernández I, Alegre L, Breusegem FV, Munné Bosch S (2009) How relevant are flavonoids as antioxidants in plants. Trends Plant Sci 14:125–132PubMedCrossRefPubMedCentralGoogle Scholar
  50. Hoffmann T, Kalinowski G, Schwab W (2006) RNAi-induced silencing of gene expression in strawberry fruit (Fragaria x ananassa) by agrofiltration: a rapid assay for gene function analysis. Plant J 48:818–826PubMedCrossRefPubMedCentralGoogle Scholar
  51. Hsieh K, Huang AHC (2007) Tapetosomes in Brassica tepetum accumulate endoplasmic reticulum-derived flavonoids and alkanes for delivery to the pollen surface. Plant Cell 19:582–596PubMedPubMedCentralCrossRefGoogle Scholar
  52. Huang J, Gu M, Lai Z, Fan B, Shi K, Zhou YH, Yu JQ, Chen Z (2010a) Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiol 153:1526–1538PubMedPubMedCentralCrossRefGoogle Scholar
  53. Huang J, Gu M, Lai Z, Fan B, Shi K, Zhou YH, Yu JQ, Chen Z (2010b) Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiol 153:1526–1538PubMedPubMedCentralCrossRefGoogle Scholar
  54. Huang Y, Gou J, Jia Z, Yang L, Sun Y, Xiao X, Song F, Luo K (2012a) Molecular cloning and characterization of two genes encoding dihydroflavonol-4-reductase from Populus trichocarpa. PLoS One 7:e30364PubMedPubMedCentralCrossRefGoogle Scholar
  55. Huang W, Sun W, Wang Y (2012b) Isolation and molecular characterisaiton of flavonoid 3′-hydroxylase and flavonoid 3′. 5′-hydroxylase genes from a traditional chinese medicinal plant, Epimedium sagittatum. Gene 497:125–130PubMedCrossRefPubMedCentralGoogle Scholar
  56. Hughes NM, Reinhardt K, Field TS, Gerardi AR, Smith WK (2010) Association between winter anthocyanin production and drought stress in angiosperm evergreen species. J Exp Bot 61:1699–1709PubMedPubMedCentralCrossRefGoogle Scholar
  57. Hughes NM, Carpenter KL, Cannon JG (2012) Estimating contribution of anthocyanin pigments to osmotic adjustment during winter leaf reddening. J Plant Physiol 170:230. CrossRefPubMedPubMedCentralGoogle Scholar
  58. Hyun MW, Yun YH, Kim JY, Kim SH (2011) Fungal and plant phenylalanine Ammonia-lyase. Mycobiol 39:257–265CrossRefGoogle Scholar
  59. Iwashina T (2003) Flavonoid function and activity to plants and other organisms. Biol Sci Space 17:24–44PubMedCrossRefPubMedCentralGoogle Scholar
  60. Jaakola L, Maatta K, Pirttila AM, Torronen R, Karenlampi S, Hohtola A (2002) Expression of genes involved in anthocyanin biosynthesis in relation to anthocyanin, proanthocyanidin, and flavonol levels during bilberry fruit development. Plant Physiol 130:729–739PubMedPubMedCentralCrossRefGoogle Scholar
  61. Jagtap UB, Gurav RG, Bapat VA (2011) Role of RNA interference in plant improvement. Naturwissenschaften 98:473–492PubMedCrossRefPubMedCentralGoogle Scholar
  62. Jiang F, Wang JY, Jia HF, Jia WS, Wang HQ, Xiao M (2012) RNAi-mediated silencing of the flavanone 3-hydroxylase gene and its effect on flavonoid biosynthesis in strawberry fruit. J Plant Growth Regul 32:182. CrossRefGoogle Scholar
  63. Juszczuk IM, Wiktorowska A, Malusa E, Rychter AM (2004) Changes in the concentration of phenolic compounds and exudation induced by phosphate deficiency in bean plants (Phaseolus vulgaris L.). Plant Soil 267:41–49CrossRefGoogle Scholar
  64. Kalimoorthy S, Rao AS (1994) Effect of salinity on anthocyanin accumulation in the root of maize. Ind J Plant Physiol 37:169–170Google Scholar
  65. Kangatharalingam N, Pierce ML, Bayles MB, Essenberg M (2002) Epidermal anthocyanin production as an indicator of bacterial blight resistance in cotton. Physiol Mol Plant Pathol 61:189–195CrossRefGoogle Scholar
  66. Keilig K, Ludwig-Muller J (2009) Effect of flavonoids on heavy metal tolerance in Arabidopsis thaliana seedlings. Bot Stud 50:311–318Google Scholar
  67. Kidd PS, Llugany M, Poschenrieder C, Gunsé B, Barceló J (2001) The role of root exudates in aluminium resistance and silicon-induced amelioration of aluminium toxicity in three varieties of maize (Zea mays L.). J Exp Bot 52:1339–1352PubMedPubMedCentralGoogle Scholar
  68. Korkina LG (2007) Phenylpropanoids as naturally occurring antioxidants: from plant defense to human health. Cell Mol Biol 53:15–25PubMedPubMedCentralGoogle Scholar
  69. Kovinich N, Saleem A, Rintoul TL, Brown DCW, Arnason JT, Miki B (2012) Coloring genetically modified soybean grains with anthocyanins by suppression of the proanthocyanidins genes ANR1 and ANR2. Transgenic Res 21:757–771PubMedCrossRefPubMedCentralGoogle Scholar
  70. Kumar V, Yadav SK (2013a) Overexpression of CsANR increased flavan-3-ols and decreased anthocyanins in transgenic tobacco. Mol Biotechnol 54:426–435PubMedCrossRefPubMedCentralGoogle Scholar
  71. Kumar V, Yadav SK (2013b) Overexpression of CsDFR and CsANR enhanced root flavonoids and improved root architecture to provide tolerance against aluminum toxicity in tobacco. Plant Root 7:65–76CrossRefGoogle Scholar
  72. Kumar V, Nadda G, Kumar S, Yadav SK (2013) Transgenic tobacco overexpressing tea cDNA encoding dihydroflavonol 4-reductase and anthocyanidin reductase induces early flowering and provides biotic stress tolerance. PLoS One 8:e65535PubMedPubMedCentralCrossRefGoogle Scholar
  73. Kunst L, Samuels AL (2003) Biosynthesis and secretion of plant cuticular wax. Prog Lipid Res 42:51–80CrossRefGoogle Scholar
  74. Lee XZ, Liang YR, Chen H, Lu JL, Liang HL, Huang FP, Mamati EG (2008) Alleviation of UV-B stress in Arabidopsis using tea catechins. Afric J Biotechnol 7:4111–4115Google Scholar
  75. Lepiniec L, Debeaujon I, Routaboul J, Baudry A, Pourcel L, Nesi N, Caboche M (2006) Genetics and biochemistry of seed flavonoids. Annu Rev Plant Biol 57:405–430PubMedCrossRefPubMedCentralGoogle Scholar
  76. Levizou E, Karageorgou P, Petropoulou Y, Grammatikopoulos G, Manetas Y (2004) Induction of ageotropic response in lettuce radicle growth by epicuticular flavonoid aglycons of Dittrichia viscose. Biol Plant 48:305–307CrossRefGoogle Scholar
  77. Li H, Pan K, Liu Q, Wang J (2009) Effect of enhanced ultraviolet-B on allelopathic potential of Zanthoxylum bungeanum. Sci Horti 119:310–314CrossRefGoogle Scholar
  78. Li Y, Kim JI, Pysh L, Chapple C (2015) Four isoforms of arabidopsis 4-coumarate: CoA ligase have overlapping yet distinct roles in phenylpropanoid metabolism. Plant Physiol 169:2409–2421PubMedPubMedCentralGoogle Scholar
  79. Li P, Dong Q, Ge S, He X, Verdier J, Li D, Zhao J (2016) Metabolic engineering of proanthocyanidin production by repressing the isoflavone pathways and redirecting anthocyanin precursor flux in legume. Plant Biotechnol J 14:1604–1618PubMedPubMedCentralCrossRefGoogle Scholar
  80. Lillo C, Lea US, Ruoff P (2008) Nutrient depletion as a key factor for manipulating gene expression and product formation in different branches of the flavonoid pathway. Plant Cell Environ 31:587–601PubMedCrossRefPubMedCentralGoogle Scholar
  81. Liu H, Du Y, Chu H, Shih CH, Wong YW, Wang M, Chu IK, Tao Y, Lo C (2010) Molecular dissection of the pathogen-inducible 3-deoxyanthocyanidin biosynthesis pathway in sorghum. Plant Cell Physiol 51:1173–1185PubMedCrossRefPubMedCentralGoogle Scholar
  82. Løvdal T, Olsen KM, Rune S, Michel V, Cathrine L (2010) Synergetic effects of nitrogen depletion, temperature, and light on the content of phenolic compounds and gene expression in leaves of tomato. Phytochemistry 71:605–613PubMedCrossRefPubMedCentralGoogle Scholar
  83. Lu S, Zhou Y, Li L, Chiang VL (2006) Distinct roles of cinnamate 4-hydroxylase genes in populus. Plant Cell Physiol 47:905–914PubMedCrossRefPubMedCentralGoogle Scholar
  84. Lukaszewicz M, Matysiak-Kara I, Skala J, Fecka I, Cisowski W, Szopa J (2002) Antioxidant capacity manipulation in transgenic potato tuber by changes in phenolic compounds content. J Agric Food Chem 52:1526–1533CrossRefGoogle Scholar
  85. Luo P, Shen Y, Jin S, Huang S, Cheng X, Wang Z, Li P, Zhao J, Bao M, Ning G (2016) Overexpression of Rosa rugosa anthocyanin reductase enhances tobacco tolerance to abiotic stress through increased ROS scavenging and modulation of ABA signaling. Plant Sci 245:35–49PubMedCrossRefPubMedCentralGoogle Scholar
  86. Mahajan M, Yadav SK (2014) Overexpression of a tea flavanone 3-hydroxylase gene confers tolerance to salt stress and Alternaria solani in transgenic tobacco. Plant Mol Biol 85:551–573PubMedCrossRefPubMedCentralGoogle Scholar
  87. Mahajan M, Kumar V, Yadav SK (2011a) Effect of flavonoid-mediated free IAA regulation on growth and development of in vitro-grown tobacco seedlings. Int J Plant Dev Biol 5:42–48Google Scholar
  88. Mahajan M, Ahuja PS, Yadav SK (2011b) Post-transcriptional silencing of flavonol synthase mRNA in tobacco leads to fruits with arrested seed set. PLoS One 6:e28315PubMedPubMedCentralCrossRefGoogle Scholar
  89. Mahajan M, Joshi R, Gulati A, Yadav SK (2012) Increase in flavan-3-ols by silencing flavonol synthase mRNA affects the transcript expression and activity levels of antioxidant enzymes in tobacco. Plant Biol 14:725. CrossRefPubMedPubMedCentralGoogle Scholar
  90. Mandal SM, Chakraborty D, Dey S (2010) Phenolic acid acts as signalling molecules in plant microbe symbioses. Plant Signal Behav 5:359–368PubMedPubMedCentralCrossRefGoogle Scholar
  91. Marko D, Puppel N, Tjaden Z, Jakobs S, Pahlke G (2004) The substitution pattern of anthocyanidins affects different cellular signalling cascades regulating cell proliferation. Mol Nutrit Food Res 48:318–325CrossRefGoogle Scholar
  92. Meyer P, Heidmann I, Forkmann G, Saedler H (1987) A new petunia flower colour generated by transformation of a mutant with a maize gene. Nature 330:677–678PubMedCrossRefPubMedCentralGoogle Scholar
  93. Michalak A (2006) Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Polish J Environ Stud 15:523–530Google Scholar
  94. Morris PF, Bone E, Tyler BM (1998) Chemotropic and contact responses of Phytophthora sojae hyphae to soybean isoflavonoids and artificial substrates. Plant Physiol 177:1171–1178CrossRefGoogle Scholar
  95. Mpoloka SW (2008) Effects of prolonged UV-B exposure in plants. Afric J Biotechnol 7:4874–4883Google Scholar
  96. Murphy AS, Hoogner KR, Peer WA, Taiz L (2002) Identification, purification, and molecular cloning of N-1-naphthylphthalmic acid-binding plasma membrane-associated aminopeptidases from Arabidopsis. Plant Physiol 128:935–995PubMedPubMedCentralCrossRefGoogle Scholar
  97. Nakamura N, Fukuchi-Mizutani M, Suzuki K, Miyazaki K, Tanaka Y (2006) RNAi suppression of the anthocyanidin synthase gene in Torenia hybrida yields white flowers with higher frequency and better stability than antisense and sense suppression. Plant Biotechnol 23:13–17CrossRefGoogle Scholar
  98. Nicolson SW, Nepi M, Pacini E (2007) Nectaries and nectar. Pp 163. Springer science and business media, New YorkGoogle Scholar
  99. Nishihara M, Nakatsuka T (2011) Genetic engineering of flavonoid pigments to modify flower color in floricultural plants. Biotechnol Lett 33:433–441PubMedCrossRefPubMedCentralGoogle Scholar
  100. Novák K, Lisa L, Škredleta V (2004) Rhizobial nod gene-inducing activity in pea nodulation mutants: dissociation of nodulation and flavonoid response. Physiol Plant 120:546–555PubMedCrossRefPubMedCentralGoogle Scholar
  101. Oh MM, Trick HN, Rajashekar CB (2009) Secondary metabolism and antioxidants are involved in environmental adaptation and stress tolerance in lettuce. J Plant Physiol 166:180–191PubMedCrossRefPubMedCentralGoogle Scholar
  102. Pang Y, Wengr JP, Gregory KS, Peel GJ, Wen J, Huhman D, Allen SN, Tang Y, Cheng X, Tadege M, Ratet P, Mysore KS, Sumner LW, Marks MD, Dixon RA (2009) A WD40 repeat protein from Medicago truncatula is necessary for tissue-specific anthocyanin and proanthocyanidin biosynthesis but not for trichome development. Plant Physiol 151:1114–1129PubMedPubMedCentralCrossRefGoogle Scholar
  103. Peer WA, Murphy AS (2006) Flavonoids as signal molecules: targets of flavonoid action. In: Grotewold E (ed) The science of flavonoids. Springer, New York, pp 239–268CrossRefGoogle Scholar
  104. Peer WA, Murphy AS (2007) Flavonoids and auxin transport: modulators or regulators. Trends Plant Sci 12:556–563PubMedCrossRefPubMedCentralGoogle Scholar
  105. Peer WA, Bandyopadhyay A, Blakeslee JJ, Makam SN, Chen RJ, Masson PH, Murphy AS (2004) Variation in expression and protein localization of the PIN family of auxin efflux facilitator proteins in flavonoid mutants with altered auxin transport in Arabidopsis thaliana. Plant Cell 16:1898–1911PubMedPubMedCentralCrossRefGoogle Scholar
  106. Peng M, Hudson D, Schofield A, Tsao R, Yang R, Gu H, Bi YM, Rothstein SJ (2008) Adaptation of Arabidopsis to nitrogen limitation involves induction of anthocyanin synthesis which is controlled by the NLA gene. J Exp Bot 59:2933–2944PubMedPubMedCentralCrossRefGoogle Scholar
  107. Pérez-Díaz JR, Pérez-Díaz J, Madrid-Espinoza J, González-Villanueva E, Moreno Y, Ruiz-Lara S (2016) New member of the R2R3-MYB transcription factors family in grapevine suppresses the anthocyanin accumulation in the flowers of transgenic tobacco. Plant Mol Biol 90:63–76PubMedCrossRefPubMedCentralGoogle Scholar
  108. Polster J, Dithmar H, Feucht W (2003) Are histones the targets for flavan-3-ols (catechins) in nuclei? Biol Chem 384:997–1006PubMedCrossRefPubMedCentralGoogle Scholar
  109. Ponce MA, Scervino JM, Erra-Balsells R, Ocampo JA, Godeas AM (2004) Flavonoids from shoots and roots of Trifolium repens (white clover) grown in presence or absence of the arbuscular mycorrhizal fungas Glomus intraradices. Phytochemistry 65:1925–1930PubMedCrossRefPubMedCentralGoogle Scholar
  110. Reddy AM, Reddy VS, Scheffler BE, Wienand U, Reddy AR (2007) Novel transgenic rice overexpressing anthocyanin synthase accumulates a mixture of flovonoids leading to an increased antioxidant potential. Metab Eng 9:95–111PubMedCrossRefPubMedCentralGoogle Scholar
  111. Rice-Evans CA, Miller NJ, Paganga G (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20:933–956PubMedCrossRefPubMedCentralGoogle Scholar
  112. Rivero RM, Ruiz JM, Garcia PC, Lopez-Lefebre LR, Sanchez E, Romero L (2001) Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants. Plant Sci 160:315–321PubMedCrossRefPubMedCentralGoogle Scholar
  113. Ryan KG, Hunt JE (2005) The effect of UVB radiation on temperate southern hemisphere forests. Environ Pollut 137:415–427PubMedCrossRefPubMedCentralGoogle Scholar
  114. Sadik CD, Sies H, Schewe T (2003) Inhibition of 15-lipoxygenases by flavonoids: structure-activity relations and mode of action. Biochem Pharmacol 65:773–781PubMedCrossRefPubMedCentralGoogle Scholar
  115. Saito K, Yonekura-Sakakibara K, Nakabayashi R, Higashi Y, Yamazaki M, Tohge T, Fernie AR (2013) The flavonoid biosynthetic pathway in Arabidopsis: structural and genetic diversity. Plant Physiol Biochem 72:21–24PubMedCrossRefPubMedCentralGoogle Scholar
  116. Santelia D, Henrichs S, Vincenzetti V, Sauer M, Bigler L, Klein M, Bailly A, Lee Y, Friml J, Geisler M, Martinoia E (2008) Flavonoids redirect PIN-mediated polar auxin fluxes during root gravitropic responses. J Biol Chem 283:31218–31226PubMedPubMedCentralCrossRefGoogle Scholar
  117. Schaefer HM, Schaefer V (2007) The evolution of visual fruit signals: concepts and constraints. In: Dennis AJ, Schupp EW, Green RA, Westcott DA (eds) Seed dispersal: theory and its application in the changing world. CAB international, Oxfordshire, pp 59–77CrossRefGoogle Scholar
  118. Schijlen E, De Vos CHR, Martens S, Jonker HH, Rosin FM (2007) RNA interference silencing of Chalcone synthase, the first step in the flavonoid biosynthesis pathway, leads to parthenocarpic tomato fruits. Plant Physiol 144:1520–1530PubMedPubMedCentralCrossRefGoogle Scholar
  119. Sekhon SR, Childs KL, Santoro N, Foster CE, Buell CR, de Leon N, Kaeppler SM (2012) Transcriptional and metabolic analysis of senescence induced by preventing pollination in maize. Plant Physiol 159:1730–1744PubMedPubMedCentralCrossRefGoogle Scholar
  120. Shaw LJ, Morris P, Hooker JE (2006) Perception and modification of plant flavonoid signals by rhizosphere microorganisms. Environ Microbiol 8:1867–1880PubMedCrossRefPubMedCentralGoogle Scholar
  121. Simmonds MSJ (2003) Flavonoid-insect interactions: recent advances in our knowledge. Phytochemistry 64:21–30PubMedCrossRefPubMedCentralGoogle Scholar
  122. Steinkellner S, Lendzemo V, Langer I, Schweiger P, Khaosaad T, Toussaint JP, Vierheilig H (2007) Flavonoids and strigolactones in root exudates as signals in symbiotic and pathogenic plant-fungus interactions. Molecules 12:1290–1306PubMedPubMedCentralCrossRefGoogle Scholar
  123. Steyn WJ, Wand SJE, Jacobs G, Rosecrance RC, Roberts SC (2009) Evidence for a photoprotective function of low-temperature-induced anthocyanin accumulation in apple and pear peel. Physiol Plant 136:461–472PubMedCrossRefPubMedCentralGoogle Scholar
  124. Szymura TH (2008) Concentration of elements in silver fir (Abies alba Mill.) needles as a function of needles’s age. Trees Struct Funct 23:211–217CrossRefGoogle Scholar
  125. Takahashi H, Hayashi M, Goto F, Sato S, Soga T, Nishioka T, Tomita M, Yamada M, Uchimiya H (2006) Evaluation of metabolic alteration in transgenic rice overexpressing dihydroflavonol-4-reductase. Annal Bot 98:819–825CrossRefGoogle Scholar
  126. Tanaka Y, Brugliera F, Kalc G, Senior M, Dyson B, Nakamura N, Katsumoto Y, Chandler S (2010) Flower color modification by engineering of the flavonoid biosynthetic pathway: practical perspectives. Biosci Biotechnol Biochem 74:1760–1769PubMedCrossRefPubMedCentralGoogle Scholar
  127. Taylor LP, Grotewold E (2005) Flavonoids as developmental regulators. Curr Opin Plant Biol 8:317–323PubMedCrossRefPubMedCentralGoogle Scholar
  128. Thompson EP, Davies JM, Glover BJ (2010a) Identifying the transporters of different flavonoids in plants. Plant Signal Behav 5:860–863PubMedPubMedCentralCrossRefGoogle Scholar
  129. Thompson EP, Wilkins C, Demidchik V, Davies JM, Glover BJ (2010b) An Arabidopsis flavonoid transporter is required for anther dehiscence and pollen development. J Exp Bot 61:439–451PubMedCrossRefPubMedCentralGoogle Scholar
  130. Thomson JD, Wilson P (2008) Explaining evolutionary shifts between bee and hummingbird pollination: convergence, divergence, and directionality. Int J Plant Sci 169:23–38CrossRefGoogle Scholar
  131. Tomasi N, Weisskopf L, Renella G, Landi L, Pinton R, Varanini Z, Nannipieri P, Torrent J, Martinola E, Cesco S (2008) Flavonoids of white lupin roots participate in phosphorus mobilization from soil. Soil Biol Biochem 40:1971–1974CrossRefGoogle Scholar
  132. Treutter D (2006) Significance of flavonoids in plant resistance: a review. Environ Chem Lett 4:147–157CrossRefGoogle Scholar
  133. Tsai SM, Philips DA (1991) Flavonoids released naturally from alfalfa promote development of symbiotic glomus spores in vitro. App Environ Microbiol 57:1485–1488Google Scholar
  134. Verhoeyen ME, Bovy A, Collins G, Muir S, Robinson S, De Vos CHR, Colliver S (2002) Increasing antioxidant levels in tomatoes through modification of the flavonoid biosynthetic pathway. J Exp Bot 53:2099–2106PubMedCrossRefPubMedCentralGoogle Scholar
  135. Vvedenskaya IO, Vorsa N (2004) Flavonoid composition over fruit development and maturation in American cranberry, Vaccinium macrocarpon Ait. Plant Sci 167:1043–1054CrossRefGoogle Scholar
  136. Wahid A, Ghazanfar A (2006) Possible involvement of some secondary metabolites in salt tolerance of sugarcane. J Plant Physiol 163:723–730PubMedPubMedCentralCrossRefGoogle Scholar
  137. Wang Y, Chen S, Yu O (2011) Metabolic engineering of flavonoids in plants and microorganisms. App Microbiol Biotechnol 91:949–956CrossRefGoogle Scholar
  138. Wang Y-S, Xu Y-J, Gao L-P, Yu O, Wang X-Z He X-J, Jiang X-L, Liu Y-J, Xia T (2014) Functioal analysis of flavonoid 3′,5′-hydroxylase from tea plant (Camellia sinensis): critical role in the accumulation of catechins. BMC Plant Biol 14:347PubMedPubMedCentralCrossRefGoogle Scholar
  139. Wang C-H, Yu J, Cai Y-X, Zhu P-P, Liu C-Y, Zhao A-C, Lü R-H, Li M-J, Xu F-X, Yu M-D (2016) Characterization and funcitonal analysis of 4-coumarate:CoA ligase genes in mulberry. PLoS One 11:e0155814PubMedPubMedCentralCrossRefGoogle Scholar
  140. Wasson AP, Pellerone FI, Mathesius U (2006) Silencing the flavonoid pathway in Medicago truncatula inhibits root nodule formation and prevents auxin transport regulation by rhizobia. Plant Cell 18:1617–1629PubMedPubMedCentralCrossRefGoogle Scholar
  141. Winkel-Shirley B (2002) Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol 5:218–223PubMedPubMedCentralCrossRefGoogle Scholar
  142. Woo HH, Jeong BR, Koo KB, Choi JW, Hirsch AM, Hawes MC (2007) Modifying expression of closely related UDP-glycosyltransferases from pea and Arabidopsis results in altered root development and function. Physiol Plant 130:250–260CrossRefGoogle Scholar
  143. Xie DY, Sharma SB, Paiva NL, Ferreira D, Dixon RA (2003) Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science 299:396–399PubMedCrossRefPubMedCentralGoogle Scholar
  144. Xie DY, Jackson LA, Cooper JD, Ferreira D, Paiva NL (2004) Molecular and biochemical analysis of two cDNA clones encoding dihydroflavonol-4-reductase from Medicago truncatula. Plant Physiol 134:979–994PubMedPubMedCentralCrossRefGoogle Scholar
  145. Xie DY, Sharma B, Wright E, Wang ZY, Dixon RA (2006) Metabolic engineering of proanthocyanidins through co-expression of anthocyanidin reductase and the PAP1 MYB transcription factor. Plant J 456:895–907CrossRefGoogle Scholar
  146. Yoshida K, Iwasaka R, Kaneko T, Sato S, Tabata S, Sakuta M (2008) Functional differentiation of Lotus japonicus TT2s, R2R3-MYB transcription factors comprising a multigene family. Plant Cell Physiol 49:157–169PubMedCrossRefPubMedCentralGoogle Scholar
  147. Yuan L, Wang L, Han Z, Jiang Y, Zhao L, Liu H, Yang L, Luo K (2012) Molecular cloning and characterization of PtrLAR3, a gene encoding leucoanthocyanidin reductase from Populus trichocarpa, and its constitutive expression enhances fungal resistance in transgenic plants. J Exp Bot 63: 2513–2524PubMedPubMedCentralCrossRefGoogle Scholar
  148. Zuk M, Prescha A, Stryczewska M, Szopa J (2012) Engineering flax plants to increase their antioxidant capacity and improve oil composition and stability. J Agric Food Chem 60:5003–5012PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Vinay Kumar
    • 1
    Email author
  • Upsana Suman
    • 1
  • Rubal
    • 1
  • Sudesh Kumar Yadav
    • 2
  1. 1.Department of Plant Sciences, School for Basic and Applied SciencesCentral University of Punjab (CUPB)BathindaIndia
  2. 2.Center of Innovative and Applied Bioprocessing (CIAB)MohaliIndia

Personalised recommendations