Metal Accumulation in Estuarine Plants: Investigating the Effect on the Levels of Non-protein Thiols in Roots of Different Salt Marsh Plants

  • A. Cristina S. Rocha
  • Simone Cavenati
  • M. Teresa S. D. Vasconcelos
  • M. Clara P. Basto
  • C. Marisa R. Almeida


In natural environment, plants are exposed to constant biotic and abiotic stresses (including exposure to trace metals) which may unbalance their equilibrium. As a result, plants have developed important defense mechanisms as, for instance, the production of low molecular weight thiols such as cysteine (Cys) and reduced glutathione (GSH). Much effort has been put into studying the response of soil plants continuously exposed to metals, in terms of thiols production. However, research on this topic involving salt marsh plants is still relatively scarce. Therefore, more information is needed on the contents of thiol compounds as well as on the factors that influence their production in plants inhabiting estuarine environments. Therefore, the levels of non-protein thiols (NPT) (namely, cysteine (Cys), reduced glutathione (GSH), oxidized glutathione (GSSG)) and total acid-soluble SH compounds (Total Thiols) in roots of several salt marsh plants (Phragmites australis (Cav.) Trin. ex Steud., Juncus maritimus Lam., Triglochin striata Ruiz & Pav. and Halimione portulacoides L. Aelen) collected at two River estuaries subjected to different anthropogenic pressures were determined. A possible relationship between the content of each NPT in root tissues and that of a trace metal accumulated was also assessed. The content of thiolic compounds varied in function of the plant species and the sediment colonized by the plants. T. striata was the marsh plant presenting tendentiously higher contents of GSH and GSSG and containing the highest levels of Total Thiols (in specimens from both estuaries). Significant correlations were found between GSH and Cu concentration and between GSSG and Cd and Pb concentration. Results suggest that GSH plays a prominent role in the protection of salt marsh plants cells against metal toxicity, feature of great relevance for application of these plants in phytoremediation procedures.


Metal accumulation Thiols Glutathione Phytoremediation Halophytes 


  1. Aksoy AD, Demirezen, Duman F (2005) Bioaccumulation, detection and analyses of heavy metal pollution in sultan marsh and its environment. Water Air Soil Pollut 164:241–255CrossRefGoogle Scholar
  2. Al Hassan M, Chaura J, López-Gresa MP, Borsai O, Daniso E, Donat-Torres MP, Mayoral O, Vicente O, Boscaiu M (2016) Native-invasive plants vs. halophytes in mediterranean salt marshes: stress tolerance mechanisms in two related species. Front Plant Sci 7:473.
  3. Almeida CMR, Mucha AP, Vasconcelos MTSD (2004) influence of the sea rush Juncus maritimus on metal concentration & speciation in estuarine sediment colonized by the plant. Environ Sci Technol 38:3112–3118CrossRefGoogle Scholar
  4. Almeida CMR, Mucha AP, Vasconcelos MTSD (2006) Comparison of the role of the sea club-rush Scirpus maritimus and the sea rush Juncus maritimus in terms of concentration, speciation and bioaccumulation of metals in the estuarine sediment. Environ Pollut 142:151–159CrossRefGoogle Scholar
  5. Almeida CMR, Mucha AP, Bordalo AA, Vasconcelos MTSD (2008) Influence of a salt marsh plant (Halimione portulacoides) on the concentrations and potential mobility of metals in sediments. Sci Total Environ 403:188–195CrossRefGoogle Scholar
  6. Almeida CMR, Mucha AP, Teresa Vasconcelos MTSD (2011) Role of different salt marsh plants on metal retention in an urban estuary (Lima estuary, NW Portugal). Estuar Coast Shelf Sci 91:243–249CrossRefGoogle Scholar
  7. Almeida CMR, Santos F, Ferreira ACF, Gomes CR, Basto MCP, Mucha AP (2017) Constructed wetlands for the removal of metals from livestock wastewater – can the presence of veterinary antibiotics affect removals? Ecotoxicol Environ Saf 137:143–148CrossRefGoogle Scholar
  8. Alvarez-Legorreta T, Mendoza-Cozatl D, Moreno-Sanchez R, Gold-Bouchot G (2008) Thiol peptides induction in the seagrass Thalassia testudinum (Banks ex König) in response to cadmium exposure. Aquat Toxicol 86:12–19CrossRefGoogle Scholar
  9. Anjum NA, Ahmad I, Mohmood I, Pacheco M, Duarte AC, Pereira E, Umar S, Ahmad A, Khan NA, Iqbal M, Prasad MNV (2012) Modulation of glutathione and its related enzymes in plants’ responses to toxic metals and metalloids—a review. Environ Exp Bot 75:307–324Google Scholar
  10. Anjum NA, Duarte AC, Pereira E, Ahmad I (2015) Juncus maritimus root biochemical assessment for its mercury stabilization potential in Ria de Aveiro coastal lagoon (Portugal). Environ Sci Pollut Res 22:2231–2238CrossRefGoogle Scholar
  11. Apel K, Hirt H (2004) Reactive oxygen soecies: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399CrossRefGoogle Scholar
  12. Arora A, Sairam RK, Srivastava GC (2002) Oxidative stress and antioxidative system in plants. Curr Sci 82:1227–1238Google Scholar
  13. Aygun S, Ozdener Y, Aydin B, Demir E, Ustaosman B (2011) Copper effetcs on the antioxidative responses of copper-tolerant Hirschfeldia incana (L.) leaves. Fresenius Environ Bull 20:2050–2058Google Scholar
  14. Bartosz G (1997) Oxidative stress in plants. Acta Physiol Plant 19:47–64CrossRefGoogle Scholar
  15. Ben Ammar W, Mediouni C, Tray B, Ghorbel M, Jemal F (2008) Glutathione and phytochelatin contents in tomato plants exposed to cadmium. Biol Plant 52:314–320CrossRefGoogle Scholar
  16. Bhargava P, Srivastava AK, Urmil S, Rai LC (2005) Phytochelatin plays a role in UV-B tolerance in N2-fixing cyanobacterium Anabaena doliolum. J Plant Physiol 162:1220–1225CrossRefGoogle Scholar
  17. Birch G, Taylor S (1999) Source of heavy metals in sediments of the Port Jackson estuary, Australia. Sci Total Environ 227:123–138CrossRefGoogle Scholar
  18. Bonner ER, Cahoon RE, Knapke SM, Jez JM (2005) Molecular basis of cysteine biosynthesis in plants. J Biol Chem 280:38803–38813CrossRefGoogle Scholar
  19. Boorman LA (2003) Salt marsh review: an overview of coastal saltmarshes, their dynamic and JNCC report sensitivity characteristics for conservation and management. J Rep. Peterborough No. 334Google Scholar
  20. Bruns INA, Sutter K, Menge S, Neumann D, Krauss G-J (2001) Cadmium lets increase the glutathione pool in bryophytes. J Plant Physiol 158:79–89CrossRefGoogle Scholar
  21. Caçador MI, Vale C, Catarino F (1996) Accumulation of Zn, Pb, Cu, Cr and Ni in sediments between roots of the tagus estuary salt marshes, Portugal. Estuar Coast Shelf Sci 42:393–403CrossRefGoogle Scholar
  22. Chamseddine M, Wided B, Guy H, Marie-Edith C, Fatma J (2009) Cadmium and copper induction of oxidative stress and antioxidative response in tomato (Solanum lycopersicon) leaves. Plant Growth Regul 57:89–99CrossRefGoogle Scholar
  23. Chen KM, Gong HJ, Wang SM, Zhang CL (2007) Antioxidant defense system in Phragmites communis Trin. ecotypes. Biol Plant 51:754–758CrossRefGoogle Scholar
  24. Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182CrossRefGoogle Scholar
  25. Coelho CA (2005) Caracterização da ictiofauna do Estuário do Rio Cávado, com particular incidência na fase juvenil. Master Thesis. Faculdade de Ciências da Universidade do PortoGoogle Scholar
  26. Costa-Dias S, Sousa R, Antunes C (2010) Ecological quality assessment of the lower Lima Estuary. Mar Pollut Bull 61:234–239CrossRefGoogle Scholar
  27. De Vos CHR, Vonk MJ, Vooijs R, Schat H (1992) Glutathione depletion due to copper-induced phytochelatin synthesis causes oxidative stress in Silene cucubalus. Plant Physiol 98:853–858CrossRefGoogle Scholar
  28. Di Baccio D, Kopriva S, Sebastiani L, Rennenberg H (2005) Does glutathione metabolism have a role in the defence of poplar against zinc excess? New Phytol 167:73–80CrossRefGoogle Scholar
  29. Diopan V, Shestivska V, Zitka O, Galiova M, Adam V, Kaiser J, Horna A, Novotny K, Liska M, Havel L, Zehnalek J, Kizek R (2010) Determination of plant thiols by liquid chromatography coupled with coulometric and amperometric detection in lettuce treated by lead(ii) ions. Electroanalysis 22:1248–1259CrossRefGoogle Scholar
  30. Duarte B, Caetano M, Almeida PR, Vale C, Caçador MI (2010) Accumulation and biological cycling of heavy metal in four salt marsh species, from Tagus estuary (Portugal). Environ Pollut 158:1661–1668CrossRefGoogle Scholar
  31. Duarte B, Silva V, Caçador I (2012) Hexavalent chromium reduction, uptake and oxidative biomarkers in Halimione portulacoides. Ecotoxicol Environ Saf 83:1–7CrossRefGoogle Scholar
  32. Duarte B, Santos D, Caçador I (2013) Halophyte anti-oxidant feedback seasonality in two salt marshes with different degrees of metal contamination: search for an efficient biomarker. Funct Plant Biol 40:922–930CrossRefGoogle Scholar
  33. Duman F, Cicek M, Sezen G (2007) Seasonal changes of metal accumulation and distribution in common club rush (Schoenoplectus lacustris) and common reed (Phragmites australis). Ecotoxicology 16:457–463CrossRefGoogle Scholar
  34. Ederli L, Reale L, Ferranti F, Pasqualini S (2004) Responses induced by high concentration of cadmium in Phragmites australis roots. Physiol Plant 121:66–74CrossRefGoogle Scholar
  35. Farzi A, Borghei SM, Vossoughi M (2017) The use of halophytic plants for salt phytoremediation in constructed wetlands. Int J Phytoremediation 19:643–650CrossRefGoogle Scholar
  36. Fediuc E, Erdei L (2002) Physiological and biochemical aspects of cadmium toxicity and protective mechanisms induced in Phragmites australis and Typha latifolia. J Plant Physiol 159:265–271CrossRefGoogle Scholar
  37. Fitzgerald EJ, Caffrey JM, Nesaratnam ST, McLoughlin P (2003) Copper and lead concentrations in salt marsh plants on the Suir Estuary, Ireland. Environ Pollut 123:67–74CrossRefGoogle Scholar
  38. França S, Vinagre C, Caçador MI, Cabral HN (2005) Heavy metal concentrations in sediment, benthic invertebrates and fish in three salt marsh areas subjected to different pollution loads in the Tagus Estuary (Portugal). Mar Pollut Bull 50:998–1003CrossRefGoogle Scholar
  39. Gonçalves EPR, Soares HMVM, Boaventura RAR, Machado AASC, Esteves da Silva JCG (1994) Seasonal variations of heavy metals in sediments and aquatic mosses from the Cávado river basin (Portugal). Sci Total Environ 142:143–156CrossRefGoogle Scholar
  40. Gravato C, Guimarães L, Santos J, Faria M, Alves A, Guilhermino L (2010) Comparative study about the effects of pollution on glass and yellow eels (Anguilla anguilla) from the estuaries of Minho, Lima and Douro Rivers (NW Portugal). Ecotoxicol Environ Saf 73:524–533CrossRefGoogle Scholar
  41. Guimarães MA, Santana TA, Silva EV, Zenzen IL, Loureiro ME (2008) Toxicidade e tolerância ao cádmio em plantas. Rev Tróp Ciências Agrár Biol 2:58–68Google Scholar
  42. Gupta D, Huang H, Yang X, Razafindrabe B, Inouhe M (2010) The detoxification of lead in Sedum alfredii H. is not related to phytochelatins but the glutathione. J Hazard Mater 177:437–444CrossRefGoogle Scholar
  43. Hesse H, Nikiforova V, Gakière B, Hoefgen R (2004) Molecular analysis and control of cysteine biosynthesis: integration of nitrogen and sulphur metabolism. J Exp Bot 55:1283–1292CrossRefGoogle Scholar
  44. Iannelli MA, Pietrini F, Fiore L, Petrilli L, Massacci A (2002) Antioxidant response to cadmium in Phragmites australis plants. Plant Physiol Biochem 40:977–982CrossRefGoogle Scholar
  45. Israr M, Sahi S, Datta R, Sarkar D (2006) Bioaccumulation and physiological effects of mercury in Sesbania drummondii. Chemosphere 65:591–598CrossRefGoogle Scholar
  46. Jarosz-Wilkołazka A, Grąz M, Braha B, Menge S, Schlosser D, Krauss G-J (2006) Species-specific Cd-stress response in the white rot basidiomycetes Abortiporus biennis and Cerrena unicolor. Biometals 19:39–49CrossRefGoogle Scholar
  47. Jones DL (1998) Organic acids in the rhizosphere – a critical review. Plant Soil 205:25–44CrossRefGoogle Scholar
  48. Jozefczak M, Remans T, Vangronsveld J, Cuypers A (2012) Glutathione is a key player in metal-induced oxidative stress defenses. Int J Mol Sci 13:3145–3175CrossRefGoogle Scholar
  49. Ju XH, Tang S, Jia Y, Guo J, Ding Y, Song Z, Zhao Y (2011) Determination and characterization of cysteine, glutathione and phytochelatins (PC2–6) in Lolium perenne L. exposed to Cd stress under ambient and elevated carbon dioxide using HPLC with fluorescence detection. J Chromatogr B 879:1717–1724CrossRefGoogle Scholar
  50. Klapheck S (1988) Homoglutathione: isolation, quantification and occurrence in legumes. Physiol Plant 74:727–732CrossRefGoogle Scholar
  51. Koprivova A, Meyer AJ, Schween G, Herschbach C, Reski R, Kopriva S (2002) Functional knockout of the adenosine 5′-phosphosulfate reductase gene in Physcomitrella patens revives an old route of sulfate assimilation. J Biol Chem 277:32195–32201CrossRefGoogle Scholar
  52. Krystofova O, Shestivska V, Galiova M, Novotny K, Kaiser J, Zehnalek J, Babula P, Opatrilova R, Adam V, Kizek R (2009) Sunflower plants as bioindicators of environmental pollution with lead (ii) ions. Sensors 9:5040–5058CrossRefGoogle Scholar
  53. Lee SV, Cundy AB (2001) Heavy metal contamination and mixing processes in sediments from the humber estuary, eastern England. Estuar Coast Shelf Sci 53:619–636CrossRefGoogle Scholar
  54. Long E, Macdonald D, Smith S, Calder F (1995) Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ Manag 19:81–97CrossRefGoogle Scholar
  55. Lutts S, Lefèvre I (2015) How can we take advantage of halophyte properties to cope with heavy metal toxicity in salt-affected areas? Ann Bot 115:509–528CrossRefGoogle Scholar
  56. MacFarlane GR, Pulkownik A, Burchett MD (2003) Accumulation and distribution of heavy metals in the grey mangrove, Avicennia marina (Forsk.)Vierh.: biological indication potential. Environ Pollut 123:139–151CrossRefGoogle Scholar
  57. Mahmood T (2010) Phytoextraction of heavy metals-the process and scope for remediation of contaminated soils. Soil Environ 29:91–109Google Scholar
  58. Manousaki E, Kalogerakis N (2010) Halophytes present new opportunities in phytoremediation of heavy metals and saline soils. Ind Eng Chem Res 50:656–660CrossRefGoogle Scholar
  59. Negrin VL, Teixeira B, Godinho RM, Mendes R, Vale C (2017) Phytochelatins and monothiols in salt marsh plants and their relation with metal tolerance. Mar Pollut Bull 121:78–84CrossRefGoogle Scholar
  60. Newton GL, Fahey RC (1995) Determination of biothiols by bromobimane labeling and high-performance liquid chromatography. Methods Enzymol 251:148–166CrossRefGoogle Scholar
  61. Noctor G, Mhamdi A, Chaouch S, Han YI, Neukermans J, Marquez-Garcia B, Queval G, Foyer CH (2012) Glutathione in plants: an integrated overview. Plant Cell Environ 35:454–484CrossRefGoogle Scholar
  62. Nunes da Silva M, Mucha AP, Rocha AC, Silva C, Carli C, Gomes CR, Almeida CMR (2014) Evaluation of the ability of two plants for the phytoremediation of Cd in salt marshes. Estuar Coast Shelf Sci 141:78–84CrossRefGoogle Scholar
  63. Nunes da Silva M, Mucha AP, Rocha AC, Gomes CR, Almeida CMR (2015) Response of two salt marsh plants to short- and long-term contamination of sediment with cadmium. J Soils Sediments 15:722–731CrossRefGoogle Scholar
  64. Padinha C, Santos R, Brown MT (2000) Evaluating environmental contamination in Ria Formosa (Portugal) using stress indexes of Spartina maritima. Mar Environ Res 49:67–78CrossRefGoogle Scholar
  65. Påhlsson A-MB (1989) Toxicity of heavy metals (Zn, Cu, Cd, Pb) to vascular plants. Water Air Soil Pollut 47:287–319CrossRefGoogle Scholar
  66. Pan K, Wang W-X (2012) Trace metal contamination in estuarine and coastal environments in China. Sci Total Environ 421:3–16CrossRefGoogle Scholar
  67. Pietrini F, Iannelli MA, Pasqualini S, Massacci A (2003) Interaction of cadmium with glutathione and photosynthesis in developing leaves and chloroplasts of Phragmites australis (cav.) trin. ex steudel. Plant Physiol 133:829–837CrossRefGoogle Scholar
  68. Reboreda R, Caçador MI (2007a) Halophyte vegetation influences in salt marsh retention capacity for heavy metals. Environ Pollut 146:147–154CrossRefGoogle Scholar
  69. Reboreda R, Caçador MI (2007b) Copper, zinc and lead speciation in salt marsh sediments colonised by Halimione portulacoides and Spartina maritima. Chemosphere 69:1655–1661CrossRefGoogle Scholar
  70. Rocha ACS, Almeida CMR, Basto MCP, Vasconcelos MTSD (2014a) Antioxidant response of Phragmites australis to Cu and Cd contamination. Ecotoxicol Environ Saf 109:152–160CrossRefGoogle Scholar
  71. Rocha ACS, Almeida CMR, Basto MCP, Vasconcelos MTSD (2014b) Phragmites australis response to Cu in terms of low molecular weight organic acids (LMWOAs) exudation: influence of the physiological cycle. Estuar Coast Shelf Sci 146:76–82CrossRefGoogle Scholar
  72. Rocha ACS, Almeida CMR, Basto MCP, Vasconcelos MTSD (2015) Influence of season and salinity on the exudation of aliphatic low molecular weight organic acids (ALMWOAs) by Phragmites australis and Halimione portulacoides roots. J Sea Res 95:180–187CrossRefGoogle Scholar
  73. Rother M, Krauss GJ, Grass G, Wesenberg D (2006) Sulphate assimilation under Cd2+ stress in Physcomitrella patens-combined transcript, enzyme and metabolite profiling. Plant Cell Environ 29:1801–1811CrossRefGoogle Scholar
  74. Schröder P, Fischer C, Debus R, Wenzel A (2003) Reaction of detoxification mechanisms in suspension cultured spruce cells (Picea abies L. Karst.) to heavy metals in pure mixture and in soil eluates. Environ Sci Pollut Res 10:225–234CrossRefGoogle Scholar
  75. Seth CS, Remans T, Keunen E, Jozefczak M, Gielen H, Opdenakker K, Weyens N, Vangronsveld J, Cuypers A (2012) Phytoextraction of toxic metals: a central role for glutathione. Plant Cell Environ 35:334–346CrossRefGoogle Scholar
  76. Sousa R, Dias S, Antunes C (2007) Subtidal macrobenthic structure in the lower Lima estuary, NW of Iberian Peninsula. Ann Zool Fenn 44:303–313Google Scholar
  77. Sousa AI, Caçador MI, Lillebø AI, Pardal MA (2008) Heavy metal accumulation in Halimione portulacoides: intra- and extra-cellular metal binding sites. Chemosphere 70:850–857CrossRefGoogle Scholar
  78. Sundby B, Vale C, Caetano M, Luther GW (2003) Redox chemistry in the root zone of a salt marsh sediment in the tagus estuary, Portugal. Aquat Geochem 9:257–271CrossRefGoogle Scholar
  79. Thounaojam TC, Panda P, Mazumdar P, Kumar D, Sharma GD, Sahoo L, Panda SK (2012) Excess copper induced oxidative stress and response of antioxidants in rice. Plant Physiol Biochem 53:33–39CrossRefGoogle Scholar
  80. Válega M, Lima AIG, Figueira EMAP, Pereira E, Pardal MA, Duarte AC (2009) Mercury intracellular partitioning and chelation in a salt marsh plant, Halimione portulacoides (L.) Aellen: strategies underlying tolerance in environmental exposure. Chemosphere 74:530–536CrossRefGoogle Scholar
  81. Valiela I, Cole M, McClelland J, Hauxwell J, Cebrian J, Joye S (2000) Role of salt marshes as part of coastal landscapes. In: Weinstein M, Kreeger D (eds) Concepts and controversies in tidal marsh ecology. Springer, Dordrecht, pp 23–36Google Scholar
  82. Weis JS, Weis P (2004) Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environ Int 30:685–700CrossRefGoogle Scholar
  83. Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol 2011:402647. CrossRefGoogle Scholar
  84. Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76:167–179CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • A. Cristina S. Rocha
    • 1
  • Simone Cavenati
    • 2
  • M. Teresa S. D. Vasconcelos
    • 2
  • M. Clara P. Basto
    • 1
  • C. Marisa R. Almeida
    • 2
  1. 1.CIMAR/CIIMAR, Faculdade de CiênciasUniversidade do PortoPortoPortugal
  2. 2.Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR)Universidade do PortoMatosinhosPortugal

Personalised recommendations