Advertisement

Role of Compatible Solutes in Enhancing Antioxidative Defense in Plants Exposed to Metal Toxicity

  • Neha Handa
  • Sukhmeen Kaur Kohli
  • Ravdeep Kaur
  • Anket Sharma
  • Vinod Kumar
  • Ashwani Kumar Thukral
  • Saroj Arora
  • Renu Bhardwaj
Chapter

Abstract

Heavy metal pollution is one of the most perilous pollutions due to the non-degradable nature of heavy metals leading to hazardous stresses in plants. Heavy metal toxicity releases reactive oxygen species (ROS) ultimately causing oxidative stress. ROS have deleterious effects on cellular membranes, vital biomolecules and biochemical processes. Plants possess several mechanisms to combat oxidative stress and one of the mechanisms is the production of compatible solutes. These compounds are primarily involved in osmoregulation in plants. Compatible solutes are organic compounds with low molecular weights which, even at high concentrations, do not disturb cellular metabolism. However, their role in abiotic stress tolerance as an adaptive measure has gathered much interest. Several sugars (sucrose, fructose, trehalose, etc), amino acids (proline, glycine, alanine etc.) and other nitrogen and sulphur containing compounds have been found to play imperative roles in mitigation of free radicals, membrane protection and enzyme protection, apart from maintaining osmotic balance. The present chapter, therefore, aims to put forth the four major categories of compatible solutes viz. sugars and polyhydroxylated sugar alcohols, amino acids and their derivates, quaternary ammonium compounds and tertiary sulphonium compounds and understand their roles in managing heavy metal stress.

Keywords

Compatible solutes Osmolytes Heavy metals Oxidative stress Reactive oxygen species 

References

  1. Abu-Muriefah SS (2015) Effects of Silicon on Faba Bean (Vicia faba L.) plants grown under heavy metal stress conditions. Afr J Agric Sci Technol 3:255–268Google Scholar
  2. Adrees M, Ali S, Iqbal M, Bharwana SA, Siddiqi Z, Farid M, Ali Q, Saeed R, Rizwan M (2015) Mannitol alleviates chromium toxicity in wheat plants in relation to growth, yield, stimulation of anti-oxidative enzymes, oxidative stress and Cr uptake in sand and soil media. Ecotoxicol Environ Saf 122:1–8PubMedCrossRefPubMedCentralGoogle Scholar
  3. Agati G, Matteini P, Goti A, Tattini M (2007) Chloroplast-located flavonoids can scavenge singlet oxygen. New Phytol 174:77–89PubMedCrossRefPubMedCentralGoogle Scholar
  4. Ali S, Chaudhary A, Rizwan M, Anwar HT, Adrees M, Farid M, Irshad MK, Hayat T, Anjum SA (2015) Alleviation of chromium toxicity by glycine betaine is related to elevated antioxidant enzymes and suppressed chromium uptake and oxidative stress in wheat (Triticum aestivum L.). Environ Sci Pollut Res 22:10669–10678CrossRefGoogle Scholar
  5. Allakhverdieva MY, Mamedov DM, Gasanov RA (2001) The effect of glycine betaine on the heat stability of photosynthetic reactions in thylakoid membranes. Turk J Bot 25:11–17Google Scholar
  6. Aly AA, Mohamed AA (2012) The impact of copper ion on growth, thiol compounds and lipid peroxidation in two maize cultivars (Zea may L.) grown in vitro. Aust J Crop Sci 6:541–549Google Scholar
  7. Amiard V, Morvan-Bertrand A, Billard J-P, Huault C, Keller F, Prud'homme M-P (2003) Fructans, but not the sucrosyl-galactosides, raffinose and loliose, are affected by drought stress in perennial ryegrass. Plant Physiol 132:2218–2229PubMedCrossRefPubMedCentralGoogle Scholar
  8. Amin US, Lash TD, Wilkinson BJ (1995) Proline betaine is a highly effective osmoprotectant for Staphylococcus aureus. Arch Microbiol 163:138–142PubMedCrossRefPubMedCentralGoogle Scholar
  9. Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216CrossRefGoogle Scholar
  10. Aust SD, Marehouse CE, Thomas CE (1985) Role of metals in oxygen radical reactions. J Free Radic Biol Med 1:3–25PubMedCrossRefPubMedCentralGoogle Scholar
  11. Bali S, Kohli SK, Poonam, Kaur H, Bhardwaj R (2016) Improvement in photosynthetic efficiency of Brassica juncea under copper stress by plant steroid hormone. J Chem Pharm Res 8:464–470Google Scholar
  12. Bashir A, Hoffmann T, Kempf B, Xie X, Smits SH, Bremer E (2014) Plant-derived compatible solutes proline betaine and betonicine confer enhanced osmotic and temperature stress tolerance to Bacillus subtilis. Microbiology 160:2283–2294PubMedCrossRefPubMedCentralGoogle Scholar
  13. Bhaduri AM, Fulekar MH (2012) Antioxidant enzyme responses of plants to heavy metal stress. Rev Environ Sci Biotechnol 11:55–69CrossRefGoogle Scholar
  14. Bharwana SA, Ali S, Farooq MA, Iqbal N, Hameed A, Abbas F, Ahmad MSA (2014) Glycine betaine-induced lead toxicity tolerance related to elevated photosynthesis, antioxidant enzymes suppressed lead uptake and oxidative stress in cotton. Turk J Bot 38:281–292CrossRefGoogle Scholar
  15. Bhatia NP, Walsh KB, Baker AJ (2005) Detection and quantification of ligands involved in nickel detoxification in a herbaceous Ni hyperaccumulator Stackhousia tryonii Bailey. J Exp Bot 56:1343–1349PubMedCrossRefPubMedCentralGoogle Scholar
  16. Bhatti KH, Anwar S, Nawaz K, Hussain K, Siddiqi EH, Sharif RU, Talat A, Khalid A (2013) Effect of exogenous application of glycinebetaine on wheat (Triticum aestivum L.) under heavy metal stress. Middle-East J Sci Res 14:130–137Google Scholar
  17. Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptations to environmental stresses. Plant Cell 7:1099–1111PubMedCrossRefPubMedCentralGoogle Scholar
  18. Bolouri-Moghaddam MR, Roy KL, Xiang L, Rolland F, Van den Ende W (2010) Sugar signalling and antioxidant network connections in plant cells. FEBS J 277:2022–2037PubMedCrossRefPubMedCentralGoogle Scholar
  19. Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stress. In: Buchanan B, Gruissem W, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 1158–1203Google Scholar
  20. Camejo D, Martí MC, Olmos E, Torres W, Sevilla F, Jiménez A (2012) Oligogalacturonides stimulate antioxidant system in alfalfa roots. Biol Plant 56:537–544CrossRefGoogle Scholar
  21. Chen THH, Murata N (2002) Enhancement of tolerance to abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol 5:250–257PubMedCrossRefPubMedCentralGoogle Scholar
  22. Chen THH, Murata N (2008) Glycinebetaine: an effective protectant against abiotic stress in plants. Trends Plant Sci 13:499–505PubMedCrossRefPubMedCentralGoogle Scholar
  23. Chen CT, Chen L-M, Lin CC, Kao CH (2001) Regulation of proline accumulation in detached rice leaves exposed to excess copper. Plant Sci 160:283–290PubMedCrossRefPubMedCentralGoogle Scholar
  24. Chen J, Shafi M, Li S, Wang Y, Wu J, Ye Z, Peng D, Yan W, Liu D (2015) Copper induced oxidative stresses, antioxidant responses and phytoremediation potential of Moso bamboo (Phyllostachys pubescens). Sci Rep 5:1–9Google Scholar
  25. Clemens S (2006) Evolution and function of phytochelatin synthases. J Plant Physiol 163:319–332PubMedCrossRefPubMedCentralGoogle Scholar
  26. Colmer TD, Teresa WMF, Läuchli A, Higashi RM (1996) Interactive effects of salinity, nitrogen and sulphur on the organic solutes in Spartina alterniflora leaf blades. J Exp Bot 47:369–375CrossRefGoogle Scholar
  27. Costa G, Morel J-L (1994) Water relations, gas exchange and amino acid content in Cd-treated lettuce. Plant Physiol Biochem 32:561–570Google Scholar
  28. Couee I, Sulmon C, Gouesbet G, El Amrani A (2006) Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J Exp Bot 57:449–459PubMedCrossRefPubMedCentralGoogle Scholar
  29. Cromwell BT, Rennie SD (1953) The biosynthesis and metabolism of betaines in plants. 1. The estimation and distribution of glycine betaine (betaine) in Beta vulgaris L. and other plants. Biochem J 55:189–192CrossRefGoogle Scholar
  30. Cuin TA, Shabala S (2007) Compatible solutes reduce ROS-induced potassium efflux in Arabidopsis roots. Plant Cell Environ 30:875–885PubMedCrossRefPubMedCentralGoogle Scholar
  31. Custers JHHV, Harrison SJ, Sela-Buurlage MB, Deventer EV, Lageweg W, Howe PW, Van Der Meijs PJ et al (2004) Isolation and characterisation of a class of carbohydrate oxidases from higher plants, with a role in active defence. Plant J 39:147–160PubMedCrossRefPubMedCentralGoogle Scholar
  32. De Britto JA, Sebastian SR, Gracelin DHS (2011) Effect of lead on malondialdehyde, superoxide dismutase, proline activity and chlorophyll content in Capsicum annum. Bioresour Bull 5:357–362Google Scholar
  33. Dhir B, Nasim SA, Samantary S, Srivastava S (2012) Assessment of osmolyte accumulation in heavy metal exposed Salvinia natans. Int J Bot 8:153–158CrossRefGoogle Scholar
  34. Dickson DMJ, Kirst GO (1986) The role of dimethylsulfoniopropionate, glycine betaine and homarine in the osmoacclimation of Platymonas subcordiformis. Planta 167:536–543PubMedCrossRefPubMedCentralGoogle Scholar
  35. Dickson DM, Jones RGW, Davenport J (1980) Steady state osmotic adaptation in Ulva lactuca. Planta 150:158–165PubMedCrossRefPubMedCentralGoogle Scholar
  36. Djilianov D, Georgieva T, Moyankova D, Atanassov A, Shinozaki K, Smeeken SCM, Verma DPS, Murata N (2005) Improved abiotic stress tolerance in plants by accumulation of osmoprotectants—gene transfer approach. Biotechnol Biotechnol Equip 19:63–71CrossRefGoogle Scholar
  37. Dominguez-Solís JR, López-Martín MC, Ager FJ, Ynsa MD, Romero LC, Gotor C (2004) Increased cysteine availability is essential for cadmium tolerance and accumulation in Arabidopsis thaliana. Plant Biotechnol J 2:46–9476CrossRefGoogle Scholar
  38. Duman F, Aksoy A, Aydin Z, Temizgul R (2011) Effects of exogenous glycinebetaine and trehalose on cadmium accumulation and biological responses of an aquatic plant (Lemna gibba L.). Water Air Soil Pollut 217:545–556CrossRefGoogle Scholar
  39. Edelman J, Jeeeord TG (1968) The mechanism of fructosan metabolism in higher plants as exemplified in Helianthus tuberosus. New Phytol 67:517–531CrossRefGoogle Scholar
  40. Eleutherio ECA, Araujo PS, Panek AD (1993) Protective role of trehalose during heat stress in Saccharomyces cerevisiae. Cryobiology 30:591–596PubMedCrossRefPubMedCentralGoogle Scholar
  41. Emamverdian A, Ding Y, Mokhberdoran F, Xie Y (2015) Heavy metal stress and some mechanisms of plant defense response. Sci World J 2015:1–18CrossRefGoogle Scholar
  42. Fariduddin Q, Varshney P, Yusuf M, Ali A, Ahmad A (2013) Dissecting the role of glycine betaine in plants under abiotic stress. Plant Stress 7:8–18Google Scholar
  43. Farooq MA, Ali S, Hameed A, Bharwana SA, Rizwan M, Ishaque W, Farid M, Mahmood K, Iqbal Z (2016) Cadmium stress in cotton seedlings: physiological, photosynthesis and oxidative damages alleviated by glycinebetaine. S Afr J Bot 104:61–68CrossRefGoogle Scholar
  44. Feizi H, Kamali M, Jafari L, Moghaddam PR (2013) Phytotoxicity and stimulatory impacts of nano-sized and bulk titanium dioxide on fennel (Foeniculum vulgare Mill). Chemosphere 91:506–511PubMedCrossRefPubMedCentralGoogle Scholar
  45. Fernandez O, Béthencourt L, Quero A, Sangwan RS, Clément C (2010) Trehalose and plant stress responses: friend or foe? Trends Plant Sci 15:409–417PubMedCrossRefPubMedCentralGoogle Scholar
  46. Fitzgerald TL, Waters DL, Henry RJ (2009) Betaine aldehyde dehydrogenase in plants. Plant Biol 11:119–130PubMedCrossRefPubMedCentralGoogle Scholar
  47. Ghorbani A, Qeshlagh MA, Jabehdar SK (2015) Folk herbal veterinary medicines of Tehran Watershed (Iran). J Herb Drugs 6:31–39Google Scholar
  48. Gill M (2014) Heavy metal stress in plants: a review. Int J Adv Res 2:1043–1055Google Scholar
  49. Giri J (2011) Glycine betaine and abiotic stress tolerance in plants. Plant Signal Behav 6:1746–1751PubMedCrossRefPubMedCentralGoogle Scholar
  50. Guo P, Baum M, Grando S, Ceccarelli S, Bai G, Li R, Von Korff M, Varshney RK, Graner A, Valkoun J (2009) Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage. J Exp Bot 60:3531–3544PubMedCrossRefPubMedCentralGoogle Scholar
  51. Hanson AD, Rathinasabapathi B, Chamberlin B, Gage DA (1991) Comparative physiological evidence that beta-alanine betaine and choline- O-sulfate act as compatible osmolytes in halophytic Limonium species. Plant Physiol 97:1199–1205PubMedCrossRefPubMedCentralGoogle Scholar
  52. Hanson AD, Rathinasabapathi B, Rivoal J, Burnet M, Dillon MO, Gage DA (1994) Osmoprotective compounds in the Plumbaginaceae: a natural experiment in metabolic engineering of stress tolerance. Proc Natl Acad Sci U S A 91:306–310PubMedCrossRefPubMedCentralGoogle Scholar
  53. Hare PD, Cress WA, Staden JV (1998) Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ 21:535–553CrossRefGoogle Scholar
  54. Hendry GAF (1993) Evolutionary origins and natural functions of fructans–a climatological, biogeographic and mechanistic appraisal. New Phytol 123:3–14CrossRefGoogle Scholar
  55. Hernandez-Marin E, Martínez A (2012) Carbohydrates and their free radical scavenging capability: a theoretical study. J Phys Chem B 116:9668–9675PubMedCrossRefPubMedCentralGoogle Scholar
  56. Hincha DK, Zuther E, Heyer AG (2003) The preservation of liposomes by raffinose family oligosaccharides during drying is mediated by effects on fusion and lipid phase transitions. BBA-Biomembranes 1612:172–177PubMedCrossRefPubMedCentralGoogle Scholar
  57. Hussain I, Akhtar S, Ashraf MA, Rasheed R, Siddiqi EH, Ibrahim M (2013) Response of maize seedlings to cadmium application after different time intervals. Int Sch Res Not Agron 2013:1–9CrossRefGoogle Scholar
  58. Imtiyaz S, Agnihotri RK, Ganie SA, Sharma R (2014) Biochemical response of Glycine Max (L.) Merr. to cobalt and lead stress. J Stress Physiol Biochem 10:259–272Google Scholar
  59. Jabeen N, Abbas Z, Iqbal M, Rizwan M, Jabbar A, Farid M, Ali S, Ibrahim M, Abbas F (2016) Glycine betaine mediates chromium tolerance in mung bean through lowering of Cr uptake and improved antioxidant system. Arch Agron Soil Sci 62:648–662CrossRefGoogle Scholar
  60. Kerkeb L, Kramer U (2003) The role of free histidine in xylem loading of nickel in Alyssum lesbiacum and Brassica juncea. Plant Physiol 131:716–724PubMedCrossRefPubMedCentralGoogle Scholar
  61. Keunen E, Remans T, Bohler S, Vangronsveld J, Cuypers A (2011) Metal-induced oxidative stress and plant mitochondria. Int J Mol Sci 12:6894–6918PubMedCrossRefPubMedCentralGoogle Scholar
  62. Keunen ELS, Peshev D, Vangronsveld J, Ende WVD, Cuypers ANN (2013) Plant sugars are crucial players in the oxidative challenge during abiotic stress: extending the traditional concept. Plant Cell Environ 36:1242–1255PubMedCrossRefPubMedCentralGoogle Scholar
  63. Kieffer P, Planchon S, Oufir M, Ziebel J, Dommes J, Hoffmann L, Hausman JF, Renaut J (2008) Combining proteomics and metabolite analyses to unravel cadmium stress-response in poplar leaves. J Proteome Res 8:400–417CrossRefGoogle Scholar
  64. Kim MS, Cho SM, Kang EY, Im YJ, Hwangbo H, Kim YC, Ryu C-M, Yang KY, Chung GC, Cho BH (2008) Galactinol is a signaling component of the induced systemic resistance caused by Pseudomonas chlororaphis O6 root colonization. Mol Plant Microbe Interact 21:1643–1653PubMedCrossRefPubMedCentralGoogle Scholar
  65. Kramer U, Cotter-Howells JD, Charnock JM, Baker AJ, Smith JAC (1996) Free histidine as a metal chelator in plants that accumulate nickel. Nature 379:635–638CrossRefGoogle Scholar
  66. Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63:1593–1608PubMedCrossRefPubMedCentralGoogle Scholar
  67. Kumar V, Shriram V, Hoque TS, Hasan MM, Burritt DJ, Hossain MA (2017) Glycine betaine-mediated abiotic oxidative-stress tolerance in plants: physiological and biochemical mechanisms. In: Sarwat M, Ahmed A, Abdin MZ, Ibrahim MM (eds) Stress signaling in plants: genomics and proteomics perspective. Springer, Cham, pp 111–133CrossRefGoogle Scholar
  68. Kumari A, Das P, Parida AK, Agarwal PK (2015) Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes. Front Plant Sci 6:537.  https://doi.org/10.3389/fpls.2015.00537 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Lehner A, Bailly C, Flechel B, Poels P, Côme D, Corbineau F (2006) Changes in wheat seed germination ability, soluble carbohydrate and antioxidant enzyme activities in the embryo during the desiccation phase of maturation. J Cereal Sci 43:175–182CrossRefGoogle Scholar
  70. Le-Roy K, Lammens W, Verhaest M, Coninck BD, Rabijns A, Laere AV, Van den Ende W (2007) Unraveling the difference between invertases and fructan exohydrolases: a single amino acid (Asp-239) substitution transforms Arabidopsis cell wall invertase1 into a fructan 1-exohydrolase. Plant Physiol 145:616–625PubMedCrossRefPubMedCentralGoogle Scholar
  71. Loewus FA, Loewus MW (1983) Myo-inositol: its biosynthesis and metabolism. Annu Rev Plant Physiol 34:137–161CrossRefGoogle Scholar
  72. Lokhande VH, Suprasanna P (2012) Prospects of halophytes in understanding and managing abiotic stress tolerance. In: Ahmad P, Prasad MNV (eds) Environmental adaptations and stress tolerance of plants in the era of climate change. Springer, New York, pp 29–56CrossRefGoogle Scholar
  73. Lunn JE, Delorge I, Figueroa CM, Dijck PV, Stitt M (2014) Trehalose metabolism in plants. Plant J 79:544–567PubMedCrossRefPubMedCentralGoogle Scholar
  74. Luo Y, Li W-M, Wang W (2008) Trehalose: protector of antioxidant enzymes or reactive oxygen species scavenger under heat stress? Environ Exp Bot 63:378–384CrossRefGoogle Scholar
  75. Makinen KK (1994) Sugar alcohols. In: Goldberg I (ed) Functional foods, designer foods, pharmafoods, nutraceuticals. Chapman and Hall, New York, pp 219–241Google Scholar
  76. Martinez-Fleites C, Ortíz-Lombardía M, Pons T, Tarbouriech N, Taylor EJ, Arrieta JG, Hernández L, Davies GJ (2005) Crystal structure of levansucrase from the Gram-negative bacterium Gluconacetobacter diazotrophicus. Biochem J 390:19–27PubMedCrossRefPubMedCentralGoogle Scholar
  77. Matysik J, Bhalu AB, Mohanty P (2002) Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Curr Sci 82:525–532Google Scholar
  78. Millar AH, Mittova V, Kiddle G, Heazlewood JL, Bartoli CG, Theodoulou FL, Foyer CH (2003) Control of ascorbate synthesis by respiration and its implications for stress responses. Plant Physiol 133:443–447PubMedCrossRefPubMedCentralGoogle Scholar
  79. Miranda JA, Avonce N, Suárez R, Thevelein JM, Dijck PV, Iturriaga G (2007) A bifunctional TPS–TPP enzyme from yeast confers tolerance to multiple and extreme abiotic-stress conditions in transgenic Arabidopsis. Planta 226:411–1421CrossRefGoogle Scholar
  80. Mishra S, Dubey RS (2006) Inhibition of ribonuclease and protease activities in arsenic exposed rice seedlings: role of proline as enzyme protectant. J Plant Physiol 163:927–936PubMedCrossRefPubMedCentralGoogle Scholar
  81. Moller IM, Poul EJ, Andreas H (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481PubMedCrossRefPubMedCentralGoogle Scholar
  82. Mostofa MG, Saegusa D, Fujita M, Tran L-SP (2015) Hydrogen sulfide regulates salt tolerance in rice by maintaining Na+/K+ balance, mineral homeostasis and oxidative metabolism under excessive salt stress. Front Plant Sci 6:1055.  https://doi.org/10.3389/fpls.2015.01055 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Mourato M, Reis R, Martins LL (2012) Characterization of plant antioxidative system in response to abiotic stresses: a focus on heavy metal toxicity. In: Montanaro G (ed) Advances in selected plant physiology aspects. InTech, Rijeka, pp 23–44Google Scholar
  84. Nisa Z, Chen C, Yu Y, Chen C, Mallano AI, Xiang-Bo D, Xiao-Li S, Yan-Ming Z (2016) Constitutive overexpression of myo-inositol-1-phosphate synthase gene (GsMIPS2) from Glycine soja confers enhanced salt tolerance at various growth stages in Arabidopsis. J Northeast Agric Univ 23:28–44Google Scholar
  85. Nishikawa F, Kato M, Hyodo H, Ikoma Y, Sugiura M, Yano M (2004) Effect of sucrose on ascorbate level and expression of genes involved in the ascorbate biosynthesis and recycling pathway in harvested broccoli florets. J Exp Bot 56:65–72PubMedPubMedCentralGoogle Scholar
  86. Nishizawa A, Yabuta Y, Yoshida E, Maruta T, Yoshimura K, Shigeoka S (2006) Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress. Plant J 48:535–547PubMedCrossRefPubMedCentralGoogle Scholar
  87. Nishizawa A, Yabuta Y, Shigeoka S (2008) Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiol 147:1251–1263PubMedCrossRefPubMedCentralGoogle Scholar
  88. Nishizawa-Yokoi A, Yabuta Y, Shigeoka S (2008) The contribution of carbohydrates including raffinose family oligosaccharides and sugar alcohols to protection of plant cells from oxidative damage. Plant Signal Behav 3:1016–1018PubMedCrossRefPubMedCentralGoogle Scholar
  89. Noiraud N, Maurousset L, Lemoine R (2001) Identification of a mannitol transporter, AgMaT1, in celery phloem. Plant Cell 13:695–705PubMedCrossRefPubMedCentralGoogle Scholar
  90. Nolte KD, Hanson AD, Gage DA (1997) Proline accumulation and methylation to proline betaine in citrus: implications for genetic engineering of stress resistance. J Am Soc Hortic Sci 122:8–13Google Scholar
  91. Okada MY, Ye K (2009) Nuclear phosphoinositide signaling regulates messenger RNA export. RNA Biol 6:12–16PubMedCrossRefPubMedCentralGoogle Scholar
  92. Okem A, Southway C, Stirk WA, Street RA, Finnie JF, Van Staden J (2015) Effect of cadmium and aluminum on growth, metabolite content and biological activity in Drimia elata (Jacq.) Hyacinthaceae. S Afr J Bot 98:142–147CrossRefGoogle Scholar
  93. Orthen B, Popp M, Smirnoff N (1994) Hydroxyl radical scavenging properties of cyclitols. P Roy Soc B-Biol Sci 102:269–272Google Scholar
  94. Otte ML, Morris JT (1994) Dimethylsulphoniopropionate (DMSP) in Spartina alterniflora Loisel. Aquat Bot 48:239–259CrossRefGoogle Scholar
  95. Otte ML, Wilson G, Morris JT, Moran BM (2004) Dimethylsulphoniopropionate (DMSP) and related compounds in higher plants. J Exp Bot 55:1919–1925PubMedCrossRefPubMedCentralGoogle Scholar
  96. Panikulangara TJ, Eggers-Schumacher G, Wunderlich M, Stransky H, Schöffl F (2004) Galactinol synthase1. A novel heat shock factor target gene responsible for heat-induced synthesis of raffinose family oligosaccharides in Arabidopsis. Plant Physiol 136:3148–3158PubMedCrossRefPubMedCentralGoogle Scholar
  97. Paradiso A, Cecchini C, Gara LD, D’Egidio MG (2006) Functional, antioxidant and rheological properties of meal from immature durum wheat. J Cereal Sci 43:216–222CrossRefGoogle Scholar
  98. Parvanova D, Ivanov S, Konstantinova T, Karanov E, Atanassov A, Tsvetkov T, Alexieva V, Djilianov D (2004) Transgenic tobacco plants accumulating osmolytes show reduced oxidative damage under freezing stress. Plant Physiol Biochem 42:57–63PubMedCrossRefPubMedCentralGoogle Scholar
  99. Peshev D, Vergauwen R, Moglia A, Hideg É, Ende WVD (2013) Towards understanding vacuolar antioxidant mechanisms: a role for fructans? J Exp Bot 64:1025–1038PubMedCrossRefPubMedCentralGoogle Scholar
  100. Peterbauer T, Richter A (2001) Biochemistry and physiology of raffinose family oligosaccharides and galactosylcyclitols in seeds. Seed Sci Res 11:185–197Google Scholar
  101. Pidatala VR, Li K, Sarkar D, Ramakrishna W, Datta R (2016) Identification of biochemical pathways associated with lead tolerance and detoxification in Chrysopogon zizanioides L. Nash (Vetiver) by metabolic profiling. Environ Sci Technol 50:2530–2537PubMedCrossRefPubMedCentralGoogle Scholar
  102. Rastgoo L, Alemzadeh A, Afsharifar A (2011) Isolation of two novel isoforms encoding zinc-and copper-transporting P1B-ATPase from Gouan (Aeluropus littoralis). Plant Omics J 4:377–383Google Scholar
  103. Rhodes D, Hanson AD (1993) Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu Rev Plant Biol 44:357–384CrossRefGoogle Scholar
  104. Rhodes D, Samaras Y (1994) Genetic control of osmoregulation in plants. In: Strange SK (ed) Cellular and molecular physiology of cell volume regulation. CRC Press, Boca Raton, pp 347–361Google Scholar
  105. Rivoal J, Hanson AD (1994) Choline-O-sulfate biosynthesis in plants: identification and partial characterization of a salinity-inducible choline sulfotransferase from species of Limonium (Plumbaginaceae). Plant Physiol 106:1187–1193PubMedCrossRefPubMedCentralGoogle Scholar
  106. Rontein D, Basset G, Hanson AD (2002) Metabolic engineering of osmoprotectant accumulation in plants. Metab Eng 4:49–56PubMedCrossRefPubMedCentralGoogle Scholar
  107. Saha M, Sarkar S, Sarkar B, Sharma BK, Bhattacharjee S, Tribedi P (2016) Microbial siderophores and their potential applications: a review. Environ Sci Pollut Res 23:3984–3999CrossRefGoogle Scholar
  108. Salerno GL, Curatti L (2003) Origin of sucrose metabolism in higher plants: when, how and why? Trends Plant Sci 8:63–69PubMedCrossRefPubMedCentralGoogle Scholar
  109. Saxena DK, Saiful-Arfeen M (2009) Effect of Cu and Cd on oxidative enzymes and chlorophyll content of moss Racomitrium crispulum. Taiwania 54:365–374Google Scholar
  110. Saxena SC, Kaur H, Verma P, Petla BP, Andugula VR, Majee M (2013a) Osmoprotectants: potential for crop improvement under adverse conditions. In: Tuteja N, Singh Gill S (eds) Plant acclimation to environmental stress. Springer, New York, pp 197–232CrossRefGoogle Scholar
  111. Saxena SC, Salvi P, Kaur H, Verma P, Petla BP, Rao V, Kamble N, Majee M (2013b) Differentially expressed myo-inositol monophosphatase gene (CaIMP) in chickpea (Cicer arietinum L.) encodes a lithium-sensitive phosphatase enzyme with broad substrate specificity and improves seed germination and seedling growth under abiotic stresses. J Exp Bot 64:5623–5639PubMedCrossRefPubMedCentralGoogle Scholar
  112. Schneider T, Keller F (2009) Raffinose in chloroplasts is synthesized in the cytosol and transported across the chloroplast envelope. Plant Cell Physiol 50:2174–2182PubMedCrossRefPubMedCentralGoogle Scholar
  113. Schramm F, Ganguli A, Kiehlmann E, Englich G, Walch D, von Koskull-Döring P (2006) The heat stress transcription factor HsfA2 serves as a regulatory amplifier of a subset of genes in the heat stress response in Arabidopsis. Plant Mol Biol 60:759–772PubMedCrossRefPubMedCentralGoogle Scholar
  114. Schroeter R, Hoffmann T, Voigt B, Meyer H, Bleisteiner M, Muntel J, Jürgen B, Albrecht D, Becher D, Lalk M, Evers S (2013) Stress responses of the industrial workhorse Bacillus licheniformis to osmotic challenges. PLoS One 8:e80956.  https://doi.org/10.1371/journal.pone.0080956 CrossRefPubMedPubMedCentralGoogle Scholar
  115. Schutzendubel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365PubMedPubMedCentralGoogle Scholar
  116. Sengupta S, Mukherjee S, Basak P, Majumder AL (2015) Significance of galactinol and raffinose family oligosaccharide synthesis in plants. Front Plant Sci 6:656.  https://doi.org/10.3389/fpls.2015.00656 CrossRefPubMedPubMedCentralGoogle Scholar
  117. Sharma SS, Dietz K-J (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57:711–726PubMedCrossRefPubMedCentralGoogle Scholar
  118. Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:1–26CrossRefGoogle Scholar
  119. Shen BO, Jensen RG, Bohnert HJ (1997) Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts. Plant Physiol 113:1177–1183PubMedCrossRefPubMedCentralGoogle Scholar
  120. Slama I, Abdelly C, Bouchereau A, Flowers T, Savouré A (2015) Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann Bot 115:433–447PubMedCrossRefPubMedCentralGoogle Scholar
  121. Smirnoff N, Cumbes QJ (1989) Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28:1057–1060CrossRefGoogle Scholar
  122. Sottomayor M, Lopes Cardoso I, Pereira LG, Ros Barceló A (2004) Peroxidase and the biosynthesis of terpenoid indole alkaloids in the medicinal plant Catharanthus roseus (L.) G. Don. Phytochem Rev 3:159–171CrossRefGoogle Scholar
  123. Stefels J (2000) Physiological aspects of the production and conversion of DMSP in marine algae and higher plants. J Sea Res 43:183–197CrossRefGoogle Scholar
  124. Stepien P, Gediga K, Piszcz U, Karmowska K (2016) Effects of the exogenous glycinebetaine on photosynthetic apparatus in cucumber leaves challenging Al stress. In: Proceedings of the 18th international conference on heavy metals in the environmentGoogle Scholar
  125. Stoyanova S, Geuns J, Hideg É, Ende WVD (2011) The food additives inulin and stevioside counteract oxidative stress. Int J Food Sci Nutr 62:207–214PubMedCrossRefPubMedCentralGoogle Scholar
  126. Subbarao GV, Wheeler RM, Levine LH, Stutte GW (2001) Glycinebetaine accumulation, ionic and water relations of red beet at contrasting levels of sodium supply. J Plant Physiol 158:767–776PubMedCrossRefPubMedCentralGoogle Scholar
  127. Sunda WKDJ, Kieber DJ, Kiene RP, Huntsman S (2002) An antioxidant function for DMSP and DMS in marine algae. Nature 418:317–320PubMedCrossRefPubMedCentralGoogle Scholar
  128. Szabados L, Savoure A (2009) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97PubMedCrossRefPubMedCentralGoogle Scholar
  129. Takabe T, Rai V, Hibino T (2006) Metabolic engineering of glycinebetaine. In: Rai A, Takabe T (eds) Abiotic stress tolerance in plants: toward the improvement of global environment and food. Springer, Dordrecht, pp 137–151CrossRefGoogle Scholar
  130. Takahashi S, Murata N (2008) How do environmental stresses accelerate photoinhibition? Trends Plant Sci 13:178–182PubMedCrossRefPubMedCentralGoogle Scholar
  131. Tan JL, Wang CY, Xiang B, Han R, Guo Z (2013) Hydrogen peroxide and nitric oxide mediated cold- and dehydration-induced myo-inositol phosphate synthase that confers multiple resistances to abiotic stresses. Plant Cell Environ 36:288–299PubMedCrossRefPubMedCentralGoogle Scholar
  132. Thole JM, Nielsen E (2008) Phosphoinositides in plants: novel functions in membrane trafficking. Curr Opin Plant Biol 11:620–631PubMedCrossRefPubMedCentralGoogle Scholar
  133. Trinchant JC, Boscari A, Spennato G, Van de Sype G, Le Rudulier D (2004) Proline betaine accumulation and metabolism in alfalfa plants under sodium chloride stress. Exploring its compartmentalization in nodules. Plant Physiol 135:1583–1594PubMedCrossRefPubMedCentralGoogle Scholar
  134. Tripathi BN, Gaur JP (2004) Relationship between copper-and zinc-induced oxidative stress and proline accumulation in Scenedesmus sp. Planta 219:397–404PubMedCrossRefPubMedCentralGoogle Scholar
  135. Tripathi P, Singh PC, Mishra A, Chaudhry V, Mishra S, Tripathi RD, Nautiyal CS (2013) Trichoderma inoculation ameliorates arsenic induced phytotoxic changes in gene expression and stem anatomy of chickpea (Cicer arietinum). Ecotoxicol Environ Saf 89:8–14PubMedCrossRefPubMedCentralGoogle Scholar
  136. Turkan I, Demiral T (2009) Recent developments in understanding salinity tolerance. Environ Exp Bot 67:2–9CrossRefGoogle Scholar
  137. Valluru R, Van den Ende W (2008) Plant fructans in stress environments: emerging concepts and future prospects. J Exp Bot 59:2905–2916PubMedCrossRefPubMedCentralGoogle Scholar
  138. Valluru R, Van den Ende W (2011) Myo-inositol and beyond–emerging networks under stress. Plant Sci 181:387–400PubMedCrossRefPubMedCentralGoogle Scholar
  139. Van den Ende W, Peshev D (2013) Sugars as antioxidants in plants. In: Tuteja N, Gill SS (eds) Crop improvement under adverse conditions. Springer, New York, pp 285–307CrossRefGoogle Scholar
  140. Van den Ende W, Valluru R (2008) Sucrose, sucrosyl oligosaccharides, and oxidative stress: scavenging and salvaging? J Exp Bot 60:9–18PubMedCrossRefPubMedCentralGoogle Scholar
  141. Wang Y, Huang J, Gou CB, Dai X, Chen F, Wei W (2011) Cloning and characterization of a differentially expressed cDNA encoding myo-inositol-1-phosphate synthase involved in response to abiotic stress in Jatropha curcas. Plant Cell Tissue Organ Cult 106:269–277CrossRefGoogle Scholar
  142. Wang Y, Liu H, Wang S, Li H, Xin Q (2016) Overexpression of a common wheat gene galactinol synthase3 enhances tolerance to zinc in Arabidopsis and rice through the modulation of reactive oxygen species production. Plant Mol Biol Rep 34:794–806CrossRefGoogle Scholar
  143. Wani HS, Singh NB, Haribhushan A, Iqbal Mir J (2013) Compatible solute engineering in plants for abiotic stress tolerance-role of glycine betaine. Curr Genomics 14:157–165PubMedCrossRefPubMedCentralGoogle Scholar
  144. Wiemken A (1990) Trehalose in yeast, stress protectant rather than reserve carbohydrate. Antonie Van Leeuwenhoek 58:209–217PubMedCrossRefPubMedCentralGoogle Scholar
  145. Williamson JD, Jennings DB, Guo WW, Pharr DM, Ehrenshaft M (2002) Sugar alcohols, salt stress, and fungal resistance: polyols—multifunctional plant protection? J Am Soc Hortic Sci 127:467–473Google Scholar
  146. Wingler A (2002) The function of trehalose biosynthesis in plants. Phytochemistry 60:437–440PubMedCrossRefPubMedCentralGoogle Scholar
  147. Wyn-Jones RG, Storey R (1981) Betaines. In: Paleg LG, Aspinal D (eds) The physiology and biochemistry of drought resistance in plants. Academic, New York, pp 171–204Google Scholar
  148. Xiong YALC, Phan QN, Bassham DC (2007) Degradation of oxidized proteins by autophagy during oxidative stress in Arabidopsis. Plant Physiol 143:291–299PubMedCrossRefPubMedCentralGoogle Scholar
  149. Xue H, Chen X, Li G (2007) Involvement of phospholipid signaling in plant growth and hormone effects. Curr Opin Plant Biol 10:483–489PubMedCrossRefPubMedCentralGoogle Scholar
  150. Yancey PH (1994) Compatible and counteracting solutes. In: Strange K (ed) Cellular and molecular physiology of cell volume regulation. CRC Press, Boca Raton, pp 81–109Google Scholar
  151. Yang X, Lu C (2005) Photosynthesis is improved by exogenous glycine betaine in salt-stressed maize plants. Physiol Plant 124:343–352CrossRefGoogle Scholar
  152. Yoch DC (2002) Dimethylsulfoniopropionate: its sources, role in the marine food web, and biological degradation to dimethylsulfide. Appl Environ Microbiol 68:5804–5815PubMedCrossRefPubMedCentralGoogle Scholar
  153. Yuanyuan M, Yali Z, Jiang L, Hongbo S (2009) Roles of plant soluble sugars and their responses to plant cold stress. Afr J Biotechnol 8:2004–2010Google Scholar
  154. Zhai H, Wang F, Si Z, Huo J, Xing L, An Y, He S, Liu Q (2016) A myo-inositol-1-phosphate synthase gene, IbMIPS1, enhances salt and drought tolerance and stem nematode resistance in transgenic sweet potato. Plant Biotechnol J 14:592–602PubMedCrossRefPubMedCentralGoogle Scholar
  155. Zhang L, Gao M, Zhang L, Li M, Han M, Ashok Alva K, Ashraf M (2013) Role of exogenous glycinebetaine and humic acid in mitigating drought stress-induced adverse effects in Malus robusta seedlings. Turk J Bot 37:920–929CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Neha Handa
    • 1
  • Sukhmeen Kaur Kohli
    • 1
  • Ravdeep Kaur
    • 1
  • Anket Sharma
    • 2
  • Vinod Kumar
    • 2
  • Ashwani Kumar Thukral
    • 1
  • Saroj Arora
    • 1
  • Renu Bhardwaj
    • 1
  1. 1.Department of Botanical and Environmental SciencesGuru Nanak Dev UniversityAmritsarIndia
  2. 2.Department of BotanyDAV UniversityJalandharIndia

Personalised recommendations