Advertisement

Role of Polyamines in Mediating Antioxidant Defense and Epigenetic Regulation in Plants Exposed to Heavy Metal Toxicity

  • Saikat Paul
  • Aditya Banerjee
  • Aryadeep Roychoudhury
Chapter

Abstract

'Heavy metal (HM) contamination in the soil due to the natural and anthropogenic activities is a matter of global concern in recent era of industrialization as it directly affects environment, human health and crop production. The HM toxicity causes oxidative damages which leads to serious disruption in plant growth and productivity. In recent times, extensive research has been carried out to elucidate the defense mechanism of plants against metal and metalloid toxicity. Plants have developed several adaptive strategies to deal with HM induced oxidative stress like accumulation of enzymatic and non-enzymatic antioxidants, osmolytes like proline and polyamines (PAs), which regulate normal growth and development of a plant surviving in metal contaminated urban and sub-urban areas. PAs such as spermine (Spm), spermidine (Spd) and putrescine (Put) are considered as growth substances as they play a pivotal role in plant development and stress tolerance. Exogenous application of higher PAs like Spm and Spd has been used in combating metal toxicity which appears to be a simple cost-effective method of generating stress tolerance. The exogenous PAs modulate an antioxidative pathway under HM stress which acts as an adaptive mechanism of plants to scavenge excessive reactive oxygen species (ROS) and prevent bioaccumulation of the same. The present chapter highlights past developments and recent trends in the field of HM toxicity research in plants, focusing on plant growth, development and physiological response of plants under HM induced oxidative stress, the role of PA and antioxidative defense pathways and the possible cross-talk between them. This study also highlights the ameliorative property and underlying epigenetic mechanisms of PAs to enhance tolerance trait of plants under HM stress.

Keywords

Heavy metal Antioxidant Polyamine Priming Oxidative stress Plant tolerance Epigenetics 

Notes

Acknowledgements

The financial support from Council of Scientific and Industrial Research (CSIR), Government of India, through the project [38(1387)/14/EMR-II] to Dr. Aryadeep Roychoudhury is gratefully acknowledged. The authors are thankful to University Grants Commission (UGC), Government of India, for providing Junior Research Fellowship to Saikat Paul and Aditya Banerjee.

References

  1. Agrawal SB, Agrawal M, Lee EH, Kramer GF, Pillai P (1992) Changes in polyamine and glutathione contents of a green alga, Chlorogonium elongatum (Dang) France exposed to mercury. Environ Exp Bot 32:145–151CrossRefGoogle Scholar
  2. Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio AF (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237–1249PubMedCrossRefPubMedCentralGoogle Scholar
  3. Banerjee A, Roychoudhury A (2016) Group II late embryogenesis abundant (lea) proteins: structural and functional aspects in plant abiotic stress. Plant Growth Regul 79:1–17CrossRefGoogle Scholar
  4. Banerjee A, Roychoudhury A (2017a) Abscisic-acid-dependent basic leucine zipper (bZIP) transcription factors in plant abiotic stress. Protoplasma 254:3–16PubMedCrossRefPubMedCentralGoogle Scholar
  5. Banerjee A, Roychoudhury A (2017b) Epigenetic regulation during salinity and drought stress in plants: histone modifications and dna methylation. Plant Gene 11:199–204CrossRefGoogle Scholar
  6. Banerjee A, Roychoudhury A (2018) The gymnastics of epigenomics in rice. Plant Cell Rep 37:25–49PubMedCrossRefPubMedCentralGoogle Scholar
  7. Banerjee A, Roychoudhury A, Krishnamoorthi S (2016) Emerging techniques to decipher microRNAs (miRNAs) and their regulatory role in conferring abiotic stress tolerance of plants. Plant Biotechnol Rep 10:185–205CrossRefGoogle Scholar
  8. Banerjee A, Wani SH, Roychoudhury A (2017) Epigenetic control of plant cold responses. Front Plant Sci 8:1643.  https://doi.org/10.3389/fpls.2017.01643 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Boyd RS (2010) Heavy metal pollutants and chemical ecology: exploring new frontiers. J Chem Ecol 36:46–58PubMedCrossRefPubMedCentralGoogle Scholar
  10. Boyd RS, Rajakaruna N (2013) Heavy metal tolerance. In: Gibson D (ed) Oxford bibliographies in ecology. Oxford University Press, New YorkGoogle Scholar
  11. Cargnelutti D, Tabaldi LA, Spanevello RM, de Oliveira Jucoski G, Battisti V, Redin M, Linares CEB, Dressler VL, Flores ÉMM, Nicoloso FT, Morsch VM, Schetinger MRC (2006) Mercury toxicity induces oxidative stress in growing cucumber seedlings. Chemosphere 65:999–1006PubMedCrossRefGoogle Scholar
  12. Castiglione S, Todeschini V, Franchin C, Torrigiani P, Gastaldi D, Cicatelli A, Rinaudo C, Berta G, Biondi S, Lingua G (2009) Clonal differences in survival capacity, copper and zinc accumulation, and correlation with leaf polyamine levels in poplar: a large-scale field trial on heavily polluted soil. Environ Pollut 157:2108–2117PubMedCrossRefPubMedCentralGoogle Scholar
  13. Chmielowska-Bak J, Lefèvre I, Lutts S, Deckert J (2013) Short term signaling responses in roots of young soybean seedlings exposed to cadmium stress. J Plant Physiol 170:1585–1594PubMedCrossRefPubMedCentralGoogle Scholar
  14. Chmielowska-Bąk J, Gzyl J, Rucińska-Sobkowiak R, Arasimowicz-Jelonek M, Deckert J (2014) The new insights into cadmium sensing. Front Plant Sci 5:245.  https://doi.org/10.3389/fpls.2014.00245 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Cho U-H, Park J-O (2000) Mercury-induced oxidative stress in tomato seedlings. Plant Sci 156:1–9PubMedCrossRefPubMedCentralGoogle Scholar
  16. Choudhary SP, Bhardwaj R, Gupta BD, Dutt P, Gupta RK, Biondi S, Kanwar M (2010a) Epibrassinolide induces changes in indole-3-acetic acid, abscisic acid and polyamine concentrations and enhances antioxidant potential of radish seedlings under copper stress. Physiol Plant 140:280–296PubMedPubMedCentralGoogle Scholar
  17. Choudhary SP, Bhardwaj R, Gupta BD, Dutt P, Gupta RK, Kanwar M, Dutt P (2010b) Changes induced by Cu2+ and Cr6+ metal stress in polyamines, auxins, abscisic acid titers and antioxidative enzymes activities of radish seedlings. Braz J Plant Physiol 22:263–270CrossRefGoogle Scholar
  18. Choudhary SP, Kanwarb M, Bhardwaj R, Gupta BD, Gupta RK (2011) Epibrassinolide ameliorates Cr (VI) stress via influencing the levels of indole-3-acetic acid, abscisic acid, polyamines and antioxidant system of radish seedlings. Chemosphere 84:592–600PubMedCrossRefPubMedCentralGoogle Scholar
  19. Choudhary SP, Kanwar M, Bhardwaj R, Yu JQ, Tran LSP (2012a) Chromium stress mitigation by polyamine-brassinosteroid application involves phytohormonal and physiological strategies in Raphanus sativus L. PLoS One 7:e33210.  https://doi.org/10.1371/journal.pone.0033210 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Choudhary SP, Oral HV, Bhardwaj R, Yu J-Q, Tran L-SP (2012b) Interaction of brassinosteroids and polyamines enhances methylation and chromatin patterning copper stress tolerance in Raphanus sativus. J Exp Bot 63:5659–5675PubMedPubMedCentralCrossRefGoogle Scholar
  21. Clarkson TW, Magos L, Myers GJ (2003) The toxicology of mercury-current exposures and clinical manifestations. N Engl J Med 349:1731–1737PubMedCrossRefPubMedCentralGoogle Scholar
  22. DalCorso G, Farinati S, Furini A (2010) Regulatory networks of cadmium stress in plants. Plant Signal Behav 5:663–667PubMedPubMedCentralCrossRefGoogle Scholar
  23. Ding C, Shi G, Xu X, Yang H, Xu Y (2010) Effect of exogenous spermidine on polyamine metabolism in water hyacinth leaves under mercury stress. Plant Growth Regul 60:61–67CrossRefGoogle Scholar
  24. Elbaz A, Wei YY, Meng Q, Zheng Q, Yang ZM (2010) Mercury-induced oxidative stress and impact on antioxidant enzymes in Chlamydomonas reinhardtii. Ecotoxicology 19:1285–1293PubMedCrossRefPubMedCentralGoogle Scholar
  25. Emamverdian A, Ding Y, Mokhberdoran F, Xie Y (2015) Heavy metal stress and some mechanisms of plant defense respons. Sci World J 2015:756120.  https://doi.org/10.1155/2015/756120 CrossRefGoogle Scholar
  26. Fargašová A (2004) Toxicity comparison of some possible toxic metals (Cd, Cu, Pb, Se, Zn) on young seedlings of Sinapis alba L. Plant Soil Environ 50:33–38CrossRefGoogle Scholar
  27. Franchin C, Fossati T, Pasquini E, Lingua G, Castiglione S, Torrigiania P, Biondi S (2007) High concentrations of zinc and copper induce differential polyamine responses in micropropagated white poplar (Populus alba). Physiol Plant 130:77–90CrossRefGoogle Scholar
  28. Fu X-Z, Tong Y-H, Zhou X, Ling L-L, Chun C-P, Cao L, Zeng M, Peng L-Z (2017) Genome-wide identification of sweet orange (Citrus sinensis) metal tolerance proteins and analysis of their expression patterns under zinc, manganese, copper, and cadmium toxicity. Gene.  https://doi.org/10.1016/j.gene.2017.07.072
  29. Gong X, Liu Y, Huang D, Zeng G, Liu S, Tang H, Zhou L, Hu X, Zhou Y, Tan X (2016) Effects of exogenous calcium and spermidine on cadmium stress moderation and metal accumulation in Boehmeria nivea (L.) Gaudich. Environ Sci Pollut Res 23:8699–8708CrossRefGoogle Scholar
  30. Górecka K, Cvikrová M, Kowalska U, Eder J, Szafrańska K, Górecki R, Janas KM (2007) The impact of Cu treatment on phenolic and polyamine levels in plant material regenerated from embryos obtained in anther culture of carrot. Plant Physiol Biochem 45:54–61PubMedCrossRefPubMedCentralGoogle Scholar
  31. Groppa MD, Tomaro ML, Benavides MP (2001) Polyamines as protectors against cadmium or copper-induced oxidative damage in sunflower leaf discs. Plant Sci 161:481–488CrossRefGoogle Scholar
  32. Groppa MD, Benavides MP, Tomaro ML (2003) Polyamine metabolism in sunflower and wheat leaf discs under cadmium or copper stress. Plant Sci 164:293–299CrossRefGoogle Scholar
  33. Groppa MD, Tomaro ML, Benavides MP (2007a) Polyamines and heavy metal stress: the antioxidant behavior of spermine in cadmium- and copper-treated wheat leaves. Biometals 20:185–195PubMedCrossRefPubMedCentralGoogle Scholar
  34. Groppa MD, Ianuzzo MP, Tomaro ML, Benavides MP (2007b) Polyamine metabolism in sunflower plants under long-term cadmium or copper stress. Amino Acids 32:265–275PubMedCrossRefPubMedCentralGoogle Scholar
  35. Groppa MD, Zawoznik MS, Tomaro ML, Benavides MP (2008a) Inhibition of root growth and polyamine metabolism in sunflower (Helianthus annuus) seedlings under cadmium and copper stress. Biol Trace Elem Res 126:246–256PubMedCrossRefPubMedCentralGoogle Scholar
  36. Groppa MD, Rosales EP, Iannone MF, Benavides MP (2008b) Nitric oxide, polyamines and Cd-induced phytotoxicity in wheat roots. Phytochemistry 69:2609–2615PubMedCrossRefPubMedCentralGoogle Scholar
  37. Gupta K, Dey A, Gupta B (2013) Plant polyamines in abiotic stress responses. Acta Physiol Plant 35:2015–2036CrossRefGoogle Scholar
  38. Ha HC, Sirisoma NS, Kuppusamy P, Zweier JL, Woster PM, Casero RA (1998) The natural polyamine spermine functions directly as a free radical scavenger. Proc Natl Acad Sci U S A 95:11140–11145PubMedPubMedCentralCrossRefGoogle Scholar
  39. Hauschild MZ (1993) Putrescine (1,4-diaminobutane) as an indicator of pollution-induced stress in higher plants: barley and rape stressed with Cr(III) or Cr(VI). Ecotoxicol Environ Saf 26:228–247PubMedCrossRefPubMedCentralGoogle Scholar
  40. Hayat S, Khalique G, Irfan M, Wani AS, Tripathi BN, Ahmad A (2012) Physiological changes induced by chromium stress in plants: an overview. Protoplasma 249:599–611PubMedCrossRefPubMedCentralGoogle Scholar
  41. Holmes P, James KAF, Levy LS (2009) Is low-level environmental mercury exposure of concern to human health? Sci Total Environ 408:171–182PubMedCrossRefPubMedCentralGoogle Scholar
  42. Hossain MA, Piyatida P, da Silva JAT, Fujita M (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot 2012:872875.  https://doi.org/10.1155/2012/872875 CrossRefGoogle Scholar
  43. Hsu YT, Kao CH (2005) Abscisic acid accumulation and cadmium tolerance in rice seedlings. Physiol Plant 124:71–80CrossRefGoogle Scholar
  44. Hussain SS, Ali M, Ahmad M, Siddique KHM (2011) Polyamines: natural and engineered abiotic and biotic stress tolerance in plants. Biotechnol Adv 29:300–311PubMedCrossRefPubMedCentralGoogle Scholar
  45. Kao CH (2014) Role of abscisic acid in abiotic stress tolerance in rice. Crop Environ Bioinform 11:57–64Google Scholar
  46. Kirpichtchikova TA, Manceau A, Spadini L, Panfili F, Marcus MA, Jacquet T (2006) Speciation and solubility of heavy metals in contaminated soil using x-ray microfluorescence, EXAFS spectroscopy, chemical extraction, and thermodynamic modeling. Geochim Cosmochim Acta 70:2163–2190CrossRefGoogle Scholar
  47. Krichevsky A, Kozlovsky SV, Gutgarts H, Citovsky V (2007a) Arabidopsis co-repressor complexes containing polyamine oxidase-like proteins and plant-specific histone methyltransferases. Plant Signal Behav 2:174–177PubMedPubMedCentralCrossRefGoogle Scholar
  48. Krichevsky A, Gutgarts H, Kozlovsky SV, Tzfira T, Sutton A, Sternglanz R, Mandel G, Citovsky V (2007b) C2H2 zinc finger-SET histone methyltransferase is a plant-specific chromatin modifier. Dev Biol 303:259–269PubMedCrossRefPubMedCentralGoogle Scholar
  49. Kumar M, Kumari P, Gupta V, Anisha PA, Reddy CRK, Jha B (2010) Differential responses to cadmium induced oxidative stress in marine macroalga Ulva lactuca (Ulvales, Chlorophyta). Biometals 23:315–325PubMedCrossRefPubMedCentralGoogle Scholar
  50. Kumar M, Bijo AJ, Baghel RS, Reddy CRK, Jha B (2012) Selenium and spermine alleviate cadmium induced toxicity in the red seaweed Gracilaria dura by regulating antioxidants and DNA methylation. Plant Physiol Biochem 51:129–138PubMedCrossRefPubMedCentralGoogle Scholar
  51. Kuo MC, Kao CH (2004) Antioxidant enzyme activities are upregulated in response to cadmium in sensitive, but not in tolerant, rice (Oryza sativa L.) seedlings. Bot Bull Acad Sin 45:291–299Google Scholar
  52. Kusano T, Berberich T, Tateda C, Takahashi Y (2008) Polyamines: essential factors for growth and survival. Planta 228:367–381PubMedCrossRefPubMedCentralGoogle Scholar
  53. Kuthanová A, Gemperlová L, Zelenková S, Eder J, Macháčková I, Opatrný Z, Cvikrová M (2004) Cytological changes and alterations in polyamine contents induced by cadmium in tobacco BY-2 cells. Plant Physiol Biochem 42:149–156PubMedCrossRefPubMedCentralGoogle Scholar
  54. Lehotai N, Peto A, Bajkán S, Erdei L, Tari I, Kolbert Z (2011) In vivo and in situ visualization of early physiological events induced by heavy metals in pea root meristem. Acta Physiol Plant 33:2199–2207CrossRefGoogle Scholar
  55. Lin CC, Kao CH (1999) Excess copper induces an accumulation of putrescine in rice leaves. Bot Bull Acad Sin 40:213–218Google Scholar
  56. Liu J-H, Wang W, Wu H, Gong X, Moriguchi T (2015) Polyamines function in stress tolerance: from synthesis to regulation. Front Plant Sci 6:827.  https://doi.org/10.3389/fpls.2015.00827 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Maksymiec W (1997) Effect of copper on cellular processes in higher plants. Photosynthetica 34:321–342CrossRefGoogle Scholar
  58. Malar S, Sahi SV, Favas PJC, Venkatachalam P (2015) Mercury heavy-metal-induced physiochemical changes and genotoxic alterations in water hyacinths [Eichhornia crassipes (Mart.)]. Environ Sci Pollut Res 22:4597–4608CrossRefGoogle Scholar
  59. Minocha R, Majumdar R, Minocha SC (2014) Polyamines and abiotic stress in plants: a complex relationship. Front Plant Sci 5:175.  https://doi.org/10.3389/fpls.2014.00175 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Moussa HR, El-Gamal SM (2010) Effect of salicylic acid pretreatment on cadmium toxicity in wheat. Biol Plant 54:315–320CrossRefGoogle Scholar
  61. Nahar K, Hasanuzzaman M, Alam MM, Rahman A, Suzuki T, Fujita M (2016a) Polyamine and nitric oxide crosstalk: antagonistic effects on cadmium toxicity in mung bean plants through upregulating the metal detoxification, antioxidant defense and methylglyoxal detoxification systems. Ecotoxicol Environ Saf 126:245–255PubMedCrossRefPubMedCentralGoogle Scholar
  62. Nahar K, Rahman M, Hasanuzzaman M, Alam MM, Rahman A, Suzuki T, Fujita M (2016b) Physiological and biochemical mechanisms of spermine-induced cadmium stress tolerance in mung bean (Vigna radiata L.) seedlings. Environ Sci Pollut Res 23:21206–21218CrossRefGoogle Scholar
  63. Ortega-Villasante C, Rellán-Alvarez R, Del Campo FF, Carpena-Ruiz RO, Hernández LE (2005) Cellular damage induced by cadmium and mercury in Medicago sativa. J Exp Bot 56:2239–2251PubMedCrossRefPubMedCentralGoogle Scholar
  64. Pál M, Szalai G, Janda T (2015) Speculation: polyamines are important in abiotic stress signaling. Plant Sci 237:16–23PubMedCrossRefPubMedCentralGoogle Scholar
  65. Pál M, Csávás G, Szalai G, Tímea O, Khalil R, Yordanova R, Gell G, Birinyi Z, Németh E, Janda T (2017) Polyamines may influence phytochelatin synthesis during Cd stress in rice. J Hazard Mater 340:272–280PubMedCrossRefPubMedCentralGoogle Scholar
  66. Pasini A, Caldarera CM, Giordano E (2014) Chromatin remodeling by polyamines and polyamine analogs. Amino Acids 46:595–603PubMedCrossRefPubMedCentralGoogle Scholar
  67. Pathak MR, Teixeira JA, Wani SH (2014) Polyamines in response to abiotic stress tolerance through transgenic approaches. GM Crops Food 5:87–96PubMedPubMedCentralCrossRefGoogle Scholar
  68. Patra M, Bhowmik N, Bandopadhyay B, Sharma A (2004) Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environ Exp Bot 52:199–223CrossRefGoogle Scholar
  69. Paul S, Roychoudhury A (2017) Transcriptome profiling of abiotic stress-responsive genes during cadmium chloride-mediated stress in two indica rice varieties. J Plant Growth Regul 37:657–667CrossRefGoogle Scholar
  70. Paul S, Roychoudhury A, Banerjee A, Chaudhuri N, Ghosh P (2017) Seed pre-treatment with spermidine alleviates oxidative damages to different extent in the salt (NaCl)-stressed seedlings of three indica rice cultivars with contrasting level of salt tolerance. Plant Gene 11:112–123CrossRefGoogle Scholar
  71. Perfus-Barbeoch L, Leonhardt N, Vavasseur A, Forestier C (2002) Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. Plant J 32:539–548PubMedCrossRefPubMedCentralGoogle Scholar
  72. Piotrowska-Niczyporuk A, Bajguz A, Zambrzycka E, Godlewska-zyłkiewicz B (2012) Phytohormones as regulators of heavy metal biosorption and toxicity in green alga Chlorella vulgaris (Chlorophyceae). Plant Physiol Biochem 52:52–65PubMedCrossRefPubMedCentralGoogle Scholar
  73. Rady MM, Hemida KA (2015) Modulation of cadmium toxicity and enhancing cadmium-tolerance in wheat seedlings by exogenous application of polyamines. Ecotoxicol Environ Saf 119:178–185PubMedCrossRefPubMedCentralGoogle Scholar
  74. Rangan P, Subramani R, Kumar R, Singh AK, Singh R (2014) Recent advances in polyamine metabolism and abiotic stress tolerance. Biomed Res Int 2014:239621.  https://doi.org/10.1155/2014/239621 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180:169–181PubMedCrossRefPubMedCentralGoogle Scholar
  76. Roychoudhury A, Basu S, Sengupta D (2012) Antioxidants and stress-related metabolites in the seedlings of two indica rice varieties exposed to cadmium chloride toxicity. Acta Physiol Plant 34:835–847CrossRefGoogle Scholar
  77. Scoccianti V, Crinelli R, Tirillini B, Mancinelli V, Speranza A (2006) Uptake and toxicity of Cr(III) in celery seedlings. Chemosphere 64:1695–1703PubMedCrossRefPubMedCentralGoogle Scholar
  78. Scoccianti V, Iacobucci M, Speranza A, Antognoni F (2013) Over-accumulation of putrescine induced by cyclohexylamine interferes with chromium accumulation and partially restores pollen tube growth in Actinidia deliciosa. Plant Physiol Biochem 70:424–432PubMedCrossRefPubMedCentralGoogle Scholar
  79. Scoccianti V, Bucchini AE, Iacobucci M, Ruiz KB, Biondi S (2016) Oxidative stress and antioxidant responses to increasing concentrations of trivalent chromium in the andean crop species Chenopodium quinoa Willd. Ecotoxicol Environ Saf 133:25–35PubMedCrossRefPubMedCentralGoogle Scholar
  80. Seneviratne M, Rajakaruna N, Rizwan M, Madawala HMSP, Ok YS, Vithanage M (2017) Heavy metal-induced oxidative stress on seed germination and seedling development: a critical review. Environ Geochem Health.  https://doi.org/10.1007/s10653-017-0005-8
  81. Serrano-Martínez F, Casas JL (2011) Effects of extended exposure to cadmium and subsequent recovery period on growth, antioxidant status and polyamine pattern in in vitro cultured carnation. Physiol Mol Biol Plants 17:327–338PubMedPubMedCentralCrossRefGoogle Scholar
  82. Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31:739–753PubMedCrossRefPubMedCentralGoogle Scholar
  83. Sharma A (2014) Novel transcriptome data analysis implicates circulating microRNAs in epigenetic inheritance in mammals. Gene 538:366–372PubMedCrossRefPubMedCentralGoogle Scholar
  84. Sharma SK, Hazeldine S, Crowley ML, Hanson A, Beattie R, Varghese S, Senanayake TMD, Hirata A, Hirata F, Huang Y, Wu Y, Steinbergs N, Murray-Stewart T, Bytheway I Jr, Casero RA, Woster PM (2012a) Polyamine-based small molecule epigenetic modulators. Med Chem Commun 3:14–21CrossRefGoogle Scholar
  85. Sharma P, Jha AB, Dubey RS, Pessarakli M (2012b) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Aust J Bot 2012:217037.  https://doi.org/10.1155/2012/217037 CrossRefGoogle Scholar
  86. Soudek P, Ursu M, Petrová Š, Vaněk T (2016) Improving crop tolerance to heavy metal stress by polyamine application. Food Chem 213:223–229PubMedCrossRefPubMedCentralGoogle Scholar
  87. Sun XM, Lu B, Huang SQ, Mehta SK, Xu LL, Yang ZM (2007) Coordinated expression of sulfate transporters and its relation with sulfur metabolites in Brassica napus exposed to cadmium. Bot Stud 48:43–54Google Scholar
  88. Tang C-F, Liu Y-G, Zeng G-M, Li X, Xu W-H, Li C-F, Yuan X-Z (2005) Effects of exogenous spermidine on antioxidant system responses of Typha latifolia L. under Cd2+ stress. J Integr Plant Biol 47:428–434CrossRefGoogle Scholar
  89. Tang CF, Zhang RQ, Wen SZ, Li CF, Guo XF, Liu YG (2009) Effects of exogenous spermidine on subcellular distribution and chemical forms of cadmium in Typha latifolia L. under cadmium stress. Water Sci Technol 59:1487–1493PubMedCrossRefPubMedCentralGoogle Scholar
  90. Tiburcio AF, Altabella T, Bitrián M, Alcázar R (2014) The roles of polyamines during the lifespan of plants: from development to stress. Planta 240:1–18PubMedCrossRefPubMedCentralGoogle Scholar
  91. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1–40PubMedCrossRefPubMedCentralGoogle Scholar
  92. Vannini C, Marsoni M, Domingo G, Antognoni F, Biondi S, Bracale M (2009) Proteomic analysis of chromate-induced modifications in Pseudokirchneriella subcapitata. Chemosphere 76:1372–1379PubMedCrossRefPubMedCentralGoogle Scholar
  93. Wang X, Shi G-X, Ma G-Y, Xu Q-S, Khaled R, Hu J-Z (2004) Effects of exogenous spermidine on resistance of Nymphoides peltatum to Hg2+ stress. J Plant Physiol Mol Biol 30:69–74Google Scholar
  94. Wang X, Shi G, Xu Q, Hu J (2007) Exogenous polyamines enhance copper tolerance of Nymphoides peltatum. J Plant Physiol 164:1062–1070PubMedCrossRefPubMedCentralGoogle Scholar
  95. Wang H, Zhong G, Shi G, Pan F (2011) Toxicity of Cu, Pb, and Zn on seed germination and young seedlings of wheat (Triticum aestivum L.). In: Li D, Liu Y, Chen Y (eds) Computer and Computing Technologies in Agriculture IV. CCTA 2010. IFIP advances in information and communication technology. Springer, Berlin, pp 231–240Google Scholar
  96. Wang WY, Xu J, Liu XJ, Yu Y, Ge Q (2012) Cadmium induces early flowering in Arabidopsis. Biol Plant 56:117–120CrossRefGoogle Scholar
  97. Weinstein LH, Kaur-Sawhney R, Rajam MV, Wettlaufer SH, Galston AW (1986) Cadmium-induced accumulation of putrescine in oat and bean leaves. Plant Physiol 82:641–645PubMedPubMedCentralCrossRefGoogle Scholar
  98. Wen XP, Pang XM, Matsuda N, Kita M, Inoue H, Hao YJ, Honda C, Moriguchi T (2008) Over-expression of the apple spermidine synthase gene in pear confers multiple abiotic stress tolerance by altering polyamine titers. Trans Res 17:251–263CrossRefGoogle Scholar
  99. Wen XP, Ban Y, Inoue H, Matsuda N, Moriguchi T (2010) Spermidine levels are implicated in heavy metal tolerance in a spermidine synthase overexpressing transgenic european pear by exerting antioxidant activities. Trans Res 19:91–103CrossRefGoogle Scholar
  100. Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol 2011:402647.  https://doi.org/10.5402/2011/402647 CrossRefGoogle Scholar
  101. Xu Q, Shi G, Wang H, Yang H, Zhao J, Xu Y (2008) Roles of exogenous spermidine in improving Salvinia natans tolerance towards cadmium stress. J Appl Ecol 19:2521–2526Google Scholar
  102. Xu X, Shi G, Jia R (2012) Changes of polyamine levels in roots of Sagittaria sagittifolia L. under copper stress. Environ Sci Pollut Res 19:2973–2982CrossRefGoogle Scholar
  103. Yang H, Shi G, Wang H, Xu Q (2010) Involvement of polyamines in adaptation of Potamogeton crispus L. to cadmium stress. Aquat Toxicol 100:282–288PubMedCrossRefPubMedCentralGoogle Scholar
  104. Yang HY, Shi GX, Li WL, Wu WL (2013) Exogenous spermidine enhances Hydrocharis dubia cadmium tolerance. Russ J Plant Physiol 60:770–775CrossRefGoogle Scholar
  105. Yruela I (2009) Copper in plants: acquisition, transport and interactions. Funct Plant Biol 36:409–430CrossRefGoogle Scholar
  106. Zeneli L, Daci-Ajvazi M, Daci NM, Hoxha D, Shala A (2013) Environmental pollution and relationship between total antioxidant capacity and heavy metals (Pb, Cd, Zn, Mn, and Fe) in Solanum tuberosum L. and Allium cepa L. Hum Ecol Risk Assess 19:1618–1627CrossRefGoogle Scholar
  107. Zhang Z-K, Liu S-Q, Liu S-H, Zhang Y, Chen K, Huang Z-J (2010) Effects of grafting on root polyamine metabolism of cucumber seedlings under copper stress. J Appl Ecol 21:2051–2056Google Scholar
  108. Zhao J, Shi G, Yuan Q (2008) Polyamines content and physiological and biochemical responses to ladder concentration of nickel stress in Hydrocharis dubia (Bl.) backer leaves. Biometals 21:665–674PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Saikat Paul
    • 1
  • Aditya Banerjee
    • 1
  • Aryadeep Roychoudhury
    • 1
  1. 1.Department of BiotechnologySt. Xavier’s College (Autonomous)KolkataIndia

Personalised recommendations